JPH03162561A - Film formation to plastic substrate - Google Patents

Film formation to plastic substrate

Info

Publication number
JPH03162561A
JPH03162561A JP30058389A JP30058389A JPH03162561A JP H03162561 A JPH03162561 A JP H03162561A JP 30058389 A JP30058389 A JP 30058389A JP 30058389 A JP30058389 A JP 30058389A JP H03162561 A JPH03162561 A JP H03162561A
Authority
JP
Japan
Prior art keywords
vapor deposition
plastic substrate
film
vacuum
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30058389A
Other languages
Japanese (ja)
Inventor
Nobuaki Mitamura
宣明 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30058389A priority Critical patent/JPH03162561A/en
Publication of JPH03162561A publication Critical patent/JPH03162561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form thin films having an adhesive property and durability and good performance by executing vacuum vapor deposition on plastic substrates and irradiating the surfaces of the above-mentioned substrates with UV rays before the vapor deposition or before and during the vapor deposition. CONSTITUTION:A material 2 for vapor deposition disposed in the lower part in a vacuum vapor deposition chamber 1 is evaporated by an electron gun 3. The generated vapor is deposited on the plastic substrates 5 which are made of acrylic resin, etc., and are mounted on a rotary dome 4 disposed in the upper part to form the thin film. The surfaces of the above-mentioned substrates 5 are irradiated with the UV rays from a UV ray source 6 before the vapor deposition or before and during the vapor deposition, then the vapor deposition is executed in the method for forming the films on the plastic substrates 5 by the above-mentioned vacuum vapor deposition method. A low-pressure mercury lamp, microwave discharge lamp, xenon short arc lamp, etc., are adequate as the above-mentioned light source 6. The irradiation with the UV rays may be executed while gaseous oxygen is introduced into the vacuum chamber 1 under <=1X10<-6>Torr partial pressure. The contaminating impurities on the surfaces of the substrates 5 are removed in this way and the surfaces are activated. The film formation with good quality is thus executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラスチック基板に薄膜を形成する方法に係
り、特に薄膜の耐摩耗性および付着゜力を向上させるプ
ラスチック基板への成膜方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method of forming a thin film on a plastic substrate, and particularly relates to a method of forming a film on a plastic substrate that improves the abrasion resistance and adhesion of the thin film. .

し従来の技術] 近年、レンズ,ミラー,プリズム等の光学部品の素材と
して、無機ガラスに代えてプラスチックが多く用いられ
るようになってきている。その主な理由は、軽量かつ低
コストにて製作でき、しかも形状の自由度が大きいとい
う利点があるからである。また、かかる利点を有するこ
とから、最近では光学部品以外の各種部品にも幅広《利
用されつつある。
BACKGROUND OF THE INVENTION In recent years, plastics have been increasingly used instead of inorganic glass as materials for optical components such as lenses, mirrors, and prisms. The main reason for this is that it has the advantage of being lightweight, low-cost to manufacture, and having a large degree of freedom in shape. In addition, due to these advantages, it has recently been widely used in various parts other than optical parts.

ところが、これらプラスチックにて構成した部品は、ガ
ラスや金属に比して耐摩耗性および耐擦傷性が劣るため
に、何らかの表面処理を施さなければ実用上問題が多い
。特に、プラスチックを光学部品の素材として使用する
場合には、光学ガラスの場合と同様に光学薄膜を形成す
る必要がある。
However, parts made of these plastics have inferior abrasion resistance and scratch resistance compared to glass or metal, and therefore pose many practical problems unless some kind of surface treatment is applied. In particular, when plastic is used as a material for optical components, it is necessary to form an optical thin film as in the case of optical glass.

ここに、光学ガラスの場合には、光学ガラスを加熱して
蒸着(ハード・コート)させることができるので、光学
ガラスと光学薄膜との密着性が良好となる。しかし、プ
ラスチックの場合には、基板を加熱させるのが困難なた
めに、常温で蒸着させなければならず、プラスチック基
板に対する光学薄膜の付着力,密着性が悪くなり、耐久
性が劣るという問題点があった。
In the case of optical glass, since the optical glass can be vapor-deposited (hard coated) by heating, the adhesion between the optical glass and the optical thin film is improved. However, in the case of plastic, it is difficult to heat the substrate, so it must be deposited at room temperature, which leads to problems such as poor adhesion and adhesion of the optical thin film to the plastic substrate, resulting in poor durability. was there.

