JPH03171113A - Optical device for laser beam scanning - Google Patents

Optical device for laser beam scanning

Info

Publication number
JPH03171113A
JPH03171113A JP31295389A JP31295389A JPH03171113A JP H03171113 A JPH03171113 A JP H03171113A JP 31295389 A JP31295389 A JP 31295389A JP 31295389 A JP31295389 A JP 31295389A JP H03171113 A JPH03171113 A JP H03171113A
Authority
JP
Japan
Prior art keywords
laser beam
projecting pieces
lens
cylindrical lens
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31295389A
Other languages
Japanese (ja)
Other versions
JP2993020B2 (en
Inventor
Hiroshi Nakamura
弘 中村
Toshio Naiki
内貴 俊夫
Tetsuji Shinkawa
新川 鉄二
Jun Kosaka
向坂 純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP31295389A priority Critical patent/JP2993020B2/en
Publication of JPH03171113A publication Critical patent/JPH03171113A/en
Application granted granted Critical
Publication of JP2993020B2 publication Critical patent/JP2993020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily mount a cylindrical lens on a base part by molding the cylindrical lens of plastic, integrally providing projecting pieces on both sides of an effective lens part and press-fitting at least one of the projecting pieces into groove parts provided in the base part. CONSTITUTION:The cylindrical lens 71 is integrally molded of plastic of a proper material and is formed with a pair of the projecting pieces 71b having small projecting pieces 72 on both sides of the effective lens part 71a. On the other hand, an aperture 83 is formed in a wall part 82 of a unit case and the groove parts 84 are formed on both sides thereof. The cylindrical lens 71 is fixed by pressing the projecting pieces 71b on both sides into the groove parts 84 from above. Since the groove parts 84 fix the projecting pieces 71b, these parts are formed to the width size slightly larger than the thickness of the projecting pieces 71b and slightly smaller than the thickness adding the thickness of the small projecting pieces 72. The cylindrical lens for a photodetector is easily mounted with the simple constitution in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザビーム走査光学装置、特にレーザビー
ムを偏向器にて一平面内に偏向し、感光体上に結像させ
るレーザビーム走査光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laser beam scanning optical device, and more particularly to a laser beam scanning optical device that deflects a laser beam into one plane using a deflector and forms an image on a photoreceptor. .

従来の技術と課題 近年、レーザビームプリンタやファクシミリ等に画像書
込み用として組み込まれるレーザビーム走査光学装置が
種々提供されている。これらの装置では、光源(主に半
導体レーザが使用されている)から放射されるレーザビ
ームを偏向器(ポリゴンミラー)で一平面内に偏向した
後、fθレンズ、反射ミラー等を用いて感光体上に導き
、結像させる.このとき、レーザビームの一部(主走査
方向の先端部分)は感光体上の結像面と等価位置に設置
された受光素子(以下、SOSセンサと記す)を照射し
、各主走査ライン上での画像書込み位置の水平同期信号
を得ている。
BACKGROUND ART In recent years, various laser beam scanning optical devices have been provided which are incorporated into laser beam printers, facsimile machines, etc. for image writing. In these devices, a laser beam emitted from a light source (mainly a semiconductor laser is used) is deflected into one plane by a deflector (polygon mirror), and then an f-theta lens, a reflecting mirror, etc. Guide it upwards and form an image. At this time, a part of the laser beam (the leading end in the main scanning direction) irradiates a light receiving element (hereinafter referred to as an SOS sensor) installed at a position equivalent to the imaging plane on the photoreceptor, and The horizontal synchronization signal for the image writing position is obtained.

ところで、レーザビームをSOSセンサの受光面中央部
に集光するために、SOSセンサの直前にはシリンドリ
カルレンズが設置されている。従来、このシリンドリカ
ルレンズはホルダに正確に位置決め接着し、該ホルダを
ケースの基板部にねじ止めしていた。しかし、この構成
ではホルダという別部材が余分に必要であり、レンズの
接着、ホルダのねし止めといった作業工程を必要とし、
取付け作業が煩雑であった。
Incidentally, a cylindrical lens is installed just in front of the SOS sensor in order to focus the laser beam onto the center of the light receiving surface of the SOS sensor. Conventionally, this cylindrical lens was accurately positioned and bonded to a holder, and the holder was screwed to the base plate of the case. However, this configuration requires an extra component called a holder, and requires work steps such as gluing the lens and securing the holder.
Installation work was complicated.

