JPH0317181B2 - - Google Patents

Info

Publication number
JPH0317181B2
JPH0317181B2 JP57181432A JP18143282A JPH0317181B2 JP H0317181 B2 JPH0317181 B2 JP H0317181B2 JP 57181432 A JP57181432 A JP 57181432A JP 18143282 A JP18143282 A JP 18143282A JP H0317181 B2 JPH0317181 B2 JP H0317181B2
Authority
JP
Japan
Prior art keywords
mercury
lead
indium
zinc
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57181432A
Other languages
Japanese (ja)
Other versions
JPS5971259A (en
Inventor
Keiichi Kagawa
Hiroshi Hirahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP57181432A priority Critical patent/JPS5971259A/en
Publication of JPS5971259A publication Critical patent/JPS5971259A/en
Publication of JPH0317181B2 publication Critical patent/JPH0317181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はアルカリ電池およびその製造方法に関
し、詳しくは鉛とインジウムを一定量含有するア
マルガム化亜鉛粉末を電池用陰極物質として用い
たアルカリ電池およびその製造方法に関する。 [従来の技術および発明が解決しようとする課
題] 亜鉛を陰極物質として用いたアルカリ電池等に
おいては、水酸化カリウム水溶液等の強アルカリ
性電解液を用いるため、電池を密閉しなければな
らない。この電池の密閉は、電池の小型化をはか
る際には特に重要であるが、同時に電池保存中の
亜鉛の腐食により発生する水素ガスを閉じ込める
ことになる。従つて長期保存中に電池内部のガス
圧が高まり、密閉が完全なほど爆発等の危険が伴
なう。その対策として、電池の構造に工夫をこら
し発生ガスを選択的に電池外部へ導くことも種々
行なわれているが、未だ完全なものではない。そ
こで、亜鉛陰極物質の腐食そのものを防止して電
池内部のガス発生を少なくすることが研究され、
水銀の水素過電圧を利用したアマルガム化亜鉛を
陰極活物質として用いることが専ら行なわれてい
る。しかしながら、今日市販されているアルカリ
電池の陰極活物質は、5.0〜15重量%程度の多量
の水銀を含有しており、人体や他の生物体に危険
を与え、環境汚染を起こす恐れが大きい。 そこで、水銀を用いず、代わりに鉛等を添加し
た亜鉛電極を用いてガス発生を抑制する方法も提
案されている。しかしながら、そのような元素は
ある程度のガス発生抑制効果を奏するが、水銀と
置換されるにはほど遠いのが現状である。また、
鉛イオンやカドミウムイオン等を添加した水銀イ
オンを含む酸性溶液に亜鉛粉末を浸漬して置換法
によりアマルガメーシヨンを行なうと同時に鉛や
カドミウムを亜鉛粉末に添加させる方法も提案さ
れているが、この方法によつても、ガス発生を効
果的に抑制しつつ、水銀の含有量を低下させるこ
とはできない。 本発明は、以上のような現状を鑑み、陰極活物
質からの水素ガス発生を抑制するために必要な水
銀の含有率を著しく減少させ得る陰極活物質を用
いたアルカリ電池およびその製造方法を提供する
ことを目的とする。 [課題を解決するための手段] 本発明者らはこの目的に沿つて鋭意研究の結
果、亜鉛からなる陰極活物質において、水銀に加
えてインジウムを含有させると、水銀とインジウ
ムの相乗効果により、水銀を従来のものより減少
させてもガス発生を低下させることができるが、
しかし時間が経過するにつれて徐々にガス発生が
増大するという欠点を見出した。 一方、水銀に加えて鉛を含有させると、水銀と
の相乗効果は大きく現れないが、長期経過後のガ
ス発生速度の増大がないことを見出した。 そして、水銀に加えて、鉛とインジウムを含有
させると、これら両元素の効果が複合的なものと
なり、従来より用いられているアマルガム化亜鉛
からなる陰極活物質における場合よりも水銀量を
著しく減少させても、アマルガム化亜鉛を陰極活
物質として用いた場合と比較して同等以上のガス
発生抑制効果並びに電池性能効果を奏するに至る
ことを知見して本発明に至つてた。 すなわち本発明のアルカリ電池は、鉛0.005〜