そこで、従来、上記問題点を解決するために、次のよう
な手段が提案されている。まず、蒸着材料の点からの解
決手段としては、プラスチック基板と接する層にSIO
, Aj2 203, CeFユを用いる構成が知られ
ている。また、有機物質をブライマーコートとしてスビ
ンコート,ディップコートの手法を用いて形成し、その
上に誘電体膜を蒸着する方法が特開昭61−64301
号公報に開示されている。
Therefore, in order to solve the above problems, the following methods have been proposed. First, as a solution from the viewpoint of vapor deposition materials, SIO is applied to the layer in contact with the plastic substrate.
, Aj2 203, A configuration using CeF Yu is known. In addition, a method of forming an organic substance as a brimer coat using a subin coating or dip coating method and depositing a dielectric film on it is disclosed in Japanese Patent Application Laid-Open No. 61-64301.
It is disclosed in the publication No.

さらに、その他の解決手段としては、蒸着する前にプラ
スチック基板にプラズマ処理を施したり、イオンビーム
を照射して表面改質を行なう方法が知られている。
Furthermore, as other solutions, methods are known in which the plastic substrate is subjected to plasma treatment or irradiated with an ion beam to modify the surface before vapor deposition.

[発明が解決しようとする課題] しかし、上記従来の各プラスチック基板への成膜方法で
は、共通した問題点として、一層目に蒸着できる材料が
限定されてしまうために、光学薄膜を設計する上で所望
の特性を満足することが極めて困難であるということが
あった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional methods for forming films on plastic substrates have a common problem in that the materials that can be deposited on the first layer are limited, which makes it difficult to design optical thin films. It has been extremely difficult to satisfy the desired characteristics.

また、ブライマーコート等の有機材料を使用した前処理
法にあっては、液の管理や作業環境等に十分注意を払わ
なければよい再現性を得ることができず、さらに蒸着前
に複雑な前工程が必要であることからコスト面,歩留ま
り面でも不利であった。
In addition, with pretreatment methods that use organic materials such as brimer coat, good reproducibility cannot be obtained unless sufficient attention is paid to liquid management and working environment, and furthermore, complicated pretreatment is required before vapor deposition. Since it requires a process, it is disadvantageous in terms of cost and yield.

一方、基板表面をプラズマ処理する方法にあっては、チ
ャンバー内の汚れによって逆に汚染されるおそれがある
ために良好な手段ではなかった。
On the other hand, the method of plasma-treating the surface of the substrate is not a good method because there is a risk of contamination due to dirt in the chamber.

また、イオンビーム照射等によって基板表面を改質する
方法にあっては、薄膜とプラスチック基板との密着性が
十分でなく、しかも誘電体膜を蒸着することで成膜面上
にチャージアップ現象が生じるので成膜上好ましい手段
ではなかった。
In addition, in methods of modifying the substrate surface by ion beam irradiation, etc., the adhesion between the thin film and the plastic substrate is insufficient, and furthermore, the deposition of a dielectric film causes a charge-up phenomenon on the film-forming surface. This was not a preferable method for film formation.

本発明は、かかる従来の問題点に鑑みてなされたちので
、プラスチック基板に対して良好な密着性を有し、かつ
十分な耐久性を有するとともに、ガラス素材に対する成
膜の場合と同等の性質を有する薄膜を成膜できるように
したプラスチック基板への成膜方法を提供することを目
的とする。
The present invention has been developed in view of these conventional problems, and therefore has good adhesion to plastic substrates, sufficient durability, and properties equivalent to those of film formation on glass materials. It is an object of the present invention to provide a method for forming a film on a plastic substrate, which enables the formation of a thin film having the following properties.

