JPH03135088A - Semiconductor laser beam width constriction apparatus - Google Patents

Semiconductor laser beam width constriction apparatus

Info

Publication number
JPH03135088A
JPH03135088A JP27311689A JP27311689A JPH03135088A JP H03135088 A JPH03135088 A JP H03135088A JP 27311689 A JP27311689 A JP 27311689A JP 27311689 A JP27311689 A JP 27311689A JP H03135088 A JPH03135088 A JP H03135088A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
light
frequency
output light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27311689A
Other languages
Japanese (ja)
Inventor
Kenji Kudome
賢治 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27311689A priority Critical patent/JPH03135088A/en
Publication of JPH03135088A publication Critical patent/JPH03135088A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor laser beam width constriction apparatus which is stably operated with a simple structure by so injecting part of a laser output light to a semiconductor laser as not to interfere with the laser output light through a resonance absorption medium. CONSTITUTION:A semiconductor laser 1, a resonance absorption medium (adsorption cell) 5, and light feedback means (collimating lens 3, the cell 5, an optical attenuator 11, a lambda/4 plate 10, and a reflecting mirror 9) are provided. Part of the output light of the laser 1 is incident to the cell 5, and the passed light is so injected to the laser 1 as not to interfere with the output light of the laser 1 by the feedback means. With this structure, if the laser 1 is oscillated, when a frequency (f) becomes high, the transmitted light intensity P of the cell 5 is increased. As a result, the carrier density of the active layer of the laser 1 is reduced, and its refractive index is decreased to reduce the frequency (f). If the frequency (f) is, on the contrary, decreased, the frequency (f) is increased. That is, a negative feedback control for suppressing the variation in the frequency is conducted by a light feedback system. Thus, the beam width constriction is stabilized.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、半導体レーザ線幅狭窄化装置に関する。[Detailed description of the invention] "Industrial application field" The present invention relates to a semiconductor laser linewidth narrowing device.

「従来の技術J 半導体レーザはキャビティが非常に小さいので、キャビ
ティ中に蓄えられる誘導放出光子数も気体レーザ等に比
べるとはるかに少ない。従って、自然放出光子が発振モ
ードに混入することにより、容易にその位相が乱され、
発振周波数が変動し、線幅が広がる。光波通信、光計測
、原子発振器の光ボンピング等に半導体レーザを使用す
る場合、半導体レーザの線幅を十分狭窄化しておく必要
がある。このためにいくつかの手法が用いられる。
"Conventional Technology J Since the cavity of a semiconductor laser is very small, the number of stimulated emission photons stored in the cavity is far smaller than that of gas lasers. Therefore, spontaneous emission photons can easily mix into the oscillation mode. The phase is disturbed,
The oscillation frequency changes and the line width widens. When using a semiconductor laser for light wave communication, optical measurement, optical bombing of an atomic oscillator, etc., it is necessary to sufficiently narrow the line width of the semiconductor laser. Several techniques are used for this purpose.

第2図は電気的装置によって半導体レーザ線幅狭窄化装
置を構成する場合の例を示す図である。
FIG. 2 is a diagram showing an example of a semiconductor laser line width narrowing device configured by an electrical device.

同図において、■は半導体レーザ、2は電流源、3はコ
リメートレンズ、4は光アイソレータ、5は吸収セル、
6はアバランシェ・フォト・ダイオード、7は注入電流
制御回路である。
In the figure, ■ is a semiconductor laser, 2 is a current source, 3 is a collimating lens, 4 is an optical isolator, 5 is an absorption cell,
6 is an avalanche photodiode, and 7 is an injection current control circuit.

半導体レーザIの出力光の一部はコリメーティングレン
ズ3によってコリメートされ、吸収セル5に入射する。
A part of the output light of the semiconductor laser I is collimated by the collimating lens 3 and enters the absorption cell 5.

