JPH03173572A - Porous hollow yarn film for plasma separation - Google Patents

Porous hollow yarn film for plasma separation

Info

Publication number
JPH03173572A
JPH03173572A JP1314097A JP31409789A JPH03173572A JP H03173572 A JPH03173572 A JP H03173572A JP 1314097 A JP1314097 A JP 1314097A JP 31409789 A JP31409789 A JP 31409789A JP H03173572 A JPH03173572 A JP H03173572A
Authority
JP
Japan
Prior art keywords
plasma
membrane
hollow fiber
film
plasma separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1314097A
Other languages
Japanese (ja)
Other versions
JP2855725B2 (en
Inventor
Noriaki Kato
典昭 加藤
Toshiyuki Yagi
敏幸 八木
Jitsuzo Takada
高田 実三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1314097A priority Critical patent/JP2855725B2/en
Publication of JPH03173572A publication Critical patent/JPH03173572A/en
Application granted granted Critical
Publication of JP2855725B2 publication Critical patent/JP2855725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To provide a porous hollow yarn type plasma separating film excellent in living body adaptability which has a rapid plasma permeating rate and can suppress the activation of a complement by making a hollow yarn film formed of a specified polycarbonate have macrovoids of specified diameters in a specified ratio to the film sectional area. CONSTITUTION:A plasma separating porous hollow thread film used at the time of separating a plasma from a blood is formed of one or two or more of polycarbonates represented by the formula (I), (II), or (III), and the film thickness is 10-100mum. In the hollow yarn film, macrovoids of 0.5-30mum in diameter are present in 5-70% to the film sectional area. In the formulae, R1 and R2 are selected from the radials of H, CH3, C2H5, C3H7, C6H12 and C6H5, K from H, F, Cl and Br, and Y from O, SO2, and CO2.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、血液から血漿を分離する血漿分離膜に関す
るものであり、さらに詳細には血液交換療法、健常者か
らの血漿を採取する採漿等の医療分野に利用される血漿
分離膜に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a plasma separation membrane that separates plasma from blood, and more specifically to blood exchange therapy and plasma collection for collecting plasma from healthy individuals. The present invention relates to plasma separation membranes used in the medical field.

(従来の技術) 膜を用いて血液から血漿を分離する血漿分離は、血漿中
の病因物質や悪性物質を除去することを目的とした、血
漿交換療法等の医科治療用途を目上して開発されたもの
である。しかし、近年、血漿製剤の需要が飛躍的に高ま
り、従来の全血献血に代わるものとして、血漿のみを採
取する成分献血(採漿)が行なわれるに至った。この成
分献血に用いられる血漿分jiI膜は、健常者に対して
用いられるものであり、血漿採取における安全性が非常
に重要になってきている。特に血漿分離法の中枢を占め
る血漿分離膜の生体適合性に対する要求は、非常に厳し
くなってきている。
(Prior art) Plasma separation, which separates plasma from blood using a membrane, was developed with the aim of medical treatment such as plasma exchange therapy, which aims to remove pathogenic substances and malignant substances from plasma. It is what was done. However, in recent years, the demand for plasma preparations has increased dramatically, and as an alternative to conventional whole blood donation, component blood donation (plasma collection) in which only plasma is collected has come to be performed. The plasma fraction jiI membrane used for component blood donation is used for healthy individuals, and safety in plasma collection has become very important. In particular, requirements regarding the biocompatibility of plasma separation membranes, which play a central role in plasma separation methods, have become extremely strict.

従来より、血液浄化膜として広(使用されているセルロ
ース系の膜では、血液中の補体成分が膜と接触すること
で活性化され、免疫系の反応を弓き起こすことが知られ
ている。また、比較的生体適合性に優れていると言われ
ている、ポリオレフィン系の膜では、相分離法による製
膜か困難であり、延伸法により微細孔を形成させている
ため、細孔がすだれ状となっており、血球か細孔に捕捉
されると溶血を引き起こしやすいという問題点がある。
Conventionally, cellulose-based membranes widely used as blood purification membranes are known to activate complement components in the blood when they come into contact with the membrane, triggering an immune system response. Furthermore, polyolefin membranes, which are said to have relatively good biocompatibility, are difficult to form using a phase separation method, and the pores are formed by a stretching method. The problem is that it has a slat-like shape, and if blood cells become trapped in the pores, it tends to cause hemolysis.

