JPH0313000A - Electromagnetic shielding structure - Google Patents

Electromagnetic shielding structure

Info

Publication number
JPH0313000A
JPH0313000A JP15000889A JP15000889A JPH0313000A JP H0313000 A JPH0313000 A JP H0313000A JP 15000889 A JP15000889 A JP 15000889A JP 15000889 A JP15000889 A JP 15000889A JP H0313000 A JPH0313000 A JP H0313000A
Authority
JP
Japan
Prior art keywords
fiber
base material
metal fiber
heat
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15000889A
Other languages
Japanese (ja)
Inventor
Michio Arai
新井 倫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP15000889A priority Critical patent/JPH0313000A/en
Publication of JPH0313000A publication Critical patent/JPH0313000A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve electromagnetic shielding property, the outside view, and secondary processing property by bonding a singly layer or plural layers of unweaved cloth comprising complex metal fiber and heat fusion fiber under pressure so as to produce a thin film or making heat fusion of said fiber on the surface of a base material or between the base materials. CONSTITUTION:A single layer or plural layers of unweaved cloth comprising complex metal fiber and heat fusion fiber are heat-bonded so that they may be turned into a thin film or they are hot-adhered with the surface of a base material or between base materials. As for the complex metal fiber, a metal fiber base material whose surface is metal-plated, is used while fiber having heat fusion performance, such as polyolefin-group fiber is used for the heat fusion fiber. The complex metal fiber hot-bonded on the surface of the base material or between the base materials are capable of following the bending or elongation of a structure bonded with the fiber when it is served as secondary processing. This flexibility prevents the outside view of the structure from being damaged. It is, therefore, possible to improve electromagnetic property, outside view and secondary processing characteristics as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、すぐれた電磁波シールド性、−外観および二
次加工性を有し、かつ製造工程的にも有利な電磁波シー
ルド性構造物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electromagnetic shielding structure that has excellent electromagnetic shielding properties, appearance and secondary workability, and is also advantageous in terms of manufacturing process. .

従来の技術 エレクトロニクス機器の筐体、フラットケーブル等には
、電磁波シールド性を付与することが不可欠である。
BACKGROUND OF THE INVENTION It is essential to provide electromagnetic shielding properties to the housings, flat cables, etc. of electronic devices.

電磁波シールド性付与手段としては、■成形用樹脂に導
電性繊維を配合して成形する方法、■成形用樹脂に導電
性フィラーを配合して成形する方法、■成形物表面に導
電性塗料を塗布する方法、■成形物表面に亜鉛等の金属
を溶射する方法、■成形物表面に金属メッキを施す方法
、■成形物表面に金属箔を貼着する方法、■成形物表面
に真空蒸着またはスパッタリングにより金属層を形成さ
せる方法、などが適宜選択採用されている。
Methods for imparting electromagnetic shielding properties include: ■ A method in which conductive fibers are blended into a molding resin and molded, ■ A method in which a conductive filler is blended into a molding resin and molded, and ■ A conductive paint is applied to the surface of the molded product. ■Method of spraying metal such as zinc onto the surface of the molded product;■Method of applying metal plating to the surface of the molded product;■Method of attaching metal foil to the surface of the molded product;■Method of applying vacuum evaporation or sputtering to the surface of the molded product. A method of forming a metal layer using a method of forming a metal layer is appropriately selected and adopted.

なお、帯電防止の目的ではあるが、特開昭581559
17号公報、特開昭58−166035号公報、特開昭
58−169706号公報、特開昭59−146104
号公報には、導電性繊維と熱溶融性繊維との絡み合いで
できた布状物をプラスチックス等の基材の表面に熱融着
さゼた構造物につき開示がある。
Although the purpose is to prevent static electricity, Japanese Patent Application Laid-Open No. 581559
17, JP 58-166035, JP 58-169706, JP 59-146104
The publication discloses a structure in which a cloth-like material made of entangled conductive fibers and heat-fusible fibers is heat-sealed to the surface of a base material such as plastics.