そこで、本発明の課題は、SOSセンサ用のシリンドリ
カルレンズを簡単な構成で、かつ、容易に取り付けるこ
とのできるレーザビーム走査光学装置を提供することに
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a laser beam scanning optical device that has a simple configuration and can easily attach a cylindrical lens for an SOS sensor.

課題を解決するための手段と作用 以上の課題を解決するため、本発明においては、シリン
ドリカルレンズをプラスチックで成形し、有効レンズ部
の両側に突片を一体的に設け、少なくとも一方の突片を
基板部に設けた溝部に圧入することにより、レンズをS
OSセンサの直前に設置した。突片を有効レンズ部の両
側に設けたのは、樹脂成形時の樹脂の流れ、有効レンズ
部へ加わる歪みのバランスをとるためであり、この意味
では突片は対称形が好ましい。
Means and Effects for Solving the Problems In order to solve the above problems, in the present invention, the cylindrical lens is molded from plastic, protrusions are integrally provided on both sides of the effective lens part, and at least one of the protrusions is By press-fitting the lens into the groove provided in the substrate,
It was installed just before the OS sensor. The reason why the protruding pieces are provided on both sides of the effective lens part is to balance the flow of resin during resin molding and the distortion applied to the effective lens part, and in this sense, the protruding pieces are preferably symmetrical.

以上の構成によれば、シリンドリカルレンズはワンータ
ッチで溝部に固定され、固定のために別部材及び別工程
を必要とすることはない。
According to the above configuration, the cylindrical lens is fixed to the groove portion with one touch, and no separate member or separate process is required for fixing.

実施例 以下、本発明に係るレーザビーム走査光学装置の一実施
例を添付図面に従って説明する。
Embodiment Hereinafter, one embodiment of a laser beam scanning optical device according to the present invention will be described with reference to the accompanying drawings.

第1図は一実施例である光学ユニット(20)を備えた
レーザプリンタの概略構成を示す。プリンタ本体の略中
央部には感光体ドラム(1)が矢印(a)方向に回転駆
動可能に設置され、その周囲には帯電チャージャ(2)
、磁気ブラシ方式による現像器(3)、転写チャージ+
(4)、ブレード方式による残留トナーのクリーナ(5
〉及び残留電荷のイレーサランブ(6〉が設置されてい
る。これらの作像エレメントの構成、作用は周知であり
、その詳細は省略する。
FIG. 1 shows a schematic configuration of a laser printer including an optical unit (20) according to an embodiment. A photoreceptor drum (1) is installed approximately in the center of the printer body so as to be rotatable in the direction of arrow (a), and around it is a charger (2).
, magnetic brush type developer (3), transfer charge +
(4), residual toner cleaner using blade method (5)
) and a residual charge eraser lamp (6) are installed.The configuration and operation of these image forming elements are well known, and their details will be omitted.

一方、用紙は自動給紙カセット(10)に収容されてお
り、給紙ローラ(11)の回転に基づいて最上層から1
枚ずつ第1図中左方へ給紙される。給紙された用紙はタ
イミングローラ対(12〉で一旦止められ、所定のタイ
ミングで感光体ドラム(1〉と転写チ勺一ジ−v(4〉
 との間に搬送され、以下に詳述する光学ユニット〈2
0〉にて潜像として形成され現像器(3)でトナーにて
可視像化された画像を転写される。その後、用紙は定着
器(13〉でトナーの熱定着を施され、通路(14〉を
通じて排出ロ−ラ対(15)から本体上面のトレイ(1
6)上へ排出される。定着器(13)はヒータを内蔵し
たローラを備え、定着温度は通常150゜Cを越える。
On the other hand, the paper is stored in an automatic paper feed cassette (10), and the sheets are stacked one by one from the top layer based on the rotation of the paper feed roller (11).
The sheets are fed one by one to the left in FIG. The fed paper is temporarily stopped by a pair of timing rollers (12), and at a predetermined timing it is moved to a photoreceptor drum (1) and a transfer roller pair (4).
The optical unit <2
0>, the image is formed as a latent image and visualized with toner by a developing device (3). Thereafter, the paper is subjected to thermal fixation of toner in a fixing device (13), and passes through a passage (14) from a pair of ejection rollers (15) to a tray (15) on the top of the main body.
6) It is discharged upwards. The fixing device (13) includes a roller with a built-in heater, and the fixing temperature usually exceeds 150°C.