また、ポリスルホンを用いた分離膜は、そのフィンガー
ライク構造により比較的良好な血漿分離特性を有するが
、素材としての生体適合性は、十分とは言えず、かつ、
フィンガーライク孔の壁面がかなりの凹凸を有すること
から、分離血漿成分との接触面積が著しく大きく、補体
活性化を促す要因となりやすい。
Separation membranes using polysulfone have relatively good plasma separation properties due to their finger-like structure, but their biocompatibility as a material is not sufficient, and
Since the wall surface of the finger-like pore has considerable irregularities, the contact area with separated plasma components is extremely large, which tends to be a factor that promotes complement activation.

また、ポリカーボネート膜に関しては、平膜として工業
用水処理に用いられる技術(特公昭53−15549号
公報)があるが血漿分離用中空糸として用いた例はない
。ポリエーテルポリカーボネート中空糸膜を血漿分離に
用いる技術(特開昭57−52461号公報、特開昭5
9−22559号公報)もあるが補体活性抑制効果が十
分でない。
Regarding polycarbonate membranes, there is a technology for using them as flat membranes in industrial water treatment (Japanese Patent Publication No. 15549/1983), but there is no example of their use as hollow fibers for plasma separation. Technology using polyether polycarbonate hollow fiber membranes for plasma separation (JP-A-57-52461, JP-A-5
9-22559), but the effect of suppressing complement activity is not sufficient.

このように、現在では、血液成分と分離膜との生理的、
あるいは、物理的な相互作用に関わる高度な生体適合性
までが、要求されるに至っている。
In this way, at present, the physiological relationship between blood components and separation membranes,
In addition, even a high level of biocompatibility related to physical interaction has come to be required.

生体と血漿分離膜とが接触する時、生体側は、自己にと
って異物である血漿分離膜を認識して、何らかの相互作
用に基づ(反応が引き起こされることは知られている。
It is known that when a living body and a plasma separation membrane come into contact, the living body recognizes the plasma separation membrane as a foreign substance to itself, and a reaction is caused based on some kind of interaction.

生体適合性とは、このような異物認識反応の程度が軽微
であることを意味している。人工臓器が使用される際に
特に問題となるのは、■血液凝固系と■免疫系に大別さ
れる。
Biocompatibility means that the degree of such foreign body recognition reaction is slight. Particular problems that arise when artificial organs are used can be broadly divided into the blood coagulation system and the immune system.

血漿分離においては凝固系の反応は、抗凝固剤の使用に
よって阻止されているので生体適合性として問題となる
のは、免疫系の反応のみである。血漿分離自体は、短期
の体外循環であるため、免疫系の中でも特に問題となる
のは、補体活性である。
In plasma separation, the reaction of the coagulation system is inhibited by the use of an anticoagulant, so that only the reaction of the immune system is a problem in terms of biocompatibility. Since plasma separation itself involves short-term extracorporeal circulation, complement activity is particularly problematic for the immune system.

つまり、血漿分離膜において生体適合性を改善するため
には、この補体活性を抑制することが必要である。
In other words, in order to improve the biocompatibility of a plasma separation membrane, it is necessary to suppress this complement activity.

(発明が解決しようとする課題) 本発明では、血漿透過速度が早く補体の活性化を抑制し
、より生体適合性に優れた多孔質中空糸型血漿分離膜を
提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a porous hollow fiber plasma separation membrane that has a high plasma permeation rate, suppresses complement activation, and has excellent biocompatibility.

(課題を解決するための手段) 前記問題点を解決した優れた血漿分離膜を提供するため
鋭意研究した結果本発明に到達した。すなわち本発明は
、 (1)  血液から血漿を分離する下記一般式(I)。
(Means for Solving the Problems) As a result of intensive research to provide an excellent plasma separation membrane that solves the above-mentioned problems, the present invention has been achieved. That is, the present invention provides: (1) The following general formula (I) for separating plasma from blood.

(n)又は(III)を有するポリカーボネートの1種
又は2種以上で構成される膜厚10〜100uの多孔質
中空糸膜であって、該中空糸膜には0.5〜30IU直
径のマクロボイドが膜断面積に対し5〜70%存在する
ことを特徴とする血漿分離用多孔質中空糸膜。
A porous hollow fiber membrane with a membrane thickness of 10 to 100 u made of one or more polycarbonates having (n) or (III), the hollow fiber membrane has a macroscopic membrane with a diameter of 0.5 to 30 IU. A porous hollow fiber membrane for plasma separation, characterized in that voids exist in an amount of 5 to 70% of the cross-sectional area of the membrane.