電磁波シールド性の付与は、エレク]・ロニクス機器の
筐体のみならず覗き窓をはじめとする透視面に対しても
必要であり、そのため、金属製のメツシュや金属メッキ
合成繊維製のメツシュを2枚の中間膜で挟むことにより
合せガラスとする技術が開発されている。(たとえば、
「工業材料」、第36巻、第4号、51〜54頁(19
88)参照) 発明が解決しようとする課題 しかしながら、−1−記■や■の方法は、所期の電磁波
シールド性を得るためには導電性繊維や導電性フィラー
を多量に配合して成形に供しなければならないこと、多
量配合によりプラスチックス成形物本来の機械的物性が
低下し、重量も重くなること、機械的な物性」二、薄手
のシートまたはフィルムを得ることが困難であること、
平滑性や着色の点で成形物の外観が劣っていることなど
の不利がある。
It is necessary to provide electromagnetic shielding properties not only to the housing of electronics/ronics equipment, but also to transparent surfaces such as viewing windows. A technology has been developed to create laminated glass by sandwiching it between two sheets of interlayer film. (for example,
"Industrial Materials", Vol. 36, No. 4, pp. 51-54 (19
(Refer to 88) Problems to be Solved by the Invention However, the methods described in -1- (1) and (2) require a large amount of conductive fibers or conductive fillers to be blended into the molding in order to obtain the desired electromagnetic shielding properties. 2. It is difficult to obtain thin sheets or films due to the mechanical properties of the plastic molded product.
Disadvantages include poor appearance of molded products in terms of smoothness and coloring.

−1:記■〜■の方法は、成形物の形状がフラッI・な
ものに限られること、得られた成形物を真空成形などの
二次加工に供すると表面の導電性層が破壊し、外観上は
もとより、電磁波シールド性が著しく低下するおそれが
あること、作業工程の複雑さ、作業環境の低ド、製造工
程の自動化の困難さ、コスト等の点でも問題があること
などの不利がある。
-1: The methods described in ■ to ■ are limited to shapes of molded products that are flat I, and that the surface conductive layer may be destroyed if the resulting molded product is subjected to secondary processing such as vacuum forming. Disadvantages include not only the appearance, but also problems in terms of electromagnetic shielding, the complexity of the work process, the low energy consumption of the work environment, the difficulty in automating the manufacturing process, and the cost. There is.

特開昭58−155917号公報等に開示された方法は
興味あるものであるが、たとえ導電性層Mtとしてステ
ンレススチール繊維等の通常の金属繊維を用いても、必
ずしも満足できる電磁波シールド性が得られない」−1
金属繊維と熱溶融性繊維とから不織布を製造する際の均
質性、操作性が劣り、また得られる製品の表面が金属光
沢と同じ光沢を有し、深み感がないことなどの問題があ
った。
Although the method disclosed in JP-A-58-155917 is interesting, even if ordinary metal fibers such as stainless steel fibers are used as the conductive layer Mt, satisfactory electromagnetic shielding properties cannot necessarily be obtained. I can't do it"-1
There were problems such as poor homogeneity and operability when manufacturing nonwoven fabrics from metal fibers and heat-fusible fibers, and the surface of the resulting product had the same luster as metallic luster and lacked a sense of depth. .

金属製のメツシュや金属メッキ合成繊維製のメツシュを
2枚の中間膜で挟むことによって合せカラスとする方法
も、電磁波シールド性の点、外観の点でなお改良の余地
があった。
The method of making a laminated glass by sandwiching a metal mesh or a metal-plated synthetic fiber mesh between two interlayer films also leaves room for improvement in terms of electromagnetic shielding properties and appearance.

本発明は、」−記のような不利を有しない電磁波シール
ド性構造物を提供することを目的とするものである。
An object of the present invention is to provide an electromagnetic shielding structure that does not have the disadvantages mentioned above.

課題を解決するための手段 本発明の電磁波シールド性構造物は、金属繊維基体(1
a)の表面に金属メッキ層(1b)を形成させた複合金
属繊維(1)と熱溶融性繊維(2)とからなる不織布(
3)の単層または複層を、それ自身熱圧着して薄膜化す
るか、基材(4)の表面または基材(4)、 (4)間
に熱融着してなるものである。
Means for Solving the Problems The electromagnetic shielding structure of the present invention has a metal fiber substrate (1
A nonwoven fabric (a) consisting of a composite metal fiber (1) on which a metal plating layer (1b) is formed and a thermofusible fiber (2)
The single layer or multiple layers of 3) are either thermocompressed to form a thin film, or are thermally fused on the surface of the base material (4) or between the base materials (4) and (4).

以下本発明の詳細な説明する。The present invention will be explained in detail below.

複合金属繊維(1)としては、金属繊維基体(la)の
表面に金属メッキ層(1b)を形成させたものが用いら
れる。金属繊維基体(1a)のみでは電磁波シールド性
が充分ではなく、金属繊維基体(1a)の表面に金属メ
ッキ層(1b)を形成させてはじめて所期の目的を達成
しうる。
The composite metal fiber (1) used is one in which a metal plating layer (1b) is formed on the surface of a metal fiber base (la). The electromagnetic wave shielding property of the metal fiber base (1a) alone is not sufficient, and the intended purpose can only be achieved by forming a metal plating layer (1b) on the surface of the metal fiber base (1a).