[課題を解決するための手段] 上記目的を達成するために、本発明は、プラスチック基
板へ真空蒸着法により成膜を行なうプラスチック基板へ
の成膜方法において、蒸着前または蒸着前および蒸着中
に、プラスチック基板表面に紫外線を照射して真空蒸着
を行なうこととした。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for forming a film on a plastic substrate in which a film is formed on a plastic substrate by a vacuum evaporation method. We decided to perform vacuum deposition by irradiating the surface of the plastic substrate with ultraviolet rays.

また、上記プラスチック基板への成膜方法において、紫
外線の光源は、低圧水銀灯.マイクロ波放電ランプ,キ
セノンショートアークランプのいずれか1種以上を用い
ると良い。
In addition, in the above method for forming a film on a plastic substrate, the ultraviolet light source is a low-pressure mercury lamp. It is preferable to use one or more of a microwave discharge lamp and a xenon short arc lamp.

さらに、上記プラスチック基板への成膜方法において、
酸素ガスをI X 10−llTorr以下の分圧で真
空蒸着チャンバーに導入しつつ紫外線を照射しても良い
Furthermore, in the method for forming a film on the plastic substrate,
Ultraviolet rays may be irradiated while introducing oxygen gas into the vacuum deposition chamber at a partial pressure of I x 10-llTorr or less.

[作 用] このような構成のプラスチック基板への成膜方法によれ
ば、紫外線が持つ高いエネルギーと紫外線によって発生
するオゾンの強力な酸化力とによって、プラスチック基
板の表面に吸着した機械オイルや人体環境からの油脂等
による浸染不純物を飛散除去できる。また、紫外線の高
いエネルギーにようてプラスチック基板の表面を構成す
る分子の化学結合を切断し、切断された分子にカルボニ
ル基やカルボキシル基等を発生させ、表面を活性化する
ことができる。
[Function] According to the method of forming a film on a plastic substrate with such a structure, the high energy of ultraviolet rays and the strong oxidizing power of ozone generated by ultraviolet rays can remove the mechanical oil and human body adsorbed onto the surface of the plastic substrate. It can scatter and remove impurities caused by oils and fats from the environment. Furthermore, the high energy of ultraviolet rays can be used to break the chemical bonds of the molecules that make up the surface of the plastic substrate, generating carbonyl groups, carboxyl groups, etc. in the cut molecules, thereby activating the surface.

したがって、良好な膜形成を妨げるプラスチック基板表
面の不純物を除去できるばかりでなく、プラスチック基
板表面を活性化できるので、蒸着粒子の基板への結合力
が増大し、かつ良好で緻密な膜構成も行なわれ、結果と
してプラスチック基板と薄膜との密着性および耐久性を
優れたものにすることができる。
Therefore, it is not only possible to remove impurities on the surface of the plastic substrate that prevent good film formation, but also to activate the surface of the plastic substrate, increasing the bonding force of the vapor deposition particles to the substrate, and also achieving a good and dense film structure. As a result, the adhesion and durability between the plastic substrate and the thin film can be improved.

[実施例] (第1実施例) 図は本発明に係るプラスチック基板への成膜方法を実施
するための真空蒸着装置を示すもので、真空蒸着チャン
バー■内の下部には、蒸着材料2が配置されている。ま
た、この蒸着材料2の近傍には、蒸着材料2を加熱蒸発
させるための電子銃3が配設されている。一方、真空蒸
着チャンバーl内の上部には、回転ドーム4が配設され
ている。そして、この回転ドーム4には、成形されたア
クリルレンズからなるプラスチック基板5が取り付けら
れている。さらに、真空蒸着チャンバーl内の側壁には
、回転ドーム4の下方に紫外線光源6が配設されている
。この紫外線光源6は、回転ドーム4の全面に紫外線を
照射できるようになっている。
[Example] (First Example) The figure shows a vacuum evaporation apparatus for carrying out the method of forming a film on a plastic substrate according to the present invention. It is located. Further, an electron gun 3 for heating and vaporizing the vapor deposition material 2 is arranged near the vapor deposition material 2. On the other hand, a rotating dome 4 is disposed in the upper part of the vacuum deposition chamber 1. A plastic substrate 5 made of a molded acrylic lens is attached to the rotating dome 4. Further, an ultraviolet light source 6 is disposed below the rotating dome 4 on the side wall of the vacuum deposition chamber 1. This ultraviolet light source 6 is capable of irradiating the entire surface of the rotating dome 4 with ultraviolet light.