(III) ■ 請求項1の血漿分離用多孔質中糸膜であって該中空
糸膜は中空糸の最外層及び最内層に孔径0.5〜30μ
mのマクロボイドを含むマクロボイド層m4及びm2が
存在し、両層の厚さm+ +m2の厚さが膜厚の30%
以上であることを特徴とする血染分離用多孔質中空糸膜
である。
(III) ■ The porous intermediate fiber membrane for plasma separation according to claim 1, wherein the hollow fiber membrane has pores with a diameter of 0.5 to 30μ in the outermost layer and the innermost layer of the hollow fiber.
There are macrovoid layers m4 and m2 containing m macrovoids, and the thickness of both layers m+ +m2 is 30% of the film thickness.
This is a porous hollow fiber membrane for blood stain separation characterized by the above characteristics.

本発明のポリカーボネートは前記一般式(I)、(If
)又は(III)で示されるもので、R11R2がCH
3、XかHであるポリカーボネートが好ましい。分子量
は15000〜40000好ましくは20000〜30
000で、15000以下では中空糸膜への紡糸成膜が
困難で、40000以上では適正な孔径をもつ多孔質膜
とすることかできない。
The polycarbonate of the present invention has the general formula (I), (If
) or (III), in which R11R2 is CH
3, X or H polycarbonate is preferred. Molecular weight is 15,000 to 40,000, preferably 20,000 to 30
000, if it is less than 15,000, it is difficult to spin into a hollow fiber membrane, and if it is more than 40,000, it is impossible to form a porous membrane with an appropriate pore size.

本発明の中空糸膜の膜厚は10〜100 pm 、好ま
しくは20〜60−である。膜厚が10u以下では中空
糸としての糸強度に不足しモジュール化なとの取扱い上
に問題が残り、膜厚が100pJよりも大きくなると血
漿が透過する際の抵抗が大きくなり、他の要件が満たさ
れても補体活性化が抑制された血漿分離膜とすることが
むつかしい。
The hollow fiber membrane of the present invention has a thickness of 10 to 100 pm, preferably 20 to 60 pm. If the membrane thickness is less than 10u, the fiber strength as a hollow fiber is insufficient, and problems remain in handling such as modularization.If the membrane thickness is greater than 100pJ, the resistance when plasma permeates becomes large, and other requirements are met. It is difficult to create a plasma separation membrane in which complement activation is suppressed even when the membrane is filled with this condition.

本発明でいうマクロボイドとは膜内部に存在する空洞部
を意味し、該空洞は直径0.5〜30uの大きさで該空
調部の総面積が膜断面積に対し5〜70%、好ましくは
10〜50%、更に好ましくは20〜40%である。マ
クロボイドの直径が0.5−以下で、面積比が10%以
下では血漿の透過が遅くなり、かつ接触ひん度が増大さ
れ、このマクロボイド領域の血漿蛋白質が流れにくくな
り、また、蛋白質の吸着等により相互作用を起こしやす
くなって補体活性化がされやすい。
The term "macrovoid" as used in the present invention refers to a cavity existing inside the membrane, and the cavity has a diameter of 0.5 to 30u, and the total area of the air conditioning part is preferably 5 to 70% of the cross-sectional area of the membrane. is 10 to 50%, more preferably 20 to 40%. If the diameter of the macrovoid is less than 0.5% and the area ratio is less than 10%, the permeation of plasma will be slow and the frequency of contact will be increased, making it difficult for plasma proteins to flow in this macrovoid region. Interaction is likely to occur due to adsorption, etc., and complement activation is likely to occur.

マクロボイドの大きさが30−以上、面積比が70%以
上では支持層としての形態保持性が不十分になると共に
、膜強度の維持の点で問題が生じる。
If the size of the macrovoids is 30% or more and the area ratio is 70% or more, the shape retention as a support layer will be insufficient, and problems will arise in terms of maintaining the film strength.