金属繊維基体(1a)としては種々の金属繊維が用いら
れるが、特に好ましいものはステンレススチール繊維で
あり、アルミニウム繊維や銅繊維も好ましい繊維の一つ
である。これら以外の金属繊維を用いることも可能であ
る。
Various metal fibers can be used as the metal fiber substrate (1a), but stainless steel fibers are particularly preferred, and aluminum fibers and copper fibers are also preferred fibers. It is also possible to use metal fibers other than these.

金属メッキ層(1b)は、無電解メッキ層、電解メッキ
層、無電解メッキ層上への電解メッキ層のいずれであっ
てもよいが、電磁波シールド性の点で無電解メッキ層の
方が良好な結果が得られる。
The metal plating layer (1b) may be an electroless plating layer, an electrolytic plating layer, or an electrolytic plating layer on an electroless plating layer, but an electroless plating layer is better in terms of electromagnetic shielding properties. results.

殊にニッケル、銅、銀またはチタンの無電解メッキ層が
有用である。
Particularly useful are electroless plated layers of nickel, copper, silver or titanium.

無電解メッキは常法に従って行われるが、この際、メッ
キ浴にポリテトラフルオロエチレン等のフッ素系樹脂を
添加した状態でメッキを行うことも好ましい。
Electroless plating is performed according to a conventional method, but at this time, it is also preferable to perform plating with a fluororesin such as polytetrafluoroethylene added to the plating bath.

金属繊維基体(1a)の表面に金属メッキ層(1b)を
形成させた複合金属繊維(1)における繊維の太さは、
できるだけ細い方が望ましいが、製造上の制約も加味し
て通常は1O−100ui+程度の範囲に設定すること
が多い。ただし、この範囲外の太さであっても差支えな
い。繊維の長さは任意に設定しうるが、不織布製造時の
工程上の制約および不織布強度の点から、2〜200m
m程度、殊に5〜100mm程度とすることが多い。
The thickness of the fibers in the composite metal fiber (1) in which a metal plating layer (1b) is formed on the surface of the metal fiber base (1a) is:
Although it is desirable that the thickness be as thin as possible, it is usually set in the range of about 10-100 ui+, taking into consideration manufacturing constraints. However, there is no problem even if the thickness is outside this range. The length of the fibers can be set arbitrarily, but from the viewpoint of process constraints during nonwoven fabric production and nonwoven fabric strength, the length of the fibers is 2 to 200 m.
It is often set to about m, especially about 5 to 100 mm.

熱溶融性繊維(2)としては、ポリオレフィン系繊維、
ポリアミド系繊維、ポリエステル系#11維、アクリル
系繊維、ポリ塩化ビニル系繊維など熱溶融性を有するt
agが用いられる。殊に、融点または軟化点が70〜2
00℃程度、なかんずく80〜180℃の繊維が有用で
ある。繊維の太さおよび長さは、複合金属繊維(1)の
場合と同様に設定できるが、太さはもっと細くすること
ができる。
As the heat-melting fiber (2), polyolefin fiber,
Heat-meltable fibers such as polyamide fibers, polyester #11 fibers, acrylic fibers, and polyvinyl chloride fibers
ag is used. In particular, those having a melting point or softening point of 70 to 2
Fibers having a temperature of about 00°C, especially 80 to 180°C, are useful. The thickness and length of the fiber can be set in the same manner as in the case of the composite metal fiber (1), but the thickness can be made thinner.

不織布(3)は、上述の複合金属繊維(1)と熱溶融性
繊維(2)とを混合して、常法により(特に乾式法によ
り)製造される。この場合、さらに他の繊維、たとえば
少なくとも後述の熱融着加工時の温度では熱溶融性を示
さない繊維を適当量混入することもできる。
The nonwoven fabric (3) is produced by mixing the above-mentioned composite metal fiber (1) and heat-fusible fiber (2) by a conventional method (particularly by a dry method). In this case, an appropriate amount of other fibers, such as fibers that do not exhibit thermal meltability at least at the temperature during the heat-sealing process described below, may be mixed.

不織布(3)中の複合金属繊維(1)の割合は1〜98
重都%、殊に5〜90重量%が適当でありその割合が余
りに少ないと電磁波シールド性が不足し、その割合が余
りに多いと熱圧着時の薄膜化あるいは基材(4)に対す
る熱融着性が不充分となる。特に好ましい範囲は10〜
50重量%である。
The ratio of composite metal fiber (1) in nonwoven fabric (3) is 1 to 98
Weight%, especially 5 to 90% by weight, is appropriate; if the ratio is too low, the electromagnetic shielding properties will be insufficient, and if the ratio is too high, the film will become thinner during thermocompression bonding or heat fusion to the base material (4). Sexuality becomes insufficient. A particularly preferable range is 10 to
It is 50% by weight.