本実施例では、蒸着材料2としてMgF 2を用い、紫
外線光源6として出力500Wの低圧水銀灯を3灯装備
した。
In this example, MgF 2 was used as the vapor deposition material 2, and three low-pressure mercury lamps with an output of 500 W were equipped as the ultraviolet light source 6.

まず、プラスチック基板5を回転ドーム4に取り付け、
紫外線光源6を点灯した。この際、紫外線光源6から出
た紫外線は、拡散して回転ドーム4の全面および真空蒸
着チャンパー1の内壁全体を照射する。紫外線光源6を
1分以上点灯した後、真空蒸着チャンバーl内の排気を
開始した。
First, attach the plastic substrate 5 to the rotating dome 4,
The ultraviolet light source 6 was turned on. At this time, the ultraviolet light emitted from the ultraviolet light source 6 is diffused and irradiates the entire surface of the rotating dome 4 and the entire inner wall of the vacuum deposition chamber 1. After the ultraviolet light source 6 was turned on for 1 minute or more, evacuation of the vacuum deposition chamber 1 was started.

そして、真空蒸着チャンバー1内の真空度が1×10−
5Torr以下になった時点で紫外線光源6を消灯した
。次に、真空蒸着チャンバーl内の真空度が所望の真空
度に達した時点で、蒸着材料2(MgF2)を電子銃3
による電子ビーム蒸着法でプラスチック基板5に蒸着さ
せて成膜を行なった。
Then, the degree of vacuum in the vacuum deposition chamber 1 is 1×10−
When the temperature became 5 Torr or less, the ultraviolet light source 6 was turned off. Next, when the degree of vacuum in the vacuum evaporation chamber l reaches the desired degree of vacuum, the evaporation material 2 (MgF2) is transferred to the electron gun 3.
The film was formed on a plastic substrate 5 using an electron beam evaporation method.

このようにして成膜されたMgF 2薄膜の性能を調べ
るため、MgFz薄膜の表面に対して引っ掻き試験.テ
ープ剥離試験等を行な・ったところ、十分実用化に耐え
得ることが判明した。また、−30℃〜80℃の条件下
で200時間耐久試験を行なった後、上記と同様な試験
を行なったところ、全く問題は生じなかった。
In order to investigate the performance of the MgF2 thin film formed in this way, a scratch test was conducted on the surface of the MgFz thin film. When tape peeling tests were conducted, it was found that the product was sufficiently durable for practical use. Further, after conducting a 200 hour durability test under conditions of -30°C to 80°C, a test similar to the above was conducted, and no problems were found.

かかる良好な結果が得られるのは、第1に、大気中で紫
外線光源6を点灯させ、紫外線をプラスチック基板5に
照射させることにより、プラス?ック基板5に付着して
いる有機不純物質を直接分解または活性化して酸化作用
を起こし易《するためである。第2に、紫外線の作用で
発生したオゾン(0,)から分離した活性化酸素(0)
の酸化作用により、有機不純物質を揮発性の物質(例え
ばH20,GO,GO■,NO2等)に分解変化させ、
その後の排気工程でプラスチック基板5表面から除去し
、プラスチック基板5表面も活性化されるので、蒸着粒
子のプラスチック基板5への付着力が増大するとともに
、密度が高くかつ充填率が高い緻密な膜が形成されるこ
とになるからである。
Such good results can be obtained because, first, the ultraviolet light source 6 is turned on in the atmosphere and the plastic substrate 5 is irradiated with ultraviolet rays. This is to directly decompose or activate organic impurities adhering to the backboard substrate 5 to facilitate oxidation. Second, activated oxygen (0,) separated from ozone (0,) generated by the action of ultraviolet rays
The oxidation action of decomposes organic impurities into volatile substances (e.g. H20, GO, GO■, NO2, etc.),
In the subsequent exhaust process, they are removed from the surface of the plastic substrate 5 and the surface of the plastic substrate 5 is also activated, so that the adhesion of the vapor deposited particles to the plastic substrate 5 increases, and a dense film with high density and high filling rate is formed. This is because it will be formed.