本発明の血漿分離膜ではその膜中に存在する前記マクロ
ボイドの内壁面が平滑であることが更に好ましい。凹凸
部が存在するマクロボイドでは血漿の通過が阻害され、
血漿蛋白質が流れにく(なり、前記と同様に補体活性の
抑制が不十分となる。
In the plasma separation membrane of the present invention, it is further preferable that the inner wall surface of the macrovoid present in the membrane is smooth. Macrovoids with uneven parts inhibit the passage of plasma,
Plasma proteins become difficult to flow, and as mentioned above, complement activity is insufficiently suppressed.

ここでいうマクロボイド壁面が平滑であるとは、図面第
2図のように凹凸のみられないことを意味する。
Here, the macrovoid wall surface being smooth means that there are no irregularities as shown in FIG. 2 of the drawing.

また、中空糸膜の最外層及び最内層に存在する前記マク
ロボイド層の厚さ、m l+ m 2では全膜厚に対し
30%以上であり、30%以下では支持層としての形態
保持性が不十分かつ膜強度維持性が不七分である。
In addition, the thickness of the macrovoid layer present in the outermost layer and the innermost layer of the hollow fiber membrane, m l + m 2, is 30% or more of the total membrane thickness, and if it is less than 30%, the shape retention as a support layer is poor. It is insufficient and the membrane strength maintenance property is unsatisfactory.

前記マクロボイド層のうち中空糸内面側のマクロボイド
層(第1図■における)は中空糸膜中空部(第1図■の
位置)に面して孔径0.15〜0.5μmの開口部をも
ち、血球と血漿を分離する機能をもっている。
Among the macrovoid layers, the macrovoid layer on the inner surface side of the hollow fiber (indicated by ■ in Figure 1) has an opening with a pore diameter of 0.15 to 0.5 μm facing the hollow portion of the hollow fiber membrane (in the position indicated in ■ in Figure 1). It has the function of separating blood cells and plasma.

マクロボイド層とマクロボイド層の間に成膜条件によっ
て該マクロボイドよりは孔径の小さい均質層が存在する
場合もある。
Depending on the film formation conditions, a homogeneous layer having a smaller pore diameter than the macrovoids may exist between the macrovoid layers.

前記マクロボイドの大きさ及び面積比は電顕写真をもと
に画像解析により求めた。
The size and area ratio of the macrovoids were determined by image analysis based on electron micrographs.

本発明の構造をもつ中空糸膜は、ドープ組成でシよ ポリマー1度含15〜30%である。15%以下では孔
が形成されないか、形成されても微少な細孔が形成され
やすく、また中空糸としての糸強度が小さくなる。一方
30%を越えると血@濾過速度が著しく小さ(なる。
The hollow fiber membrane having the structure of the present invention has a dope composition of 15 to 30% of the silica polymer. If it is less than 15%, no pores will be formed, or even if they are formed, minute pores will be likely to be formed, and the fiber strength as a hollow fiber will be reduced. On the other hand, if it exceeds 30%, the blood filtration rate becomes extremely small.

ポリマー溶媒はポリカーボネートの溶解性に優れる良溶
媒と溶解性の低い貧溶媒の混合溶媒を用いる。用いる溶
媒は非プロトン性極性溶媒で沸点が150℃以上のもの
で、良溶媒としてN−メチルー2−ピロリドン(NMP
) 、ジメチルアセトアミド(DMAC) 、貧溶媒と
して2−ピロリドン(2−PN) 、γ−ブチロラクト
ン(GBL)、ジメチルホルムアミド(DMF) 、ポ
リアルキレングリコール(PAG)等がある。
The polymer solvent used is a mixed solvent of a good solvent with excellent solubility of polycarbonate and a poor solvent with low solubility. The solvent used is an aprotic polar solvent with a boiling point of 150°C or higher, and N-methyl-2-pyrrolidone (NMP) is a good solvent.
), dimethylacetamide (DMAC), poor solvents such as 2-pyrrolidone (2-PN), γ-butyrolactone (GBL), dimethylformamide (DMF), and polyalkylene glycol (PAG).