そして、上記の不織布(3)の単層または複層をそれ自
身熱圧着して薄膜化するか、基材(4)の表面または基
材(4)、 (4)間に熱融着することにより、目的と
する電磁波シールド性構造物が製造される。
Then, the single layer or multiple layers of the nonwoven fabric (3) described above may be thermocompressed to form a thin film, or the nonwoven fabric (3) may be thermally bonded to the surface of the base material (4) or between the base materials (4), (4). In this way, the desired electromagnetic shielding structure is manufactured.

基材(4)としては、ポリオレフィン系樹脂、ポリアミ
ド系樹脂、アクリル系樹脂、ポリスチレン系樹脂、AB
S樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系
樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂
、ポリエステル系樹脂、ポリウレタン系樹脂、ポリビニ
ルブチラール系樹脂、ポリビニルエステル系樹脂、ビニ
ルアルコール系共重合体、ポリイミド系樹脂、ポリスル
ホン系樹脂、ポリエーテルスルホン系樹脂、ポリフェニ
レンオキサイド系樹脂、ポリアリーレンエステル系樹脂
、ポリエーテルエーテルケトン系樹脂、フェノール系樹
脂、尿素系樹脂、メラミン系樹脂、グアナミン系樹脂、
エポキシ系極脂、ジアリルフタレート系樹脂、不飽和ポ
リエステル系樹脂をはじめとする熱可塑性樹脂、熱硬化
性樹脂あるいはゴム系樹脂の成形物が好適に用いられ、
そのほか、ガラス、金属、天然産材料なども用いられる
。これらの中では、熱可塑性樹脂、殊に、使用した熱溶
融性繊維(2) との融着性の高い樹脂の成形物が特に
好ましい。
As the base material (4), polyolefin resin, polyamide resin, acrylic resin, polystyrene resin, AB
S resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyacetal resin, polycarbonate resin, polyester resin, polyurethane resin, polyvinyl butyral resin, polyvinyl ester resin, vinyl alcohol copolymer, polyimide resin Resin, polysulfone resin, polyether sulfone resin, polyphenylene oxide resin, polyarylene ester resin, polyether ether ketone resin, phenol resin, urea resin, melamine resin, guanamine resin,
Molded products of thermoplastic resins, thermosetting resins, or rubber resins including epoxy-based polar resins, diallyl phthalate-based resins, and unsaturated polyester-based resins are preferably used.
Other materials used include glass, metal, and naturally occurring materials. Among these, molded articles made of thermoplastic resins, particularly resins having high fusion properties with the thermofusible fibers (2) used, are particularly preferred.

これらの基材(4)の形状は、フィルム、シート、板、
パイプ、筐体、容器をはじめ任意である。
The shapes of these base materials (4) include films, sheets, plates,
It can be anything including pipes, casings, and containers.

基材(4)がガラス、ポリメチルメタクリレート板、ポ
リカーボネート板、ポリスチレン板などのように透視性
を有する場合は、不織布(3)を該基材(4)、 (4
)間に介在させた状態で熱融着することも好ましい態様
である。このような態様の一例としては、ガラス/ポリ
ビニルブチラール中間膜/不織布(3)/ポリビニルブ
チラール中間V/ガラスの層構成を有する合せガラスが
あげられる。ガラス/ポリビニルブチラール中間膜が基
材(4)に相当する。
When the base material (4) has transparency such as glass, polymethyl methacrylate plate, polycarbonate plate, polystyrene plate, etc., the nonwoven fabric (3) is attached to the base material (4), (4)
) It is also a preferable embodiment to heat-seal the material while being interposed between the two. An example of such an embodiment is a laminated glass having a layer structure of glass/polyvinyl butyral interlayer/nonwoven fabric (3)/polyvinyl butyral interlayer V/glass. The glass/polyvinyl butyral interlayer corresponds to the base material (4).