0.1重量%未満とインジウム0.005〜1.0重量%とを
含有するアマルガム化亜鉛粉末を電池用陰極活物
質として用いることを特徴とする。 従来の単なるアマルガム化亜鉛粉末からなる陰
極活物質が5.0〜15重量%の水銀含有率を有する
のに対して、本発明のアルカリ電池に使用される
陰極活物質は、5.0重量%以下、さらには、1.0重
量%以下になつても従来のものと比較して同等以
上にガス発生を抑制することができる。もちろ
ん、水銀の含有率を大きくし、それに応じてガス
発生抑制機能を高めることもできる。本発明にお
ける陰極活物質の好ましい水銀含有率は、実用的
には、5.0重量%以下で従来のアマルガム化亜鉛
粉末からなる陰極活物質よりも充分に大きい抑制
効果を有する。 また、鉛の含有率は0.005〜0.1重量%未満、イ
ンジウムの含有率は0.005〜1.0重量%と少量で配
合効果が発揮され、それを超えて含有しても効果
が少ない。 本発明のアルカリ電池は、種々ほ方法で得られ
るが、好ましい製造方法とは、 (1) 所定量の鉛とインジウムと水銀を合金化さ
せ、該合金を用いて亜鉛粉末をアマルガム化さ
せて得られるアマルガム化亜鉛粉末を電池用陰
極活物質として用いることを特徴とするアルカ
リ電池の製造方法(製造法(1))と、 (2) 亜鉛と所定量の鉛とインジウムの合金粉末を
水銀でアマルガム化させて得られるアマルガム
化合金粉末を電池用陰極活物質として用いるこ
とを特徴とするアルカリ電池の製造方法(製造
法(2))である。 第1の製造方法は、例えば次のようにして実施
される。 先ず水酸化カリム水溶液のようなアルカリ液に
亜鉛粉末を投入し、1〜30分間予備攪拌を行な
う。次いで、予め鉛とインジウムと水銀を混合し
て合金化させたものを細穴より徐々に上記の液に
滴下しつつ30〜120分間攪拌後、水洗し、30〜60
℃の低温で乾燥することによつて、亜鉛−鉛−イ
ンジウム−水銀合金粉末を得る。水銀は亜鉛のみ
ならず鉛やインジウムとも常温下において合金を
作る性質を有し、合金中の鉛/水銀あるいはイン
ジウム/水銀の比率がそのまま保持されつつ該合
金が亜鉛粉末中に含有される。従つて合金中の鉛
並びにインジウムの含有率を変えることによつ
て、亜鉛粉末中の鉛、インジウムそして水銀の含
有率を自由に変えることができる。 また第2の製造方法として、先ず、溶融亜鉛に
鉛とインジウムを添加し、合金粉末化させたもの
を、上述の方法と同様な方法、すなわち亜鉛−鉛
−インジウム合金粉末を含有するアルカリ液に水
銀を添加することにより亜鉛−鉛−インジウム−
水銀粉末を得る。 [発明の効果] このようにして得られた亜鉛−鉛−インジウム
−水銀粉末を陰極活物質として用いることによつ
て、ガス発生が抑制され、しかも電池性能に優れ
たアルカリ電池が提供される。 [実施例] 以下、実施例および比較例に基づいて本発明を
具体的に説明する。 実施例1〜9および比較例1〜2 先ず、1:3塩酸浴にて鉛とインジウムと水銀
を最終的に第1表の含有率となるように混合して
鉛−インジウムアマルガムを調製した。 次いで、予め調製していた10重量%の水酸化カ
リウム溶液0.5に35〜100メツシユの市販の電池
用亜鉛粉末を投入し、20℃で5分間予備攪拌を行
なつた。次に、前記鉛−インジウムアマルガムの
所定量を細孔から徐々に滴下しながら20℃で60分
間攪拌することによつてアマルガメーシヨンを行
なつた。アマルガメーシヨン終了後、水洗を行な
い45℃で一昼夜乾燥させた。このようにして鉛、
インジウム、水銀の含有率がそれぞれ第1表の割
合となる各種の亜鉛−鉛−インジウム−水銀合金
粉末を得た。 このようにして得られた亜鉛−鉛−インジウム
−水銀合金粉末を陰極活物質として水素ガス発生
試験を行なつた。結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸
化カリウム水溶液に酸化亜鉛を飽和させたもの5
mlを用い、亜鉛−鉛−インジウム−水銀合金粉末
からなる陰極活物質をそれぞれ10g用いて45℃で
ガス発生速度(mg/g・日)を測定した。 また、この亜鉛−鉛−インジウム−水銀合金粉
末からなる陰極活物質について、第1図に示すア
ルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶
1、正極2、セパレーター3、アマルガム化亜鉛
粉末をカルボキシメチルセルロースでゲル化した
負極4、負極集電体5、ゴムパツキン6、押さえ
板7で構成されている。 このアルカリマンガン電池を用いて放電負荷
4Ω、20℃の放電条件により終止電圧0.9Vまでの
放電持続時間測定し、後述の従来の陰極活物質を
用いた比較例12の測定値を100とした指数で示し
た。結果を第1表に示す。 比較例 3〜4 実施例1と同様な方法(製造法(1))で、鉛−ア