従って、本プリンタでは、機内を断熱板(17)で仕切
ると共に、ファン(18)で機内の加熱空気を外部に排
出して機内の温度上昇を極力防止し、特に光学ユニット
(20冫を温度上昇から保護している。
Therefore, in this printer, the inside of the machine is partitioned with a heat insulating board (17) and the heated air inside the machine is discharged outside using a fan (18) to prevent the temperature rise inside the machine as much as possible. protected from.

光学ユニット(20)は、第2図、第3図に示す様に、
半導体レーザ(22)及びコリメータレンズ(23)を
組み込んだ光源アツセンブリ(21)と、シリンドリカ
ノレレンス゛(31)を組み込んだシリンドリカノレレ
ンズ部(30)と、ポリゴンミラ−(40)と、トロイ
タルレンズ(45)、ハーフミラー(50)、球面ミラ
ー(55)と、第1折り返しミラー(60)、第2折り
返しミラー(6l〉と、画像書込み開始位置を検出する
ためのSOSセンサ(70)及びこのセンサ(70)の
直前に設置したシリンドリカルレンズ(71〉とで構成
されている。以上の部品は、樹脂成形品であるユニット
ケース(80)に収容されている。
The optical unit (20), as shown in FIGS. 2 and 3,
A light source assembly (21) incorporating a semiconductor laser (22) and a collimator lens (23), a cylindrical canole lens part (30) incorporating a cylindrical canole lens (31), and a polygon mirror (40). , a troital lens (45), a half mirror (50), a spherical mirror (55), a first folding mirror (60), a second folding mirror (6l), and an SOS sensor for detecting the image writing start position ( 70) and a cylindrical lens (71>) installed just in front of this sensor (70).The above components are housed in a unit case (80) which is a resin molded product.

半導体レーザ(22)は図示しない制御部に入力された
画像情報に基づいて変調(オン,オフ)制御され、才ン
時にレーザビームが光源アツセンブリ(21)から射出
される。このレーザビームはコリメータレンズ(23)
で後方有限位置で集光する収束光束にされた後、シリン
ドリカルレンズ(31〉でそのスポット形状を長手力向
が主走査方向と平行なほぼ直線形状に変更され、ポリゴ
ンミラー(40〉に到達する。ポリゴンミラ−(40)
は矢印(b)方向へ一定速度で回転駆動され、この回転
に基づいてレーザビームはミラー回転軸と垂直な一平面
内で等角速度に偏向され、トロイダルレンズ(45)に
導かれる。トロイダルレンズ(45)は走査断面内で入
射面と出射面とが同心円に形成され、偏向面と垂直な方
向に一定のパワーを有し、前記シリンドリカルレンズ(
31〉との組合わせによりポリゴンミラー(40〉の面
倒れを補正する.レーザビームはさらにハーフミラー(
50)を透過して球面ミラー(55)で反射され、その
反射光はハーフミラー(50〉で上方へ反射されると共
に、第1、第2折り返しミラー(60). (61)を
介してユニットケース(80〉の底面に形成したスリッ
ト(89)から感光体ドラム(1)上に結像する。感光
体ドラム(1〉上への画像形成は、ポリゴンミラー(4
0)の矢印(b)方向への回転による主走査と感光体ド
ラム《1)の矢印(a)方向への回転による副走査にて
行なわれる。球面ミラー(55〉はレーザビームの主走
査速度を補正するfθ機能(歪曲補正)を有すると共に
、感光体ドラム(1〉上での像面湾曲を補正する機能を
有する。
The semiconductor laser (22) is modulated (on, off) controlled based on image information input to a control unit (not shown), and a laser beam is emitted from the light source assembly (21) when the semiconductor laser (22) is turned on. This laser beam is connected to the collimator lens (23)
After the beam is converted into a convergent light beam that is condensed at a finite rear position, the spot shape is changed to an almost straight line shape with the longitudinal direction parallel to the main scanning direction using a cylindrical lens (31), and the spot reaches a polygon mirror (40). .Polygon mirror (40)
is rotated at a constant speed in the direction of arrow (b), and based on this rotation, the laser beam is deflected at a constant angular speed within a plane perpendicular to the mirror rotation axis and guided to the toroidal lens (45). The toroidal lens (45) has an incident surface and an exit surface concentrically formed in the scanning cross section, has a constant power in the direction perpendicular to the deflection surface, and has a fixed power in the direction perpendicular to the deflection surface.
In combination with 31〉, the surface tilt of the polygon mirror (40〉) is corrected.The laser beam is further transmitted through the half mirror (
50) and is reflected by the spherical mirror (55), and the reflected light is reflected upward by the half mirror (50>) and passes through the first and second folding mirrors (60) and (61) to the unit. An image is formed on the photoreceptor drum (1) through a slit (89) formed on the bottom of the case (80>.The image is formed on the photoreceptor drum (1) using a polygon mirror (4).
Main scanning is performed by rotating the photosensitive drum <<1) in the direction of arrow (b), and sub-scanning is performed by rotating the photosensitive drum <<1) in the direction of arrow (a). The spherical mirror (55> has an fθ function (distortion correction) for correcting the main scanning speed of the laser beam, and also has a function for correcting field curvature on the photoreceptor drum (1>).