不織布(3)−基材(4)間の熱融着手段としては、た
とえば、 ■ 不織布(3)を基材(4)上に重ね合せて熱圧着す
る方法、 ■ 不織布(3)を基材(4)上に貼り合せあ後、加熱
溶融する方法、 ■ 不織布(3)にプラスチックス成形物基材(4)用
の樹脂溶融体をエクストルージョンコーティングする方
法(溶融体の背後からカバーフィルムをあてがうことも
ある)、 ■ 予め型内に不織布(3)をインサートしておき、そ
れにプラスチックス成形物基材(4)用の樹脂溶融体を
射出する方法(射出成形法)、■ 予め型内に不織布(
3)をインサートしておき、それに加熱軟化したプラス
チックス成形物基材(4)を圧着する方法(真空成形法
、深絞り成形法)、 (D プラスチックス成形物基材(4)の圧縮成形0 時、プレス成形時、トランスファー成形時に型内に不織
布(3)をインサートしておく方法、などが採用される
Examples of heat-sealing means for bonding the nonwoven fabric (3) and the base material (4) include: (1) a method of superimposing the nonwoven fabric (3) on the base material (4) and thermocompression bonding; (2) bonding the nonwoven fabric (3) to the base material (4); (4) Method of heating and melting after laminating on the top; ■ Method of extrusion coating the nonwoven fabric (3) with a resin melt for the plastic molded product base material (4) (applying a cover film from behind the melt) ■ A method in which the nonwoven fabric (3) is inserted into the mold in advance and a molten resin for the base material (4) of the plastic molded product is injected into it (injection molding method); non-woven fabric (
3) is inserted and the heat-softened plastic molded product base material (4) is pressed into it (vacuum forming method, deep drawing method), (D Compression molding of the plastic molded product base material (4) A method of inserting the nonwoven fabric (3) into the mold during press molding, transfer molding, etc. is adopted.

基材(4)が常温であるいは加熱時に曲げ性や伸び性を
有する場合は、不織布(3)を熱融着した後、さらに真
空成形、曲げ加工、延伸加工などの二次加工に供するこ
ともできる。
If the base material (4) has bendability or extensibility at room temperature or when heated, it may be subjected to secondary processing such as vacuum forming, bending, and stretching after heat-sealing the nonwoven fabric (3). can.

本発明の電磁波シールド性構造物は、エレクトロニクス
機器の筐体や覗き窓、フラットケーブル用資材をはじめ
、電磁波の外部への漏れの防+hあるいは外部からの電
磁波の侵入の防止が要求される種々の用途に有用である
The electromagnetic shielding structure of the present invention can be used in various applications that require prevention of leakage of electromagnetic waves to the outside or prevention of intrusion of electromagnetic waves from the outside, such as housings of electronic equipment, viewing windows, and materials for flat cables. Useful for applications.

作用および発明の効果 金属繊維基体(1a)の表面に金属メッキ層(1b)を
形成させた複合金属繊維(1)は、金属繊維基体(la
)そのものの金属光沢が改良されて、深みのある好まし
い風合となる6 またこの複合金属繊維(1)は金属繊維基体(la)に
比し滑り性が改善されるので、比重の顕著に異なる複合
金属繊維(1)と熱溶融性繊維(2)とを混合して不織
布(3)を形成しているにもかかわらず、パラレルウェ
ッブ製造に際しての調合、開繊、カード、ウェッブ形成
の各工程において均質性、操作性が向上すると共に、得
られる不織布の均斉性も向上する。ランダムウェッブ形
成の場合も、方向性の少ない均質なウェッブが得られる
Effects of the invention The composite metal fiber (1) in which the metal plating layer (1b) is formed on the surface of the metal fiber base (1a) is
) The metallic luster of itself is improved, resulting in a deep and pleasant texture.6 Also, this composite metal fiber (1) has improved slipperiness compared to the metal fiber base (la), so it has a significantly different specific gravity. Although the composite metal fiber (1) and the thermofusible fiber (2) are mixed to form the nonwoven fabric (3), each process of compounding, opening, carding, and web formation during parallel web production is difficult. In addition to improving the homogeneity and operability, the uniformity of the obtained nonwoven fabric is also improved. In the case of random web formation, a homogeneous web with little directionality is also obtained.

メッキ浴にポリテトラフルオロエチレン等のフッ素系樹
脂を添加した状態でメッキを行うことにより金属繊維基
体(1a)表面に金属メッキR(1b)を形成させた場
合は、さらに−段と良好な結果が得られる。
When the metal plating R (1b) is formed on the surface of the metal fiber substrate (1a) by performing plating with a fluororesin such as polytetrafluoroethylene added to the plating bath, the results are even better. is obtained.