以上のように、本実施例の成膜方法によれば、十分実用
化に耐え得る高密着性,高耐久性を有した薄膜を成膜で
きる。
As described above, according to the film forming method of this embodiment, a thin film having high adhesion and high durability that can be put into practical use can be formed.

(第2実施例) 本実施例では、蒸着材料2としてSiO■を用い、紫外
線光源6として出力500Wの低圧水銀灯を2灯と出力
1000■のキセノンショートアークランプをl灯装備
した。
(Second Example) In this example, SiO2 was used as the vapor deposition material 2, and the ultraviolet light source 6 was equipped with two low-pressure mercury lamps with an output of 500 W and one xenon short arc lamp with an output of 1000 W.

そして、第l実施例と同様にして、蒸着材料2?蒸着す
る前処理として紫外線光源6から紫外線を照射した。紫
外線光源6を消灯した後、真空蒸着チャンバーl内の真
空度が所望の真空度に達した時点で、蒸着材料2 (S
iO■)を電子銃3による電子ビーム蒸着法でプラスチ
ック基板5に蒸着させて成膜を行なった。
Then, in the same manner as in the first embodiment, evaporation material 2? As a pretreatment for vapor deposition, ultraviolet light was irradiated from an ultraviolet light source 6. After the ultraviolet light source 6 is turned off, when the degree of vacuum in the vacuum evaporation chamber l reaches the desired degree of vacuum, the evaporation material 2 (S
A film was formed by evaporating iO2) onto a plastic substrate 5 using an electron beam evaporation method using an electron gun 3.

このようにして成膜されたSiOa薄膜の耐久性能を調
べるため、第1実施例と同様の方法により試験を行なっ
たところ、第1実施例のMgFz薄膜と同様の結果が得
られた。したがって、本実施例の或膜方法によっても、
十分実用化に耐え得る高密着性,高耐久性を有した薄膜
を成膜できる。
In order to investigate the durability of the SiOa thin film thus formed, a test was conducted using the same method as in the first example, and results similar to those of the MgFz thin film of the first example were obtained. Therefore, also by the film method of this embodiment,
It is possible to form a thin film with high adhesion and high durability that is sufficient for practical use.

(第3実施例) 本実施例では、蒸着材料2としてA g.20s Zr
O■およびMgF xを用い、紫外線光源6として第1
実施例と同様にして出力500Wの低圧水銀灯を3灯装
備した。
(Third Example) In this example, A g. 20s Zr
The first ultraviolet light source 6 uses O■ and MgF x.
Three low-pressure mercury lamps with an output of 500 W were equipped in the same manner as in the example.

そして、第l実施例と同様にして、蒸着材料2を蒸着す
る前処理として紫外線光源6から紫外線を照射した。紫
外線光源6を消灯した後、真空蒸?チャンバーl内の真
空度が所望の真空度に達した時点で、再び紫外線光源6
から紫外線を照射し、■分以上経過した後に紫外線を照
射しながら蒸着材料2 (Sl02)を電子銃3による
電子ビーム蒸着法でプラスチック基板5にアシスト蒸着
させて成膜を行なった。薄膜構成は、第1層目を八β2
03,第2層目をZrO■および第3層目をMgFPと
した。
Then, in the same manner as in the first embodiment, ultraviolet light was irradiated from the ultraviolet light source 6 as a pretreatment for vapor deposition of the vapor deposition material 2. After turning off the ultraviolet light source 6, vacuum evaporation? When the degree of vacuum in the chamber l reaches the desired degree of vacuum, the ultraviolet light source 6 is turned on again.
Ultraviolet rays were irradiated from the plastic substrate 5, and after more than one minute had elapsed, vapor deposition material 2 (S102) was assisted vapor deposited on the plastic substrate 5 by an electron beam evaporation method using an electron gun 3 while irradiating ultraviolet rays to form a film. The thin film structure consists of 8β2 as the first layer.
03, the second layer was made of ZrO and the third layer was made of MgFP.