ハーフミラー(50〉はfθ光学系を反射系で構成する
ための光路の分割のため、即ち、ビームの透過と光路の
折り曲げ用として、及び露光量の均一化の二つの目的で
使用されている。具体的には、本実施例において、感光
体ドラム(1〉上での必要光量は約0. 2m$?であ
り、半導体レーザ(22)は安定領域である1mW以上
で駆動する。光学系の光減衰率!↓、感光体照射光路に
ついては、ビームがハーフミラー(50)を透過及び反
射することにより、約20%となり、感光体上ではその
感度に対応する約0.2mWの光量となる。
The half mirror (50〉) is used for two purposes: to divide the optical path to configure the fθ optical system with a reflective system, that is, to transmit the beam and bend the optical path, and to equalize the exposure amount. Specifically, in this example, the amount of light required on the photoreceptor drum (1) is about 0.2 m$?, and the semiconductor laser (22) is driven at 1 mW or more, which is a stable region.Optical system The optical attenuation rate of !↓, the beam passes through and reflects the half mirror (50) on the photoreceptor irradiation optical path, resulting in a light attenuation rate of approximately 20%, and the light intensity on the photoreceptor is approximately 0.2 mW, which corresponds to its sensitivity. Become.

一方、球面ミラー(55)での反射光のうち、主走査方
向先端部分は、第2図中左斜め上方へ反射され、シリン
ドリカノレレンズ(71)を介してSOSセンサ(70
〉へ入射し、画像書込み位置を決定する水平同期信号と
して使用される。ここで、シリンドリカノレレンズ(7
1)はレーザビームをSOSセンサ(70)の受光面中
央部に集光する機能を有し、SOSセンサ(70)から
はレンズ(71〉のほぼ焦点距離だけ離れた位置に設置
されている。SOSセンサ(70〉へ到る光路の光減衰
率は、ビームがハーフミラー(50〉を1回しか透過し
ないことから約60%であり、SOSセンサク70)上
での光量は感光体ドラム(1)上での光量よりも約3倍
の0.6mW程度が確保される。
On the other hand, of the light reflected by the spherical mirror (55), the leading end in the main scanning direction is reflected diagonally upward to the left in FIG.
) and is used as a horizontal synchronizing signal to determine the image writing position. Here, use the cylindrical canole lens (7
1) has a function of focusing a laser beam on the center of the light receiving surface of the SOS sensor (70), and is installed at a position separated from the SOS sensor (70) by approximately the focal length of the lens (71>). The light attenuation rate on the optical path to the SOS sensor (70>) is approximately 60% because the beam passes through the half mirror (50> only once), and the amount of light on the SOS sensor (70) is approximately 60%. ) is secured at approximately 0.6 mW, which is approximately three times the amount of light above.

次に、シリンドリカルレンズ(71)の形状及びその取
付け構造について説明する。
Next, the shape of the cylindrical lens (71) and its mounting structure will be explained.

第4図において、シリンドリカルレンズ(71〉は適宜
材質のプラスチックから一体的に成形したもので、有効
レンズ部(71a)の両側には小突起(72)を有する
一対の突片(7lb). (7lb)が形成されている
。一方、ユニットケース(80)の壁部(82〉には開
口(83)及びその両側に溝部(84). (84)が
形成されている。
In Fig. 4, the cylindrical lens (71) is integrally molded from a suitable plastic material, and has a pair of protrusions (7lb) having small protrusions (72) on both sides of the effective lens part (71a). On the other hand, an opening (83) and grooves (84) are formed on both sides of the opening (83) in the wall (82>) of the unit case (80).