紡糸製膜時の凝固条件はこのドープを凝固性の芯液と共
に、二重管ノズルより吐出し、空中走行させた後、凝固
浴で凝固させるが、この凝固浴も上記、良溶媒と貧溶媒
の混合系を用いるのが好ましい。凝固浴温度(T2)は
最高70℃、ノズル温度(T1)と関係が O≦ T、−T2 ≦ 70℃ であり、凝固性の芯液中の水の1度と凝固浴中の水の濃
度が共に60%以下である。
The coagulation conditions during spinning and membrane production are as follows: This dope is discharged from a double pipe nozzle together with a coagulable core liquid, allowed to travel in the air, and then coagulated in a coagulation bath. It is preferable to use a mixed system of. The coagulation bath temperature (T2) is a maximum of 70°C, and the relationship with the nozzle temperature (T1) is O≦T, -T2≦70°C, and the concentration of water in the coagulating core liquid and water in the coagulating bath is are both below 60%.

紡糸・凝固の後水洗、100〜130℃の湿熱処理(オ
ートクレーブ処理が好ましい)することにより、ポリマ
ー粒子の形成を進行させ、更に50%のグリセリン水溶
液に浸漬し、乾燥し、多孔質中空糸型血漿分離膜を得る
After spinning and coagulation, the formation of polymer particles is advanced by washing with water and wet heat treatment at 100 to 130°C (autoclave treatment is preferred), followed by immersion in a 50% glycerin aqueous solution and drying to form a porous hollow fiber type. Obtain a plasma separation membrane.

以下、実施例によりこの発明をさらに詳細に説明するが
、その前に実施例および比較例において行なう血漿分離
膜の評価方法について説明する。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but first, a method for evaluating plasma separation membranes carried out in Examples and Comparative Examples will be explained.

中空糸膜は、通常のウレタン樹脂接着法によりモジュー
ル化し、長さ20cm、有効膜面積0.2Iの血漿分離
モジュールに成形する。抗凝固剤としてACD液を添加
した牛血液を用い、牛血液を50−/■1nで供給しな
がら、血漿分離性能を評価する。評価方法は、例えば人
工臓器kl、P。
The hollow fiber membrane is modularized by a conventional urethane resin bonding method to form a plasma separation module with a length of 20 cm and an effective membrane area of 0.2I. Using bovine blood to which ACD solution was added as an anticoagulant, plasma separation performance was evaluated while supplying bovine blood at 50-/1n. The evaluation method is, for example, artificial organ kl, P.

1902〜1910、(1985)日赤、伴野丞計、池
田博之らの報告等で教示されている一般的な評価方法を
用いた。
1902-1910, (1985) The general evaluation method taught in the reports of the Japan Red Cross, Jokei Banno, Hiroyuki Ikeda, etc. was used.

評価項目は、最大血漿分離速度Q f 、、、および血
漿蛋白質のふるい係数s c to□1−21゜tei
nとした。S Ctotal−proteinは、以下
の式で定義されるものである。
The evaluation items were the maximum plasma separation rate Q f , and the plasma protein sieving coefficient sc to□1-21°tei
It was set as n. SCtotal-protein is defined by the following formula.

また、生体適合性については、■補体の活性化および、
■血液適合性(溶血)について以下のように評価した。
Regarding biocompatibility, ■complement activation and
■Blood compatibility (hemolysis) was evaluated as follows.

■ 補体活性化 中空糸膜100c111(内径換算の膜面積)を細く裁
断し、ゼラチンベロナール緩衝液1−を加えて浸漬した
後、ヒト全補体(Cordis株式会社製)をlid加
え、37℃で1時間インキュベートする。その後May
arの方法により、血清補体価CH30を測定し、補体
活性化の程度を評価する。
■ Complement activation hollow fiber membrane 100c111 (membrane area in terms of inner diameter) was cut into thin pieces, gelatin veronal buffer 1- was added and immersed, and then human whole complement (manufactured by Cordis Inc.) was added for 37 hours. Incubate for 1 hour at °C. After that May
Serum complement value CH30 is measured by the ar method to evaluate the degree of complement activation.

■ 溶血 牛血液を用いた血漿分離性の評価において、血漿中の遊
離ヘモグロビン濃度をモニターすることにより、溶血を
評価する。
■ In evaluating plasma separability using hemolyzed bovine blood, hemolysis is evaluated by monitoring the free hemoglobin concentration in plasma.

マクロボイドの存在は、膜断面を顕微鏡を用いて観察す
ることにより調べた。図に膜断面の光学及び電子顕微鏡
写真を示す。
The presence of macrovoids was investigated by observing the cross section of the membrane using a microscope. The figure shows optical and electron micrographs of a cross section of the membrane.

以下実施例および比較例について説明する。Examples and comparative examples will be described below.