このようにして成膜された薄膜の光学特性は、波長45
0〜650r++nで反射率0.8%以下を示し、ガラ
スレンズと同様の性能が得られた。また、薄膜の耐久性
能を調べるため、第l実施例と同様の方法により試験を
行なったところ、多層膜でありながら、第l実施例のM
gF 2薄膜と同様の結果が得られた。
The optical properties of the thin film formed in this way are as follows:
The reflectance was 0.8% or less in the range of 0 to 650 r++n, and the same performance as a glass lens was obtained. In addition, in order to investigate the durability performance of the thin film, we conducted a test using the same method as in the first embodiment, and found that although it was a multilayer film, the M
Similar results were obtained with gF2 thin films.

かかる良好な結果が得られるのは、第1実施例と同様の
有機不純物除去の効果に加えて、真空中で紫外線を照射
することにより、紫外線が0■に吸収されることなく容
易にプラスチック基板5に達し、基板表面にある化学結
合を切断し、切断され?分子鎖にカルボニル基,カルボ
キシル基等を発生させ、極性の高い表面に改質する効果
と、紫外線が持つ高いエネルギーが結晶核成長を促進し
、しかも適度の原子の変位や格子欠陥を促すことにより
薄膜形成の初期過程に有効に作用して緻密な薄膜形成を
促進するというアシスト効果とを合わせ持つからである
Such good results can be obtained because, in addition to the effect of removing organic impurities similar to the first example, by irradiating ultraviolet rays in a vacuum, the ultraviolet rays are not absorbed by the plastic substrate and can be easily removed from the plastic substrate. 5 and breaks the chemical bonds on the substrate surface and is cut? The effect of generating carbonyl groups, carboxyl groups, etc. in the molecular chain and modifying the surface to make it highly polar, and the high energy of ultraviolet rays promotes crystal nucleus growth, and also promotes appropriate atomic displacement and lattice defects. This is because it also has an assisting effect of effectively acting on the initial process of thin film formation and promoting the formation of a dense thin film.

以上のように、本実施例の成膜方法によっても、十分実
用化に耐え得る高密着性,高耐久性を有した薄膜を成膜
できる。
As described above, also by the film forming method of this embodiment, it is possible to form a thin film having high adhesion and high durability sufficient for practical use.

(第4実施例) 本実施例では、蒸着材料2としてSin2およびTiO
■を用い、紫外線光源6として第1および第3実施例と
同様にして出力500Wの低圧水銀灯を3灯装備した。
(Fourth Example) In this example, Sin2 and TiO are used as the vapor deposition material 2.
(3), and three low-pressure mercury lamps with an output of 500 W were equipped as the ultraviolet light source 6 in the same manner as in the first and third embodiments.

そして、本実施例においては、第3実施例と同様にして
、蒸着前および蒸着中に紫外線光源6がら紫外線を照射
するが、さらに蒸着直前から蒸着中にかけて0■ガスを
1.O X 10−5Torr以下の低い分圧でわずか
に真空蒸着チャンバー1内に導入し?、アシスト蒸着を
行なった。薄膜構成は、第1層目をSiOzとし、以下
奇数層をSift、偶数層をTi02とした6層構造で
あり、ハーフミラー用の薄膜である。
In this embodiment, as in the third embodiment, ultraviolet rays are irradiated from the ultraviolet light source 6 before and during vapor deposition, but 1. A small amount of oxygen is introduced into the vacuum deposition chamber 1 at a low partial pressure of less than 10-5 Torr. , assisted deposition was performed. The thin film has a six-layer structure in which the first layer is SiOz, the following odd-numbered layers are Sift, and the even-numbered layers are Ti02, and is a thin film for a half mirror.