シリンドリカルレンズ(71)は両側の突片(7lb)
.(7lb)を溝部(84), (84)に上方から圧
入することにより固定される。溝部(84), (84
)は突片(7lb),(7lb>を固定するため、その
幅寸法は突片(7lb)の厚みより僅かに大きく、小突
起(72〉を加えた厚みより僅かに小さく形威されてい
る。シリンドリカルレンズ(71〉は小さく軽いため、
この様な小突起(72〉の圧接にて、振動に耐えうる状
態で固定される。シリンドリカルレンズ(71)の取付
け高さは溝部(84). (84)の底面で精密に規制
され、左右方向には側壁面にて規制される。
Cylindrical lens (71) has protrusions on both sides (7lb)
.. (7lb) is fixed by press-fitting into the grooves (84), (84) from above. Groove (84), (84
) fixes the protrusions (7lb) and (7lb>), so its width is slightly larger than the thickness of the protrusion (7lb) and slightly smaller than the thickness including the small protrusion (72〉). .The cylindrical lens (71) is small and light, so
By press-fitting the small protrusion (72) like this, it is fixed in a state that can withstand vibration.The installation height of the cylindrical lens (71) is precisely regulated by the bottom of the groove (84). The direction is regulated by the side wall surface.

前記シリンドリカルレンズ(71)において、突片(7
lb). (7lb)を有効レンズ部(71a)の両側
に設けたのは、樹脂成形時の樹脂の流れ、有効レンズ部
(71a)へ加わる歪みのバランスをとるためである。
In the cylindrical lens (71), the projecting piece (7
lb). (7lb) were provided on both sides of the effective lens portion (71a) in order to balance the flow of resin during resin molding and the distortion applied to the effective lens portion (71a).

従って、突片(7th). (7th)は対称形である
ことが好ましい。また、溝部(84), (84)への
圧入時に加わる歪みはほとんど小突起(72〉に吸収さ
れる。小突起(72)を有効レンズ部(71a)からで
きるだけ離して設けることにより、圧入時の歪みの影響
を排除できる。
Therefore, the protrusion (7th). (7th) is preferably symmetrical. In addition, most of the distortion that is applied when press-fitting into the grooves (84) and (84) is absorbed by the small protrusion (72). By providing the small protrusion (72) as far away from the effective lens part (71a) as possible, it is possible to can eliminate the effects of distortion.

第5図はシリンドリカルレンズ(71〉の変形例を示す
.このレンズ(71〉は一対の突片(7lb), (7
lb)を有効レンズ部(71a)の上下方向に形成した
もので、固定は下側の突片(7lb)を図示しない溝部
に圧入することにより行なわれる。
Figure 5 shows a modification of the cylindrical lens (71). This lens (71) has a pair of protrusions (7lb), (7
lb) are formed in the vertical direction of the effective lens portion (71a), and fixation is performed by press-fitting the lower protrusion (7lb) into a groove (not shown).