マルガム、インジウムアマルガムをそれぞれ調製
後、アマルガメーシヨンして、鉛、インジウム、
水銀含有率が第1表の割合の亜鉛−鉛−水銀合金
粉末、亜鉛−インジウム−水銀合金粉末をそれぞ
れ得た。 この亜鉛−鉛−水銀合金粉末および亜鉛−イン
ジウム−水銀合金粉末を陰極活物質として実施例
1と同様の方法によつて、ガス発生試験と電池性
能試験を行ない、その結果を第1表に示した。 実施例10〜12および比較例5〜6 溶融亜鉛に鉛とインジウムを投入して約430℃
の温度で攪拌し、鉛、インジウムの含有率が最終
的に第1表の割合となるように亜鉛−鉛−インジ
ウム合金を調製し、これを粉末化させた。この亜
鉛−鉛−インジウム合金粉末を水銀を用いて、実
施例1と同様な方法でアマルガメーシヨンして、
鉛、インジウム、水銀含有率がそれぞれ第1表の
割合となる各種の亜鉛−鉛−インジウム−水銀合
金粉末を得た。 この亜鉛−鉛−インジウム−水銀合金粉末を陰
極活物質として実施例1と同様な方法によつて、
ガス発生試験と電池性能試験を行ない、その結果
を第1表に示した。 比較例 7〜8 実施例10と同様な方法(製造法(2))で、亜鉛−
鉛合金、または亜鉛−インジウム合金を調製し、
これを粉末化させた。この亜鉛−鉛合金粉末、亜
鉛−インジウム合金粉末を水銀を用いて、実施例
1と同様な方法でアマルガメーシヨンして、鉛、
インジウム、水銀含有率が第1表の割合の亜鉛−
鉛−水銀合金粉末、亜鉛−インジウム−水銀合金
粉末をそれぞれ得た。 この亜鉛−鉛−水銀合金粉末および亜鉛−イン
ジウム−水銀合金粉末を陰極活物質として実施例
1と同様な方法によつて、ガス発生試験と電池性
能試験を行ない、その結果を第1表に示した。 比較例 9〜13 従来から用いられている水銀含有率0.9重量%
(比較例9)、1.5重量%(比較例10)、3.0重量%
(比較例11)、5.0重量%(比較例12)および7.0重
量%(比較例13)の亜鉛−水銀合金粉末を陰極活
物質とし、実施例1と同様の方法によつて、ガス
発生試験と電池性能試験を行ない、その結果を第
1表に示した。 また、製造法(1)において、鉛含有率の変量に伴
なうガス発生速度の関係を評価すべく、実施例
1、実施例6〜7および比較例1〜3の値を第2
図に図示する。 同様に、製造法(2)において、鉛含有率の変量に
伴なうガス発生速度の関係を評価すべく、実施例
10〜12および比較例5〜7の値を第2図に図示す
る。
[Industrial Application Field] The present invention relates to an alkaline battery and a method for manufacturing the same, and more particularly to an alkaline battery using an amalgamated zinc powder containing a certain amount of lead and indium as a cathode material for the battery and a method for manufacturing the same. [Prior Art and Problems to be Solved by the Invention] In alkaline batteries using zinc as a cathode material, the batteries must be hermetically sealed because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when trying to miniaturize the battery, but it also traps hydrogen gas generated by corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion. As a countermeasure against this problem, various efforts have been made to improve the structure of the battery and selectively guide the generated gas to the outside of the battery, but these efforts are still not perfect. Therefore, research has been conducted to prevent the corrosion of the zinc cathode material itself and reduce gas generation inside the battery.