実施例1〜4 式(I)におけるXがH,R,、R2がCH3であるポ
リカーボネート樹脂(三菱化成製ツバレックス、MW2
2000)を用いて、第1表に示すようなポリマー溶剤
、内液、凝固浴を用いて、外径11璽、巾95μmの環
状スリツトと内液供給孔を有する二重管ノズルより内液
と共に吐出し、空中走行を201させたのち凝固洛中を
走行させ、水洗、121℃オートクレーブ処理し中空糸
膜とした。
Examples 1 to 4 Polycarbonate resin in which X in formula (I) is H, R, and R2 is CH3 (Tubarex manufactured by Mitsubishi Kasei, MW2
2000), and using the polymer solvent, internal liquid, and coagulation bath as shown in Table 1, the internal liquid was passed through a double tube nozzle having an annular slit with an outer diameter of 11 mm and a width of 95 μm, and an internal liquid supply hole. After being discharged and running in the air for 20 minutes, it was run in a coagulation tank, washed with water, and autoclaved at 121°C to form a hollow fiber membrane.

この膜をグリセリン処理し血漿分離用中空糸膜とした。This membrane was treated with glycerin to obtain a hollow fiber membrane for plasma separation.

該中空糸膜はいづれも内径280u、膜厚は第2表に示
している。この膜をモジュール化し血漿濾過速度、補体
活性化を評価した。結果を第2表に示す。
The hollow fiber membranes each had an inner diameter of 280 u, and the membrane thicknesses are shown in Table 2. This membrane was modularized and plasma filtration rate and complement activation were evaluated. The results are shown in Table 2.

補体活性化においては、中空糸膜の存在なしのゼラチン
ベロナールバッファ中で37℃、1時間インキュベート
した後のブランクの場合の血清補体活化を評価した。そ
の結果、CH30は32であった0 比較例1〜2 実施例と同様のポリカーボネートを用い、第1表に示し
たポリマー溶媒、内液、凝固浴、凝固条件で実施例と同
様の方法で紡糸し第2表に示す中空糸膜を得た。
For complement activation, serum complement activation was evaluated in a blank case after incubation for 1 hour at 37° C. in gelatin veronal buffer without the presence of hollow fiber membranes. As a result, CH30 was 32.0 Comparative Examples 1 to 2 Using the same polycarbonate as in the example, spinning was carried out in the same manner as in the example using the polymer solvent, internal solution, coagulation bath, and coagulation conditions shown in Table 1. A hollow fiber membrane shown in Table 2 was obtained.

実施例と同じ方法で血漿分離用中空糸膜としモジュール
化し、血漿濾過速度、補体活性化を評価した。結果を第
2表に示す。
A hollow fiber membrane for plasma separation was modularized using the same method as in the example, and plasma filtration rate and complement activation were evaluated. The results are shown in Table 2.