なお、以上説明した実施例においては、シリンドリカル
レンズ(71〉の取付け構造以外に、次の利点をも有す
る。即ち、ハーフミラー(50)と球面ミラー(55)
 (シリンドリ力ルミラーでも可)とを使用し、感光体
ドラム(1)上へ結像するビーム光路はハーフミラー(
50)を2回透過させる一方、SOSセンサ(70)へ
は球面ミラー(55)の反射光の一部をハーフミラー(
50)を介することなく入射する様にしたため、半導体
レーザ〈22)を安定領域である高い出力で使用でき、
かつ、感光体への照射光量を感光体の感度に適した値ま
で大きく減衰させる一方でSOSセンサ(70)への照
射光量がそれ程減衰されることはなく、画像書込み開始
位置の検出精度が向上する6また、球面ミラー(55)
にて正反射されたビームを折り返すことなく直接SOS
センサ(70)へ入射する様にしたため、SOSセンサ
(70)をユニットケース(80〉上に他の光学素子と
同じ面上に配置でき、配置設計上有利である。しかも、
レーザ駆動基板(25)とSOS基板(75〉とを隣接
配置してハーネスで接続でき、両基板(25), (7
の一体化も可能である。また、基板を一体的に製作して
おき、組立て時に折り曲げるか、分割して設置してもよ
い。この様に、光源アツセンブリ(21)とSOSセン
サ(70〉とが近接していれば、基板構成上有利であり
、部品点数、製造費が削減できる. なお、本発明に係るレーザビーム走査光学装置は以上の
実施例に限定するものではなく、その要旨の範囲内で種
々に変更することができる。
The embodiment described above has the following advantages in addition to the mounting structure of the cylindrical lens (71). Namely, the half mirror (50) and the spherical mirror (55)
(a cylindrical mirror can also be used), and the optical path of the beam that forms an image onto the photoreceptor drum (1) is a half mirror (
50) twice, while a part of the reflected light from the spherical mirror (55) is sent to the SOS sensor (70) through a half mirror (
50), the semiconductor laser (22) can be used at a high output that is in the stable region.
In addition, while the amount of light irradiated to the photoreceptor is greatly attenuated to a value suitable for the sensitivity of the photoreceptor, the amount of light irradiated to the SOS sensor (70) is not attenuated to a large extent, improving the detection accuracy of the image writing start position. 6 Also, spherical mirror (55)
SOS directly without folding the specularly reflected beam
Since the light is incident on the sensor (70), the SOS sensor (70) can be placed on the same surface as other optical elements on the unit case (80), which is advantageous in terms of layout design.Moreover,
The laser drive board (25) and the SOS board (75) can be placed adjacent to each other and connected with a harness, and both boards (25), (7
It is also possible to integrate Alternatively, the board may be manufactured in one piece and bent during assembly, or it may be divided and installed. In this way, if the light source assembly (21) and the SOS sensor (70) are close to each other, it is advantageous in terms of the board configuration, and the number of parts and manufacturing costs can be reduced.The laser beam scanning optical device according to the present invention The present invention is not limited to the above embodiments, and various changes can be made within the scope of the gist thereof.

特に、光学素子の組み合わせは任意であり、球面ミラー
(55)に代えてジリンドリ力ルミラーを設置してもよ
い。また、ポリゴンミラー(4o〉の等角速度偏向に起
因する主走査方向の速度補正については、fθレンズを
別途設けてもよく、あるいはレーザ変調信号自体に補正
を加えてもよい。
In particular, the combination of optical elements is arbitrary, and a dilindrical mirror may be installed in place of the spherical mirror (55). Further, regarding speed correction in the main scanning direction caused by constant angular velocity deflection of the polygon mirror (4o), an fθ lens may be provided separately, or correction may be added to the laser modulation signal itself.

発明の効果 以上の説明で明らかな様に、本発明によれば、シリンド
リカルレンズ部の有効レンズ部の両側に突片を一体的に
設け、少なくとも一方の突片を溝部に圧入する様にした
ため、レンズをいわばワンタッチで、従来の如く専用の
ホルダ等他の部材を必要とせず、s単に取り付けること
ができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, protrusions are integrally provided on both sides of the effective lens portion of the cylindrical lens portion, and at least one of the protrusions is press-fitted into the groove. The lens can be attached simply with one touch, so to speak, without the need for other members such as a dedicated holder as in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るレーザビーム走査光学装置の一実施
例を示し、第1図は一実施例である光学ユニットを備え
たレーザプリンタの概略構成図、第2図は光学ユニット
の上蓋を外した状態の平面図、第3図は光学ユニットの
基本構成を示す斜視図、第4図はシリンドリカルレンズ
とその取付け溝部を示す斜視図、第5図はシリンドリカ
ルレンズの変形例を示す斜視図である。 (1)・・・感光体ドラム、(20〉・・・光学ユニッ
ト、(21)・・・光源アツセンブリ, (40)・・
・ポリゴンミラ−(70)・・・SOSセンサ、(71
)・・・シリンドリカノレレンズ、(71a)−有効レ
ンズ部、<7lb) ・・・突片、(80〉・・・ユニ
ットケース、(81)・・・基板部、(84)・・・溝
部。
The drawings show an embodiment of the laser beam scanning optical device according to the present invention, and FIG. 1 is a schematic configuration diagram of a laser printer equipped with an optical unit, which is an embodiment, and FIG. 2 shows the top cover of the optical unit removed. 3 is a perspective view showing the basic configuration of the optical unit, FIG. 4 is a perspective view showing a cylindrical lens and its mounting groove, and FIG. 5 is a perspective view showing a modification of the cylindrical lens. (1)...Photosensitive drum, (20>...Optical unit, (21)...Light source assembly, (40)...
・Polygon mirror (70)...SOS sensor, (71
)... Cylindrical canole lens, (71a) - effective lens part, <7lb)... protrusion, (80>... unit case, (81)... board part, (84)...・Groove.