この吸収セル5には、半導体レーザ!の発振周波数付近
に共鳴吸収スペクトルを有する原子・分子が封入されて
おり、半導体レーザlの周波数rと吸収セル5の透過光
強度Pの間には、第3図に示すような関係がある。そし
て、吸収セル5の透過光はアバランシェ・フォト・ダイ
オード6によって検出され、透過光強度Pに応じた検出
信号が注入電流制御回路7に入力され、電流源2から半
導体レーザlに供給される注入電流が調整される。すな
わち、第3図の点Aにおいて半導体レーザ1を発振させ
る場合、rが高くなるとPが増大し、fが低くなるとP
が減少する。従って、Pが減少したときにfを高くする
ように、逆にPが増大したときにfを低くするように、
注入電流制御回路7で注入電流を制御することにより周
波数変動を補償することができる。
This absorption cell 5 has a semiconductor laser! Atoms and molecules having a resonance absorption spectrum near the oscillation frequency are enclosed, and there is a relationship between the frequency r of the semiconductor laser l and the transmitted light intensity P of the absorption cell 5 as shown in FIG. The transmitted light of the absorption cell 5 is detected by the avalanche photodiode 6, and a detection signal corresponding to the transmitted light intensity P is input to the injection current control circuit 7, and the injection signal is supplied from the current source 2 to the semiconductor laser l. The current is adjusted. That is, when the semiconductor laser 1 is oscillated at point A in FIG. 3, as r increases, P increases, and as f decreases, P increases.
decreases. Therefore, when P decreases, f increases, and when P increases, f decreases.
Frequency fluctuations can be compensated by controlling the injection current with the injection current control circuit 7.

第4図は光学的手法による半導体レーザ線幅狭窄化装置
の構成を示す図である。この装置では、電流源2からの
注入電流により動作する半導体レーザ1の端面の一方に
反射防止膜8か設けられており、この端面からの出力光
がコリメーティングレンズ3によってコリメートされ、
反射鏡9jこよって半導体レーザlに帰還する。ここで
、半導体レーザlの反対側の端面と反射鏡9によってキ
ャビティが形成される。この場合、実効的なキャビティ
が大きくなるので、自然放出光による位相揺らぎの影響
か相対的に小さくなり、線幅が狭窄化される。
FIG. 4 is a diagram showing the configuration of a semiconductor laser line width narrowing device using an optical method. In this device, an anti-reflection film 8 is provided on one end face of a semiconductor laser 1 operated by an injected current from a current source 2, and the output light from this end face is collimated by a collimating lens 3.
The light is returned to the semiconductor laser l through the reflecting mirror 9j. Here, a cavity is formed by the opposite end face of the semiconductor laser l and the reflecting mirror 9. In this case, since the effective cavity becomes large, the influence of phase fluctuation due to spontaneous emission light becomes relatively small, and the line width is narrowed.

[発明が解決しようとする課題」 上述した第2図の半導体レーザ線幅狭窄化装置は負帰還
制御であるので安定した動作が得られ、また、原子・分
子の吸収スペクトルを使用しているので、周波数の再現
性・長期安定性も優れている。しかし、線幅を狭窄化す
るためには、高いフーリエ周波数成分の揺らぎを抑圧す
る必要があり、このためには、注入電流制御回路7とし
て自走状態における半導体レーザlの線幅よりも広い帯
域を有し、かつ、その全帯域にわたって負帰還がかかる
ような広帯域電子回路が必要である。そして、この条件
が満足されない場合にはスペクトルの形状が歪んでしま
うという問題があった。また、第4図の半導体レーザ線
幅狭窄化装置は光学帰還系自体が広帯域性を有するので
、広帯域電子回路は不要であり、構成が簡易になる。し
かしながら、外部振動などによって反射光の位相が乱れ
ると動作が不安定になるという問題があった。
[Problem to be solved by the invention] The semiconductor laser linewidth narrowing device shown in FIG. , frequency reproducibility and long-term stability are also excellent. However, in order to narrow the linewidth, it is necessary to suppress fluctuations in high Fourier frequency components, and for this purpose, the injection current control circuit 7 must have a bandwidth wider than the linewidth of the semiconductor laser I in the free-running state. There is a need for a wideband electronic circuit with negative feedback over the entire band. If this condition is not satisfied, there is a problem in that the shape of the spectrum is distorted. Further, in the semiconductor laser linewidth narrowing device shown in FIG. 4, since the optical feedback system itself has broadband characteristics, a broadband electronic circuit is not required, and the configuration is simplified. However, there is a problem in that the operation becomes unstable if the phase of the reflected light is disturbed due to external vibrations or the like.