Amalgamated zinc, which utilizes the hydrogen overvoltage of mercury, has been exclusively used as a cathode active material. However, the cathode active materials of alkaline batteries commercially available today contain a large amount of mercury, on the order of 5.0 to 15% by weight, which poses a danger to humans and other living organisms, and poses a great risk of causing environmental pollution. Therefore, a method has also been proposed in which gas generation is suppressed by using a zinc electrode to which lead or the like is added instead of using mercury. However, although such elements have a gas generation suppressing effect to some extent, they are currently far from being able to replace mercury. Also,
A method has also been proposed in which zinc powder is immersed in an acidic solution containing mercury ions to which lead ions, cadmium ions, etc. have been added, and amalgamation is performed by a substitution method, and at the same time, lead and cadmium are added to the zinc powder. Even with this method, it is not possible to reduce the mercury content while effectively suppressing gas generation. In view of the above-mentioned current situation, the present invention provides an alkaline battery using a cathode active material that can significantly reduce the content of mercury necessary for suppressing hydrogen gas generation from the cathode active material, and a method for manufacturing the same. The purpose is to [Means for Solving the Problem] As a result of intensive research in line with this purpose, the present inventors found that when indium is contained in addition to mercury in a negative electrode active material made of zinc, due to the synergistic effect of mercury and indium, Although gas generation can be lowered by reducing mercury compared to conventional ones,
However, a drawback was found that gas generation gradually increased over time. On the other hand, it has been found that when lead is included in addition to mercury, a synergistic effect with mercury does not appear significantly, but the gas generation rate does not increase after a long period of time. When lead and indium are contained in addition to mercury, the effects of these two elements become complex, and the amount of mercury is significantly reduced compared to the case of the conventionally used cathode active material made of amalgamated zinc. The present invention was based on the finding that even when amalgamated zinc is used as a cathode active material, the same or higher gas generation suppressing effect and battery performance effect can be achieved than when amalgamated zinc is used as the cathode active material. That is, the alkaline battery of the present invention has a lead content of 0.005 to
The present invention is characterized in that an amalgamated zinc powder containing less than 0.1% by weight of indium and 0.005-1.0% by weight of indium is used as a cathode active material for a battery. While the conventional cathode active material consisting of simply amalgamated zinc powder has a mercury content of 5.0 to 15% by weight, the cathode active material used in the alkaline battery of the present invention has a mercury content of 5.0% by weight or even less. Even if the amount is 1.0% by weight or less, gas generation can be suppressed to the same or greater extent than conventional products. Of course, it is also possible to increase the mercury content and increase the gas generation suppressing function accordingly. Practically, the preferable mercury content of the cathode active material in the present invention is 5.0% by weight or less, which has a sufficiently greater suppressive effect than the conventional cathode active material made of amalgamated zinc powder. In addition, the blending effect is exhibited when the lead content is less than 0.005 to 0.1% by weight and the indium content is from 0.005 to 1.0% by weight, and even if the content exceeds these amounts, the effect is small. The alkaline battery of the present invention can be obtained by various methods, but the preferred manufacturing method is (1) alloying a predetermined amount of lead, indium, and mercury, and amalgamating zinc powder using the alloy. A method for manufacturing an alkaline battery (manufacturing method (1)) characterized by using an amalgamated zinc powder produced as a cathode active material for a battery (2) amalgamating zinc and a predetermined amount of lead and indium alloy powder with mercury. This is a method for manufacturing an alkaline battery (manufacturing method (2)), which is characterized in that an amalgamated alloy powder obtained by oxidation is used as a cathode active material for a battery. The first manufacturing method is carried out, for example, as follows. First, zinc powder is added to an alkaline solution such as an aqueous potassium hydroxide solution, and preliminarily stirred for 1 to 30 minutes. Next, an alloy of lead, indium, and mercury mixed in advance was gradually dropped into the above solution through a small hole, and stirred for 30 to 120 minutes, then rinsed with water, and then mixed for 30 to 60 minutes.