そして、複合金属繊維(1)と熱溶融性繊維(2)とか
らなる不織布(3)の単層または複層をそれ自身熱圧着
して薄膜化するか、基材(4)の表面または基材(4)
、 (4)間に熱融着すると、熱溶融性繊維(2)は溶
融して見掛けh消失し、前者にあってはフィルム化が図
られ、後者にあっては基材(4)の表面または基材(4
)、 (4)間に複合金属繊維(1)が薄層状に融着す
る。得られた構造物は、薄膜化または融着した複合金属
縁M (1)層の存在により、1 2 すぐれた電磁波シールド性を奏する。このようなすぐれ
た電磁波シールド性は、単に金属繊維基体(1a)を薄
膜化または融着させたのでは得られない。
Then, a single layer or multiple layers of the nonwoven fabric (3) consisting of the composite metal fiber (1) and the heat-fusible fiber (2) are thermocompressed to form a thin film, or the surface or base of the base material (4) is Material (4)
, (4), the heat-fusible fiber (2) melts and disappears, forming a film in the former case, and forming a film on the surface of the base material (4) in the latter case. or base material (4
) and (4), the composite metal fiber (1) is fused in a thin layer between them. The resulting structure exhibits excellent electromagnetic shielding properties due to the presence of the thinned or fused composite metal edge M (1) layer. Such excellent electromagnetic shielding properties cannot be obtained simply by thinning or fusing the metal fiber base (1a).

後者の場合、基材(4)の表面または基材(4)。In the latter case, the surface of the substrate (4) or the substrate (4).

(4)間のみに複合金属繊維(1)が融着しているため
、基材(4)の木来有する特性は何ら損なわれない。基
材(0がプラスチックスフィルムの如く薄いものであっ
ても、ピンホールを生ずるおそれはなく、また機械的強
度も維持される。基材(4)の表面または基材(4)、
 (4)間に融着した複合金属繊維(1)は、得られる
構造物を伸びや曲げなどを伴なう二次加工に供してもそ
の変形に追随するので、構造物の外観が損なわれること
がな。そして、基材(4)が着色あるいは透視性を有す
る場合であっても、その着色あるいは透視性をほぼ保持
することができる。
(4) Since the composite metal fiber (1) is fused only between the base material (4), the inherent characteristics of the base material (4) are not impaired in any way. Even if the base material (0) is thin like a plastic film, there is no risk of forming pinholes, and the mechanical strength is maintained.The surface of the base material (4) or the base material (4),
(4) The composite metal fiber (1) fused between will follow the deformation even if the resulting structure is subjected to secondary processing that involves elongation or bending, so the appearance of the structure will be impaired. That's not true. Even if the base material (4) is colored or has transparency, the coloring or transparency can be substantially maintained.

実施例 次に実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained with reference to Examples.

以下「%」とあるのは重量%である。Hereinafter, "%" means % by weight.

実施例1 金属繊維基体(1a)の−例としての太さ30gmのス
テンレススチール長繊維に、ニッケルによる無電解メッ
キを施して金属メッキ層(1b)を形成させ、ついでこ
れを51mm長さにカットして複合金属繊維(1)を製
造した。
Example 1 A stainless steel long fiber with a thickness of 30 gm as an example of the metal fiber substrate (1a) was subjected to electroless plating with nickel to form a metal plating layer (1b), and then cut into a length of 51 mm. A composite metal fiber (1) was produced.

この複合金属繊維(1)30%と、太さ25ル腸(約6
デニール)、長さ51mm、融点120℃のポリアミド
繊維からなる熱溶融性繊維(2)70%とを混合して、
乾式法により目付的100g/m’の均斉な不織布(3
)を製造した。製造は極めて円滑であった。
This composite metal fiber (1) 30% and a thickness of 25 ml (approximately 6
denier), 51 mm in length, and 70% of heat-melt fiber (2) made of polyamide fiber with a melting point of 120°C,
A uniform non-woven fabric (3
) was manufactured. Manufacturing was extremely smooth.

ついで、この不織布(3)をポリアミド製の厚さ801
j、mのフィルムからなる基材(4)の表面に積層し、
温度的150℃のロール群間を通して熱融着し、続いて
冷却ロール間を通したところ、熱溶融性繊維(2)は溶
融して見掛は上消失し、複合金属繊維(1)のみが基材
(4)表面に融着した目的成形物が得られた。この成形
物の表面は平滑であり、またおちついた深みのある光沢
をしてい3 4 た。
Next, this nonwoven fabric (3) is made of polyamide and has a thickness of 801 mm.
Laminated on the surface of the base material (4) consisting of films j and m,
When heat-fused by passing it between rolls at a temperature of 150°C and then passing it between cooling rolls, the heat-fusible fiber (2) melted and its appearance disappeared, leaving only the composite metal fiber (1). A desired molded product was obtained which was fused to the surface of the base material (4). The surface of this molded product was smooth and had a deep, subdued luster.