この発明は上述した事情に鑑みてなされたものであり、
簡易な構成であり、かつ、安定した動作の得られる半導
体レーザ線幅狭窄化装置を提供することを目的とする。
This invention was made in view of the above circumstances,
It is an object of the present invention to provide a semiconductor laser line width narrowing device that has a simple configuration and can provide stable operation.

「課題を解決するための手段」 この発明は、半導体レーザと、共鳴吸収媒体と、光帰還
手段とを備え、前記半導体レーザの出力光の一部を前記
共鳴吸収媒体に入射させ、透過光を前記光帰還手段によ
って、前記半導体レーザの出力光と干渉しないように前
記半導体レーザに注入することを特徴とする。
"Means for Solving the Problems" The present invention includes a semiconductor laser, a resonant absorption medium, and an optical feedback means, and makes a part of the output light of the semiconductor laser enter the resonant absorption medium, and transmits the transmitted light. The light is injected into the semiconductor laser by the optical feedback means so as not to interfere with the output light of the semiconductor laser.

「作用」 半導体レーザの出力光の一部が共鳴吸収媒体を介し、半
導体レーザの出力光と干渉しないように半導体レーザに
注入され、半導体レーザの出力光の線幅狭窄化が行われ
る。すなわち、本発明は、広帯域性を有する光学的手段
による負帰還制御を行うので、より簡易な構成で安定な
線幅線幅狭窄化を行うことができる。
"Operation" A part of the output light of the semiconductor laser is injected into the semiconductor laser through the resonant absorption medium so as not to interfere with the output light of the semiconductor laser, and the line width of the output light of the semiconductor laser is narrowed. That is, since the present invention performs negative feedback control using optical means having broadband properties, stable line width narrowing can be performed with a simpler configuration.

「実施例」 以下、図面を参照し、本発明の一実施例を説明する。"Example" Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による半導体レーザ線幅狭窄
化装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a semiconductor laser line width narrowing device according to an embodiment of the present invention.

この装置は、半導体レーザIの端面の一方に反射防止膜
8が設けられると共に、この端面がら出力される半導体
レーザ1の出力光の光路上に、コリメーティングレンズ
3、吸収セル5、光アッテネータ11、λ/4仮10お
よび反射鏡9を配置してなる。
In this device, an antireflection film 8 is provided on one end face of a semiconductor laser I, and a collimating lens 3, an absorption cell 5, and an optical attenuator are placed on the optical path of the output light of the semiconductor laser 1 output from this end face. 11, a λ/4 tentative 10 and a reflecting mirror 9 are arranged.

半導体レーザ1から反射防止膜8を介して出力されろレ
ーザ光は、コリメーティングレンズ3によってコリメー
トされ、吸収セル5に入射し、その透過光が光アッテネ
ータ11およびλ/・1板!0を介して反射鏡8に入射
し、反射鏡8によって反射され、再度、λ/4板、光ア
ブテネータ11、吸収セル5およびコリメーティングレ
ンズ3を介し、半導体レーザに注入される。
Laser light output from the semiconductor laser 1 via the anti-reflection film 8 is collimated by the collimating lens 3 and enters the absorption cell 5, and the transmitted light is transmitted through the optical attenuator 11 and the λ/·1 plate! The light enters the reflecting mirror 8 through 0, is reflected by the reflecting mirror 8, and is again injected into the semiconductor laser via the λ/4 plate, the optical abtenuator 11, the absorption cell 5, and the collimating lens 3.

ここで、反射光はλ/4板10を2回通過するので、そ
の偏波面は半導体レーザの出力光の偏波面とは直交して
おり、互いに干渉しない。また、光アッテネータIIに
よって、半導体レーザに注入光として帰還される光の強
度が調整される。
Here, since the reflected light passes through the λ/4 plate 10 twice, its plane of polarization is orthogonal to the plane of polarization of the output light of the semiconductor laser, and they do not interfere with each other. Further, the optical attenuator II adjusts the intensity of the light that is fed back to the semiconductor laser as the injected light.