By drying at a low temperature of °C, a zinc-lead-indium-mercury alloy powder is obtained. Mercury has the property of forming an alloy not only with zinc but also with lead and indium at room temperature, and the alloy is contained in the zinc powder while maintaining the lead/mercury or indium/mercury ratio in the alloy. Therefore, by changing the contents of lead and indium in the alloy, the contents of lead, indium, and mercury in the zinc powder can be freely changed. In addition, as a second manufacturing method, first, lead and indium are added to molten zinc to form an alloy powder, and the resultant mixture is added to an alkaline solution containing zinc-lead-indium alloy powder using the same method as described above. By adding mercury, zinc-lead-indium
Obtain mercury powder. [Effects of the Invention] By using the thus obtained zinc-lead-indium-mercury powder as a cathode active material, an alkaline battery with suppressed gas generation and excellent battery performance can be provided. [Examples] The present invention will be specifically described below based on Examples and Comparative Examples. Examples 1 to 9 and Comparative Examples 1 to 2 First, lead-indium amalgam was prepared by mixing lead, indium, and mercury in a 1:3 hydrochloric acid bath so that the final content ratios were as shown in Table 1. Next, 35 to 100 meshes of commercially available battery zinc powder were added to 0.5 of a 10% by weight potassium hydroxide solution prepared in advance, and preliminarily stirred at 20°C for 5 minutes. Next, a predetermined amount of the lead-indium amalgam was gradually dropped through the pores and stirred at 20° C. for 60 minutes to perform amalgamation. After completing the amalgamation, it was washed with water and dried at 45°C overnight. In this way lead,
Various zinc-lead-indium-mercury alloy powders having indium and mercury contents as shown in Table 1 were obtained. A hydrogen gas generation test was conducted using the thus obtained zinc-lead-indium-mercury alloy powder as a cathode active material. The results are shown in Table 1. In addition, the gas generation test was conducted using an aqueous potassium hydroxide solution with a concentration of 40% by weight as an electrolytic solution saturated with zinc oxide5.
The gas generation rate (mg/g/day) was measured at 45° C. using 10 g of each negative electrode active material made of zinc-lead-indium-mercury alloy powder. Further, the battery performance of the negative electrode active material made of this zinc-lead-indium-mercury alloy powder was evaluated using an alkaline manganese battery shown in FIG. The alkaline manganese battery shown in Fig. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of amalgamated zinc powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a holding plate 7. . Discharge load using this alkaline manganese battery
The discharge duration up to the final voltage of 0.9V was measured under the discharge conditions of 4Ω and 20°C, and expressed as an index with the measured value of Comparative Example 12 using a conventional cathode active material described below as 100. The results are shown in Table 1. Comparative Examples 3 to 4 Lead amalgam and indium amalgam were respectively prepared in the same manner as in Example 1 (manufacturing method (1)), and then amalgamated to produce lead, indium,
A zinc-lead-mercury alloy powder and a zinc-indium-mercury alloy powder having mercury contents shown in Table 1 were obtained. A gas generation test and a battery performance test were conducted using the zinc-lead-mercury alloy powder and zinc-indium-mercury alloy powder as cathode active materials in the same manner as in Example 1, and the results are shown in Table 1. Ta. Examples 10-12 and Comparative Examples 5-6 Lead and indium are added to molten zinc and heated to about 430°C.
A zinc-lead-indium alloy was prepared so that the content of lead and indium finally became the proportions shown in Table 1, and this was powdered. This zinc-lead-indium alloy powder was amalgamated using mercury in the same manner as in Example 1.
Various zinc-lead-indium-mercury alloy powders having lead, indium, and mercury contents in the proportions shown in Table 1 were obtained. Using this zinc-lead-indium-mercury alloy powder as a cathode active material, the same method as in Example 1 was carried out.
A gas generation test and a battery performance test were conducted, and the results are shown in Table 1. Comparative Examples 7-8 Zinc-
Prepare a lead alloy or zinc-indium alloy,
This was powdered. This zinc-lead alloy powder and zinc-indium alloy powder were amalgamated using mercury in the same manner as in Example 1, and lead,
Zinc with indium and mercury content in the proportions shown in Table 1.