Claims (1)

【特許請求の範囲】 1、画像情報に応じて変調されたレーザビームを、偏向
器で一平面内に偏向して感光体上に結像させるレーザビ
ーム走査光学装置において、有効レンズ部の両側に突片
を一体的に設けたプラスチック製のシリンドリカルレン
ズと、 偏向器で偏向走査されたレーザビームの一部を受光する
画像書込み開始位置検出用の受光センサと、 を備え、 前記シリンドリカルレンズを少なくとも一方の突片を基
板部に設けた溝部に圧入し、前記受光センサの直前に設
置したこと、 を特徴とするレーザビーム走査光学装置。
[Claims] 1. In a laser beam scanning optical device in which a laser beam modulated according to image information is deflected in one plane by a deflector to form an image on a photoreceptor, a laser beam on both sides of an effective lens portion is used. A plastic cylindrical lens integrally provided with a protrusion, and a light receiving sensor for detecting an image writing start position that receives a part of the laser beam deflected and scanned by a deflector, and at least one of the cylindrical lenses A laser beam scanning optical device characterized in that a protruding piece is press-fitted into a groove provided in a substrate portion and installed immediately in front of the light receiving sensor.
JP31295389A 1989-11-30 1989-11-30 Laser beam scanning optical device Expired - Lifetime JP2993020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31295389A JP2993020B2 (en) 1989-11-30 1989-11-30 Laser beam scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31295389A JP2993020B2 (en) 1989-11-30 1989-11-30 Laser beam scanning optical device

Publications (2)

Publication Number Publication Date
JPH03171113A true JPH03171113A (en) 1991-07-24
JP2993020B2 JP2993020B2 (en) 1999-12-20

Family

ID=18035466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31295389A Expired - Lifetime JP2993020B2 (en) 1989-11-30 1989-11-30 Laser beam scanning optical device

Country Status (1)

Country Link
JP (1) JP2993020B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821971A (en) * 1994-07-07 1996-01-23 Brother Ind Ltd Scanning optical device
JP2012118245A (en) * 2010-11-30 2012-06-21 Kyocera Document Solutions Inc Optical scanner and image forming apparatus
JP2015118248A (en) * 2013-12-18 2015-06-25 株式会社リコー Optical device and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821971A (en) * 1994-07-07 1996-01-23 Brother Ind Ltd Scanning optical device
JP2012118245A (en) * 2010-11-30 2012-06-21 Kyocera Document Solutions Inc Optical scanner and image forming apparatus
US8570631B2 (en) 2010-11-30 2013-10-29 Kyocera Mita Corporation Optical scanning device and image forming apparatus
JP2015118248A (en) * 2013-12-18 2015-06-25 株式会社リコー Optical device and image forming apparatus

Also Published As

Publication number Publication date
JP2993020B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US4171902A (en) Information processing system having an optic axis adjusting mirror device
JP4573943B2 (en) Optical scanning optical device and image forming apparatus using the same
JP2002098921A (en) Optical scanner and image forming apparatus using the same
US6757088B2 (en) Laser scanning unit
JPH03171113A (en) Optical device for laser beam scanning
JPH08122675A (en) Laser scanning device
US11460790B2 (en) Optical scanning device and image forming apparatus including same
JP3789770B2 (en) Optical scanning apparatus and image forming apparatus
JP2002333585A (en) Scanning optical device and image forming device using the same
JP4794717B2 (en) Optical scanning optical device and image forming apparatus using the same
JP3777874B2 (en) Scanning optical device
JP2603232B2 (en) Scanning optical device
JP4573944B2 (en) Optical scanning optical device and image forming apparatus using the same
JP4541494B2 (en) Optical scanning optical device and image forming apparatus using the same
JP2002228962A (en) Optical element and optical scanner using the same
JP4175311B2 (en) Optical scanning apparatus and image forming apparatus
JP4642182B2 (en) Optical scanning optical device and image forming apparatus using the same
JP2550608Y2 (en) Scanning optical system
JPH03171107A (en) Optical device for laser beam scanning
JP2002277786A (en) Optical scanner
JP2716624B2 (en) Optical scanning device
JP3128860B2 (en) Laser scanning device
JP2003075750A (en) Scanning optical device and image forming device using the same
JPH0687096B2 (en) Scanning optical system and recording device with built-in scanning optical system
JPH08190066A (en) Optical scanner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11