電流源2からの注入電流を調整し、第3図の点Aにおい
て半導体レーザ1が発振するようにしている場合、周波
数rが高くなると吸収セル5の透過光強度Pが増大し、
その結果、半導体レーザIの活性層のキャリア密度が減
少し、屈折率が大きくなるので、周波数fが低くなる。
When the injection current from the current source 2 is adjusted so that the semiconductor laser 1 oscillates at point A in FIG. 3, as the frequency r increases, the transmitted light intensity P of the absorption cell 5 increases,
As a result, the carrier density in the active layer of the semiconductor laser I decreases and the refractive index increases, so the frequency f decreases.

逆に周波数rが低くなると、注入光が減少することによ
り活性層の屈折率が小さくなり、周波数fが高くなる。
Conversely, when the frequency r decreases, the refractive index of the active layer decreases due to a decrease in the amount of injected light, and the frequency f increases.

すなわち、周波数fの変化を抑制するように負帰還がか
かる。この方法は、光帰還系自体が広帯域性を有するの
で、広帯域電子回路を要せず構成が簡易であり、かつ負
帰還制御なので動作は安定である。また、原子・分子の
吸収スペクトルを使用しているので、周波数の再現性・
長期安定性も優れている。従って、光波通信、光計測、
原子発振器の光ボンピング等の光源に使用することがで
きる。
That is, negative feedback is applied to suppress changes in frequency f. In this method, since the optical feedback system itself has broadband characteristics, the configuration is simple without requiring a broadband electronic circuit, and the operation is stable because of negative feedback control. In addition, since the absorption spectra of atoms and molecules are used, frequency reproducibility and
It also has excellent long-term stability. Therefore, light wave communication, optical measurement,
It can be used as a light source for optical bombing of atomic oscillators, etc.

「発明の効果」 以上説明したように、本発明は、半導体レーザと、共鳴
吸収媒体と、光帰還手段とを備え、前記半導体レーザの
出力光の一部を前記共鳴吸収媒体に入射させ、透過光を
前記光帰還手段によって、前記半導体レーザの出力光と
干渉しないように前記半導体レーザに注入するので、簡
単な構成で動作の安定した線幅狭窄化を行うことができ
るという効果がある。
"Effects of the Invention" As explained above, the present invention includes a semiconductor laser, a resonant absorption medium, and an optical feedback means, and makes a part of the output light of the semiconductor laser incident on the resonant absorption medium, so that the output light is transmitted through the resonant absorption medium. Since light is injected into the semiconductor laser by the optical feedback means so as not to interfere with the output light of the semiconductor laser, there is an effect that line width narrowing can be performed with a simple configuration and stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体レーザ線幅狭
窄化装置の構成を示すブロック図、第2図は従来の電気
的装置によって実現される半導体レーザ線幅狭窄化装置
の構成を示すブロック図、第3図は第2図の装置におけ
る半導体レーザlの出力光の周波数rと吸収セル5の透
過光強度Pの関係を表わす図、第4図は従来の光学的装
置によって実現される半導体レーザ線幅狭窄化装置の構
成を示すブロック図である。 1・・・・・・半導体レーザ、2・・・・・・電流源、
3・・・・・・コリメーティングレンズ、4・・・・・
・光アイソレータ、5・・・・・・吸収セル(共鳴吸収
媒体)、8・・・・・・反射防止膜、9・・・・・・反
射鏡、lO・・・・・・λ/4板、1!・・・・・・光
アッテネータ。 第1図
FIG. 1 is a block diagram showing the configuration of a semiconductor laser linewidth narrowing device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of a semiconductor laser linewidth narrowing device realized by a conventional electrical device. 3 is a diagram showing the relationship between the frequency r of the output light of the semiconductor laser l and the transmitted light intensity P of the absorption cell 5 in the device shown in FIG. 2, and FIG. FIG. 2 is a block diagram showing the configuration of a laser line width narrowing device. 1... Semiconductor laser, 2... Current source,
3... Collimating lens, 4...
・Optical isolator, 5...Absorption cell (resonant absorption medium), 8...Antireflection film, 9...Reflector, lO...λ/4 Board, 1! ...Optical attenuator. Figure 1