A lead-mercury alloy powder and a zinc-indium-mercury alloy powder were obtained, respectively. A gas generation test and a battery performance test were conducted using the zinc-lead-mercury alloy powder and zinc-indium-mercury alloy powder as cathode active materials in the same manner as in Example 1, and the results are shown in Table 1. Ta. Comparative Examples 9-13 Conventionally used mercury content of 0.9% by weight
(Comparative Example 9), 1.5% by weight (Comparative Example 10), 3.0% by weight
(Comparative Example 11), 5.0% by weight (Comparative Example 12), and 7.0% by weight (Comparative Example 13) zinc-mercury alloy powder were used as cathode active materials, and a gas generation test was conducted in the same manner as in Example 1. A battery performance test was conducted and the results are shown in Table 1. In addition, in the manufacturing method (1), in order to evaluate the relationship between the gas generation rate and the variation of the lead content, the values of Example 1, Examples 6 to 7, and Comparative Examples 1 to 3 were
Illustrated in the figure. Similarly, in manufacturing method (2), in order to evaluate the relationship between the gas generation rate and the lead content,
The values for Comparative Examples 10 to 12 and Comparative Examples 5 to 7 are illustrated in FIG.

【表】 第1表に示されるごとく、亜鉛−鉛−インジウ
ム−水銀合金粉末を陰極活物質として用いた実施
例1〜12は、水銀−亜鉛合金粉末を陰極活物質と
した比較例9〜13に比較してガス発生抑制効果が
高く、しかも水銀の量を著しく減少させることが
できる。 また、電池性能も水銀を5.0重量%含有する水
銀−亜鉛合金粉末を陰極活物質とした比較例12に
比べて優れていることが理解される。 また、製造法(1)において、実施例1〜9は、鉛
またはインジウムのみを含有させた比較例3〜4
と比較して、ガス発生抑制効果が高く、しかも電
池性能も高い水準にある。製造法(2)においても、
実施例10〜12は、比較例7〜8に対して同様な結
果が得られる。 さらに、第2図のデータから明らかなように、
製造法(1)において、鉛含有率が0.005重量%以上
でガス発生抑制効果が高いが、鉛含有率が0.1重
量%以上となるとガス発生抑制効果はそれ以上改
善されず、漸次その効果が低下する。製造法(2)に
おいても同様の結果が得られる。
[Table] As shown in Table 1, Examples 1 to 12 using zinc-lead-indium-mercury alloy powder as the cathode active material are comparative examples 9 to 13 using mercury-zinc alloy powder as the cathode active material. The effect of suppressing gas generation is higher than that of mercury, and the amount of mercury can be significantly reduced. It is also understood that the battery performance is superior to Comparative Example 12 in which a mercury-zinc alloy powder containing 5.0% by weight of mercury was used as the cathode active material. In addition, in manufacturing method (1), Examples 1 to 9 are Comparative Examples 3 to 4 containing only lead or indium.
Compared to this, it has a higher gas generation suppressing effect and also has a higher level of battery performance. Also in manufacturing method (2),
Examples 10-12 give similar results to Comparative Examples 7-8. Furthermore, as is clear from the data in Figure 2,
In manufacturing method (1), the gas generation suppression effect is high when the lead content is 0.005% by weight or more, but when the lead content is 0.1% by weight or more, the gas generation suppression effect does not improve any further and the effect gradually decreases. do. Similar results can be obtained with manufacturing method (2).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池
の断面図、そして、第2図は鉛含有率とガス発生
速度の関係を示すグラフ。 1:正極缶、2:正極、3:セパレーター、
4:アマルガム化亜鉛粉末をカルボキシメチルセ
ルロースでゲル化した負極、5:負極集電体、
6:ゴムパツキン、7:押さえ板。
FIG. 1 is a cross-sectional view of an alkaline manganese battery according to the present invention, and FIG. 2 is a graph showing the relationship between lead content and gas generation rate. 1: positive electrode can, 2: positive electrode, 3: separator,
4: Negative electrode made of amalgamated zinc powder gelled with carboxymethyl cellulose, 5: Negative electrode current collector,
6: Rubber packing, 7: Holding plate.