以下余白 (発明の効果) 本発明により、補体活性が抑制された生体適合性にすぐ
れた、高い血漿濾過性能をもつ多孔質中空糸型血漿分離
膜を提供することができる。
Margins below (Effects of the Invention) According to the present invention, it is possible to provide a porous hollow fiber plasma separation membrane with suppressed complement activity, excellent biocompatibility, and high plasma filtration performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の多孔質中空糸膜の全体断面写真であ
る。第2図は、第1図の各部を説明するための第1図の
写真をトレースした図面である。 第3図及び第4図は中空糸膜断面の部分電顕写真でマク
ロボイドを示している。第5図は第3図の写真に、第6
図は第4図にもとづく説明のためのトレース図面である
。 図面で、1は中空宗族最内表面に存在する開口部 2は中空膜内側のマクロボイド層 3は均質層 4は中空糸膜外側のマクロボイド層 5はマクロボイド 6は中空糸膜の中空部 を示す。 早 図 第 8図
FIG. 1 is an overall cross-sectional photograph of the porous hollow fiber membrane of the present invention. FIG. 2 is a drawing obtained by tracing the photograph of FIG. 1 for explaining each part of FIG. 1. FIGS. 3 and 4 are partial electron micrographs of a cross section of a hollow fiber membrane, showing macrovoids. Figure 5 is the photo of Figure 3, and the 6th
The figure is a trace drawing for explanation based on FIG. 4. In the drawings, 1 is the innermost surface of the hollow fiber membrane, 2 is the macrovoid layer 3 on the inside of the hollow membrane, is a homogeneous layer 4 is the macrovoid layer 5 on the outside of the hollow fiber membrane, and macrovoid 6 is the hollow part of the hollow fiber membrane. shows. Quick map Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)血液から血漿を分離する下記一般式( I )、(
II)又は(III)を有するポリカーボネートの1種又は
2種以上で構成される膜厚10〜100μmの多孔質中
空糸膜であって、該中空糸膜には0.5〜30μm直径
のマクロボイドが膜断面積に対し5〜70%存在するこ
とを特徴とする血漿分離用多孔質中空糸膜。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) [ここでR_1、R_2はH、CH_3、C_2H_5
、C_3H_7、C_6H_1_2、C_6H_5の基
の中から、XはH、F、Cl、Brの中から、YはO、
SO_2、CO_2の中から選ばれる]
(1) The following general formula (I) for separating plasma from blood, (
A porous hollow fiber membrane having a thickness of 10 to 100 μm and composed of one or more polycarbonates having II) or (III), the hollow fiber membrane having macrovoids with a diameter of 0.5 to 30 μm. 1. A porous hollow fiber membrane for plasma separation, characterized in that 5 to 70% of the cross-sectional area of the membrane is present. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) [Here, R_1, R_2 are H, CH_3, C_2H_5
, C_3H_7, C_6H_1_2, C_6H_5, X is H, F, Cl, Br, Y is O,
Selected from SO_2, CO_2]
(2)請求項1の血漿分離用多孔質中糸膜であって該中
空糸膜は中空糸の最外層及び最内層に孔径0.5〜30
μmのマクロボイドを含むマクロボイド層m_1及びm
_2が存在し、両層の厚さm_1+m_2の厚さが膜厚
の30%以上であることを特徴とする血漿分離用多孔質
中空糸膜。
(2) The porous intermediate fiber membrane for plasma separation according to claim 1, wherein the hollow fiber membrane has pores having a diameter of 0.5 to 30 in the outermost layer and the innermost layer of the hollow fiber.
Macrovoid layers m_1 and m containing μm macrovoids
A porous hollow fiber membrane for plasma separation, characterized in that _2 exists, and the thickness of both layers (m_1+m_2) is 30% or more of the membrane thickness.
JP1314097A 1989-12-01 1989-12-01 Porous hollow fiber membrane for plasma separation Expired - Lifetime JP2855725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314097A JP2855725B2 (en) 1989-12-01 1989-12-01 Porous hollow fiber membrane for plasma separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314097A JP2855725B2 (en) 1989-12-01 1989-12-01 Porous hollow fiber membrane for plasma separation

Publications (2)

Publication Number Publication Date
JPH03173572A true JPH03173572A (en) 1991-07-26
JP2855725B2 JP2855725B2 (en) 1999-02-10

Family

ID=18049204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314097A Expired - Lifetime JP2855725B2 (en) 1989-12-01 1989-12-01 Porous hollow fiber membrane for plasma separation

Country Status (1)

Country Link
JP (1) JP2855725B2 (en)

Also Published As

Publication number Publication date
JP2855725B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
EP0294737B1 (en) Polysulfone hollow fiber membrane and process for making the same
US5236644A (en) Process of making membrane for removal of low density lipoprotein-cholesterol from whole blood
US5187010A (en) Membrane having high affinity for low density lipoprotein-cholesterol from whole blood
US4906375A (en) Asymmetrical microporous hollow fiber for hemodialysis
KR101295949B1 (en) Plasma separation membrane
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
AU2008303785B2 (en) Hydrophilic membranes with a non-ionic surfactant
JPH06205954A (en) New high flux hollow fiber membrane
TWI406703B (en) Purify blood with hollow fiber membrane and use its blood purifier
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
KR100424995B1 (en) Selective permeable membrane and manufacturing method thereof
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP2805873B2 (en) Hollow fiber type plasma separation membrane
JPH03173572A (en) Porous hollow yarn film for plasma separation
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPH09220455A (en) Hollow yarn type selective separation membrane
JP4055634B2 (en) Hemodialysis membrane and method for producing the same
Paul Polymer hollow fiber membranes for removal of toxic substances from blood
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JP2522298B2 (en) Hollow fiber type blood purification membrane
JPH10109023A (en) Hollow fiber type selective separation membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12