得られた成形物の減衰率(m界)は、周波数10MHz
で50dB、周波数500 MHzで35dBであり、
広い周波数にわたって良好な電磁波シールド性を有して
いた。
The damping rate (m-field) of the obtained molded product is at a frequency of 10 MHz.
50 dB at a frequency of 500 MHz, and 35 dB at a frequency of 500 MHz.
It had good electromagnetic shielding properties over a wide range of frequencies.

上記成形物を真空成形に供したときも、融着した複合金
属繊維(1)は真空成形時の伸びによく追随しており、
引きつり現象、表面の荒れ、外観の低下などのトラブル
は生じなかった。
Even when the above-mentioned molded product was subjected to vacuum forming, the fused composite metal fiber (1) closely followed the elongation during vacuum forming,
No problems such as twitching, surface roughness, or deterioration in appearance occurred.

実施例2 ニッケルに代えて銀による無電解メッキを施したほかは
実施例1を繰り返した。
Example 2 Example 1 was repeated except that electroless plating was performed with silver instead of nickel.

得られた成形物の減衰率(電界)は、周波数10 MH
z テロ 5dB、周波数500 MHzで45dBで
あった。
The attenuation rate (electric field) of the obtained molded product is at a frequency of 10 MH
z Terrorism was 5 dB and 45 dB at a frequency of 500 MHz.

実施例3 ニッケルに代えて銅による無電解メッキを施したほかは
実施例1を繰り返した。
Example 3 Example 1 was repeated except that electroless plating was performed with copper instead of nickel.

得られた成形物の減衰率(電界)は、周波数10MHz
で60dB、周波数500 MHzで40dBであった
The attenuation rate (electric field) of the obtained molded product is at a frequency of 10 MHz.
It was 60 dB at a frequency of 500 MHz, and 40 dB at a frequency of 500 MHz.

比較例1 複合金属繊維(1)に代えてニッケルメッキを施さない
ステンレススチール長繊維を用いたほかは実施例1を繰
り返した。不織布の製造は必ずしも円滑ではなく、また
得られた不織布の均斉さは実施例1に比しては劣ってい
た。
Comparative Example 1 Example 1 was repeated except that stainless steel long fibers without nickel plating were used in place of the composite metal fiber (1). The production of the nonwoven fabric was not necessarily smooth, and the uniformity of the obtained nonwoven fabric was inferior to that of Example 1.

融着後の成形物の減衰率(電界)は、周波数10MHz
で45dB、周波数500 MHzで10dBであり、
実施例1に比しては電磁波シールド性が劣っていた。
The attenuation rate (electric field) of the molded product after fusion is at a frequency of 10 MHz.
45 dB at a frequency of 500 MHz, and 10 dB at a frequency of 500 MHz.
Compared to Example 1, the electromagnetic shielding property was inferior.

この成形物の表面は、ステンレススチールの金属光沢を
そのまま残していた。
The surface of this molded product retained the metallic luster of stainless steel.

実施例4 金属繊維基体(1a)の−例としての太さ30gm、長
さ51m+aのアルミニウム短繊維にニッケルによる無
電解メッキを施して金属メッキ層(1b)を形成させ、
複合金属繊維(1)を製造した。
Example 4 An aluminum short fiber having a thickness of 30 g and a length of 51 m+a as an example of the metal fiber substrate (1a) was electrolessly plated with nickel to form a metal plating layer (1b),
A composite metal fiber (1) was produced.

この複合金属繊維(1)30%と、太さ18ル肩(約3
デニール)、長さ51m肩、融点130℃の5 6 ポリプロピレン繊維からなる熱溶融性繊維(2)70%
とを混入して、乾式法により目付約90g/m’の均斉
な不織布(3)を製造した。製造は極めて円滑であった
This composite metal fiber (1) 30% and thickness 18 ru shoulder (about 3
(denier), 51 m shoulder length, 56 polypropylene fibers with a melting point of 130°C (2) 70%
A uniform nonwoven fabric (3) with a basis weight of about 90 g/m' was produced by a dry method. Manufacturing was extremely smooth.

ついで、この不織布(3)をポリプロピレン酸のボード
からなる基材(4)の表面に積層し、檻度約160℃で
熱プレスして熱融着したところ、熱溶融性繊維(2)は
溶融して見掛け」二消失し、複合金属繊維(1)のみが
基材(4)表面に融着した目的成形物が得られた。この
成形物の表面は平滑であり、またおちついた深みのある
光沢をしていた。
Next, this nonwoven fabric (3) was laminated on the surface of a base material (4) made of a polypropylene acid board and heat-pressed and heat-fused at a temperature of about 160°C. The desired molded product was obtained in which the metal fibers (1) appeared to disappear and only the composite metal fibers (1) were fused to the surface of the base material (4). The surface of this molded product was smooth and had a deep, subdued luster.