Claims (1)

【特許請求の範囲】 1 鉛0.005〜0.1重量%未満とインジウム0.005〜
1.0重量%とを含有するアマルガム化亜鉛粉末を
電池用陰極活物質として用いることを特徴とする
アルカリ電池。 2 前記アマルガム化亜鉛粉末の水銀含有率が
5.0重量%以下である前記特許請求の範囲第1項
記載のアルカリ電池。 3 前記アマルガム化亜鉛粉末の水銀含有率が
1.0重量%以下である前記特許請求の範囲第2項
記載のアルカリ電池。 4 鉛とインジウムと水銀を合金化させ、該合金
を用いて亜鉛粉末をアマルガム化させて得られ、
鉛0.005〜0.1重量%未満とインジウム0.005〜1.0
重量%とを含有するアマルガム化亜鉛粉末を電池
用陰極活物質として用いることを特徴とするアル
カリ電池の製造方法。 5 亜鉛と鉛とインジウムの合金粉末を水銀でア
マルガム化させて得られ、鉛0.005〜0.1重量%未
満とインジウム0.005〜1.0重量%とを含有するア
マルガム化合金粉末を電池用陰極活物質として用
いることを特徴とするアルカリ電池の製造方法。
[Claims] 1. 0.005 to less than 0.1% by weight of lead and 0.005 to less than 0.1% by weight of indium
An alkaline battery characterized in that an amalgamated zinc powder containing 1.0% by weight is used as a battery cathode active material. 2 The mercury content of the amalgamated zinc powder is
The alkaline battery according to claim 1, wherein the content is 5.0% by weight or less. 3 The mercury content of the amalgamated zinc powder is
The alkaline battery according to claim 2, wherein the content is 1.0% by weight or less. 4. Obtained by alloying lead, indium, and mercury, and amalgamating zinc powder using the alloy,
Less than 0.005-0.1% by weight of lead and 0.005-1.0% indium
% by weight of an amalgamated zinc powder as a cathode active material for a battery. 5. Use of an amalgamated alloy powder obtained by amalgamating an alloy powder of zinc, lead, and indium with mercury and containing 0.005 to less than 0.1% by weight of lead and 0.005 to 1.0% by weight of indium as a cathode active material for batteries. A method for producing an alkaline battery characterized by:
JP57181432A 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method Granted JPS5971259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181432A JPS5971259A (en) 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181432A JPS5971259A (en) 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5971259A JPS5971259A (en) 1984-04-21
JPH0317181B2 true JPH0317181B2 (en) 1991-03-07

Family

ID=16100666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181432A Granted JPS5971259A (en) 1982-10-18 1982-10-18 Alkaline storage battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5971259A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973846A (en) * 1982-10-20 1984-04-26 Mitsui Mining & Smelting Co Ltd Alkaline battery and its manufacture
JPS60243969A (en) * 1984-05-17 1985-12-03 Mitsui Mining & Smelting Co Ltd Manufacture of anode active material for battery
JPS6110860A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline zinc battery
JPS6110861A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline zinc battery
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery
JPS53103127A (en) * 1977-02-21 1978-09-08 Seiko Instr & Electronics Alkaline battery
JPS58181266A (en) * 1982-04-19 1983-10-22 Mitsui Mining & Smelting Co Ltd Negative active material for battery and its manufacture
JPS58225565A (en) * 1982-06-23 1983-12-27 Mitsui Mining & Smelting Co Ltd Alkaline battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery
JPS53103127A (en) * 1977-02-21 1978-09-08 Seiko Instr & Electronics Alkaline battery
JPS58181266A (en) * 1982-04-19 1983-10-22 Mitsui Mining & Smelting Co Ltd Negative active material for battery and its manufacture
JPS58225565A (en) * 1982-06-23 1983-12-27 Mitsui Mining & Smelting Co Ltd Alkaline battery

Also Published As

Publication number Publication date
JPS5971259A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH0222984B2 (en)
JPH0317181B2 (en)
JPH0421310B2 (en)
JPH0371738B2 (en)
JPH0418671B2 (en)
JPH0317182B2 (en)
JPH0622122B2 (en) Zinc alkaline battery
JPS58225565A (en) Alkaline battery
JP3178160B2 (en) Method for producing negative electrode for button-type alkaline battery and button-type alkaline battery
JPS62123653A (en) Zinc-alkaline battery
JPS61193362A (en) Zinc alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH02304866A (en) Manufacture of negative active material for alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPH02213050A (en) Manufacture of negative active material for alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS6240161A (en) Zinc alkaline battery
JPH03230476A (en) Negative electrode active material for alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPH02170352A (en) Mercurized zinc alloy powder for alkaline cell and its manufacture
JPS61290652A (en) Zinc alkaline battery