このようにして成膜された薄膜の光学特性は、通常ガラ
ス基板に密着したものと同様の性能を示し、耐久試験後
の特性の変化もほとんどなかった。また、引っ掻き試験
,テープ剥離試験等の試験においても初期性能および耐
久性能ともに前記実施例と同様の結果を示し、実用化に
十分耐え得る耐久性を有していた。
The optical properties of the thin film formed in this manner were similar to those of a thin film adhered to a normal glass substrate, and there was almost no change in the properties after the durability test. Further, in tests such as a scratch test and a tape peel test, both the initial performance and the durability performance showed the same results as in the above-mentioned Examples, and the product had enough durability for practical use.

かかる良好な結果が得られるのは、第3実施例と同様の
効果を有するとともに、さらに02ガスを導入すること
により、03の発生を促し、特に有機不純物除去効果を
高めた上に、0■分子が薄膜形成に作用し、内部応力を
緩和させる効果を持つことによるものである。
Such good results can be obtained because, in addition to having the same effect as in the third embodiment, the introduction of 02 gas promotes the generation of 03 and particularly enhances the effect of removing organic impurities. This is because the molecules act to form a thin film and have the effect of relieving internal stress.

(比較例) 本比較例においては、紫外線光源6から紫外線を照射す
ることなく、第l実施例と同様の蒸着を行なった。
(Comparative Example) In this comparative example, vapor deposition was performed in the same manner as in the first embodiment without irradiating ultraviolet light from the ultraviolet light source 6.

本比較例により成膜した薄膜の耐久性を第1実施例と同
様の方法により試験したところ、引っ掻き試験,テープ
剥離試験において薄膜に傷や剥離が発生してしまった。
When the durability of the thin film formed in this comparative example was tested in the same manner as in the first example, scratches and peeling occurred in the thin film in the scratch test and tape peel test.

[発明の効果コ 以上のように、本発明のプラスチック基板への成膜方法
によれば、紫外線を照射することとしたので、プラスチ
ック基板表面の不純物を除去できるとともに、プラスチ
ック基板表面を活性,改質でき、蒸着粒子の基板への結
合力を増大させ、良好で緻密な薄膜形成を行なうことが
でき、結果的にプラスチック基板と薄膜との密着性およ
び耐久性を優れたものにすることができる。
[Effects of the Invention] As described above, according to the method of forming a film on a plastic substrate of the present invention, since ultraviolet rays are irradiated, impurities on the surface of the plastic substrate can be removed, and the surface of the plastic substrate can be activated and modified. It is possible to increase the bonding force of the evaporated particles to the substrate, forming a good and dense thin film, and as a result, it is possible to improve the adhesion and durability between the plastic substrate and the thin film. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のプラスチック基板への成膜方法を実施する
ための真空蒸着装置を示す概略構成図である。 ■・−・真空蒸着チャンバ 2・一蒸着材料 3・・・電子銃 4−・・回転ドーム 5・−・プラスチック基板 6・・・紫外線光源
The figure is a schematic configuration diagram showing a vacuum evaporation apparatus for carrying out the method of forming a film on a plastic substrate according to the present invention. ■・−・Vacuum deposition chamber 2・1 evaporation material 3・・Electron gun 4−・・Rotating dome 5・−・Plastic substrate 6・・UV light source

Claims (3)

【特許請求の範囲】[Claims] (1)プラスチック基板へ真空蒸着法により成膜を行な
うプラスチック基板への成膜方法において、蒸着前また
は蒸着前および蒸着中に、プラスチック基板表面に紫外
線を照射して真空蒸着を行なうことを特徴とするプラス
チック基板への成膜方法。
(1) A method for forming a film on a plastic substrate in which a film is formed on a plastic substrate by a vacuum evaporation method, characterized in that the surface of the plastic substrate is irradiated with ultraviolet rays to perform vacuum evaporation before or before and during the evaporation. A method for forming films on plastic substrates.
(2)前記紫外線の光源が、低圧水銀灯,マイクロ波放
電ランプ,キセノンショートアークランプのいずれか1
種以上であることを特徴とする請求項1記載のプラスチ
ック基板への成膜方法。
(2) The ultraviolet light source is one of a low-pressure mercury lamp, a microwave discharge lamp, and a xenon short arc lamp.
2. The method of forming a film on a plastic substrate according to claim 1, wherein the amount of the film is more than 100%.
(3)酸素ガスを1×10^−^5Torr以下の分圧
で真空蒸着チャンバーに導入しつつ紫外線を照射するこ
とを特徴とする請求項1または2記載のプラスチック基
板への成膜方法。
(3) The method for forming a film on a plastic substrate according to claim 1 or 2, characterized in that ultraviolet rays are irradiated while introducing oxygen gas into the vacuum deposition chamber at a partial pressure of 1×10^-^5 Torr or less.
JP30058389A 1989-11-17 1989-11-17 Film formation to plastic substrate Pending JPH03162561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30058389A JPH03162561A (en) 1989-11-17 1989-11-17 Film formation to plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30058389A JPH03162561A (en) 1989-11-17 1989-11-17 Film formation to plastic substrate