Claims (1)

【特許請求の範囲】 半導体レーザと、 共鳴吸収媒体と、 光帰還手段とを備え、 前記半導体レーザの出力光の一部を前記共鳴吸収媒体に
入射させ、透過光を前記光帰還手段によって、前記半導
体レーザの出力光と干渉しないように前記半導体レーザ
に注入することを特徴とする半導体レーザ線幅狭窄化装
置。
[Scope of Claims] A semiconductor laser, a resonant absorption medium, and an optical feedback means, a part of the output light of the semiconductor laser is made incident on the resonant absorption medium, and the transmitted light is transmitted to the resonant absorption medium by the optical feedback means. A semiconductor laser linewidth narrowing device characterized by injecting into the semiconductor laser so as not to interfere with the output light of the semiconductor laser.
JP27311689A 1989-10-20 1989-10-20 Semiconductor laser beam width constriction apparatus Pending JPH03135088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27311689A JPH03135088A (en) 1989-10-20 1989-10-20 Semiconductor laser beam width constriction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27311689A JPH03135088A (en) 1989-10-20 1989-10-20 Semiconductor laser beam width constriction apparatus

Publications (1)

Publication Number Publication Date
JPH03135088A true JPH03135088A (en) 1991-06-10

Family

ID=17523357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27311689A Pending JPH03135088A (en) 1989-10-20 1989-10-20 Semiconductor laser beam width constriction apparatus

Country Status (1)

Country Link
JP (1) JPH03135088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075805A (en) * 1995-10-26 2000-06-13 The United States Of American As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for linewidth reduction in distributed feedback or distributed Bragg reflector semiconductor lasers using vertical emission
CN107453203A (en) * 2017-07-21 2017-12-08 北京航天控制仪器研究所 A kind of miniaturization saturation-absorption spectrum device for semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075805A (en) * 1995-10-26 2000-06-13 The United States Of American As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for linewidth reduction in distributed feedback or distributed Bragg reflector semiconductor lasers using vertical emission
CN107453203A (en) * 2017-07-21 2017-12-08 北京航天控制仪器研究所 A kind of miniaturization saturation-absorption spectrum device for semiconductor laser

Similar Documents

Publication Publication Date Title
Mitschke et al. Stabilizing the soliton laser
JP3726676B2 (en) External cavity mode-locked semiconductor laser device
KR0160582B1 (en) Optical fiber laser
US5007065A (en) Bilithic unidirectional ring laser
JPH0851246A (en) Passive mode locked laser stable toward change in environment
US4730105A (en) Apparatus for the stabilization of the output intensity of a laser using a Fabry-Perot cavity
Smith A study of factors affecting the performance of continuously pumped doubly resonant optical parametric oscillator
CN110911963B (en) High-stability polarization spectrum frequency stabilizer
US6477189B1 (en) Laser oscillation frequency stabilizer
CN112018590B (en) Multi-wavelength non-atomic resonance Faraday semiconductor laser
US7026594B2 (en) Method and device for producing radio frequency waves
US3534289A (en) Laser system with optical discriminator
CN115733046A (en) Laser frequency stabilizing device and method
JPH03135088A (en) Semiconductor laser beam width constriction apparatus
US3423588A (en) Low-noise optical maser of the internal modulation type
CN218648328U (en) Laser frequency stabilizer and ion trap quantum computer
De Lang et al. Optical polarization effects in a gas laser
Camargo et al. Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm
JPH0436597B2 (en)
JPS6289378A (en) Semiconductor laser device with stabilized frequency
Nilsson et al. Monolithic nonplanar ring lasers: resistance to optical feedback
JP3055735B2 (en) Passive mode-locked semiconductor laser device
RU2055431C1 (en) Stabilizer of frequency of lasers
Qin et al. A 780 nm Dual-Frequency Faraday Laser
RU2210847C1 (en) Radiation frequency stabilized laser