Publications (1)

Publication Number Publication Date
JPH03162561A true JPH03162561A (en) 1991-07-12

Family

ID=17886590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30058389A Pending JPH03162561A (en) 1989-11-17 1989-11-17 Film formation to plastic substrate

Country Status (1)

Country Link
JP (1) JPH03162561A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239202A (en) * 1994-11-23 1996-09-17 Eastman Kodak Co Metal halide prepared by sol/gel method,its film and method of preparing them
KR20020066205A (en) * 2001-02-08 2002-08-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Film formation apparatus and film formation method
KR100864937B1 (en) * 2001-02-21 2008-10-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for film deposition
JP2017011010A (en) * 2015-06-18 2017-01-12 ウシオ電機株式会社 Method for manufacturing wiring board, wiring board, and wiring board manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239202A (en) * 1994-11-23 1996-09-17 Eastman Kodak Co Metal halide prepared by sol/gel method,its film and method of preparing them
KR20020066205A (en) * 2001-02-08 2002-08-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Film formation apparatus and film formation method
KR100895876B1 (en) * 2001-02-08 2009-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Film formation apparatus for manufacturing a light emitting element
US7629025B2 (en) 2001-02-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
KR100864937B1 (en) * 2001-02-21 2008-10-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for film deposition
JP2017011010A (en) * 2015-06-18 2017-01-12 ウシオ電機株式会社 Method for manufacturing wiring board, wiring board, and wiring board manufacturing apparatus

Similar Documents

Publication Publication Date Title
US6156394A (en) Polymeric optical substrate method of treatment
JP5141213B2 (en) Optical device, tunable filter module, and optical spectrum analyzer
JP3808917B2 (en) Thin film manufacturing method and thin film
WO2015097898A1 (en) Process for forming multilayer antireflection film
US20080139885A1 (en) Autoclavable antireflective coatings for endoscopy windows and related methods
JP5076842B2 (en) Optical device, tunable filter module, and optical spectrum analyzer
JP2000121804A (en) Antireflection film
JPH03162561A (en) Film formation to plastic substrate
CN111221057A (en) Optical member and method for manufacturing optical member
JP5452209B2 (en) Transparent body and method for producing the same
JPH07159603A (en) Antireflection film and its production
JPH1036962A (en) Device for producing optical thin coating film and its production
US4056649A (en) Abrasion resistant optical materials and process for making same
JPH0823063B2 (en) Manufacturing method of plastic articles coated with inorganic thin film.
JP3987169B2 (en) Optical thin film manufacturing method
JPH03226555A (en) Film formation on plastic substrate
JPH08304614A (en) Synthetic resin reflection mirror, its production and producing device
JP2001509198A (en) Process for modifying the surface of a substrate made from a polymer or copolymer containing a methacrylate component
JPH11258407A (en) Antireflection film
JP5374176B2 (en) Transparent body and method for producing the same
JP3412302B2 (en) Method for manufacturing plastic optical component having antireflection film
JPH08136703A (en) Film formation of antireflection film
JP2021017602A (en) Manufacturing method of microstructure, and manufacturing apparatus of microstructure
JPH095502A (en) Formation of anti-reflection film
JPH0230747A (en) Formation of film on plastic substrate