得られた成形物の減衰率(電界)は、周波数10MHz
で45dB、周波数500 MHzで30dBであり、
広い周波数にわたって良好な電磁波シールド性を有して
いた。
The attenuation rate (electric field) of the obtained molded product is at a frequency of 10 MHz.
45 dB at a frequency of 500 MHz, and 30 dB at a frequency of 500 MHz.
It had good electromagnetic shielding properties over a wide range of frequencies.

比較例2 複合金属繊維(1)に代えてニッケルメッキを施さない
アルミニウム短繊維を用いたほかは実施例2を繰り返し
た。不織布の製造は必ずしも円滑ではなく、また得られ
た不織布の均斉さは実施例1に比しては劣っていた。
Comparative Example 2 Example 2 was repeated except that short aluminum fibers without nickel plating were used in place of the composite metal fiber (1). The production of the nonwoven fabric was not necessarily smooth, and the uniformity of the obtained nonwoven fabric was inferior to that of Example 1.

得られた成形物の減衰率(電界)は、周波数10MHz
で30dB、周波数500 M)Izで1OdBであり
、実施例4に比しては電磁波シールド性が劣っていた。
The attenuation rate (electric field) of the obtained molded product is at a frequency of 10 MHz.
It was 30 dB at a frequency of 500 M) and 1 O dB at a frequency of 500 M), and the electromagnetic shielding property was inferior to that of Example 4.

融着後の成形物の表面は、アルミニウムの金属光沢をそ
のまま残していた。
The surface of the molded product after fusion retained the metallic luster of aluminum.

実施例5 金属繊維基体(1a)の−例としての太さ30用m、長
さ51mmのステンレススチール短繊維に銅による無電
解メッキを施して金属メッキ層(1b)を形成させ、複
合金属繊維(1)を製造した。なお無電解メッキに際し
ては、メッキ浴にポリテトラフルオロエチレン微粒子を
少量共存させた。
Example 5 A stainless steel short fiber having a thickness of 30 m and a length of 51 mm as an example of the metal fiber substrate (1a) was electrolessly plated with copper to form a metal plating layer (1b), and a composite metal fiber was formed. (1) was produced. Note that during electroless plating, a small amount of polytetrafluoroethylene fine particles were allowed to coexist in the plating bath.

この複合金属繊維(1)25%と、太さ25IL層(約
6デニール)、長さ51mm、融点120℃のポリエス
テル繊維からなる熱溶融性繊維(2)75%とを混合し
て、乾式法により目付約120 g/m″の均斉な不織
布(3)を製造した。不織布(3)の7 8 製造は、実施例1の場合よりもさらに円滑であった。
25% of this composite metal fiber (1) and 75% of heat-fusible fiber (2) made of polyester fiber having a thickness of 25 IL layer (approximately 6 denier), a length of 51 mm, and a melting point of 120°C are mixed and A uniform non-woven fabric (3) with a basis weight of about 120 g/m'' was produced using the above method. The production of the non-woven fabric (3) was even smoother than that of Example 1.

ついで、この不織布(3)を射出成形機の金型内にイン
サートシ、基材(4)用のABS樹脂を用いて射出成形
を行い、パーソナルコンピューター用の筐体を成形した
Next, this nonwoven fabric (3) was inserted into a mold of an injection molding machine, and injection molding was performed using ABS resin for the base material (4) to form a casing for a personal computer.

これにより、熱溶融性繊維(2)は熱溶融して見掛は上
消失し、複合金属繊維(1)のみが基材(4)の内面に
融着した筐体が得られた。この筐体の内表面は平滑であ
り、またおちついた深みのある光沢をしていた。
As a result, the heat-fusible fiber (2) was thermally melted and its appearance disappeared, and a casing in which only the composite metal fiber (1) was fused to the inner surface of the base material (4) was obtained. The inner surface of this case was smooth and had a deep, deep luster.

得られた筐体の減衰率は実施例3とほぼ同等であった。The attenuation rate of the obtained casing was almost the same as that of Example 3.

比較例3 複合金属繊維(1)に代えて銅メッキを施さないステン
レススチール繊維を用いたほかは実施例5を繰り返した
。不織布の製造は必ずしも円滑ではなく、また得られた
不織布の均斉さは実施例5に比してはかなり劣っていた
Comparative Example 3 Example 5 was repeated except that stainless steel fiber without copper plating was used in place of the composite metal fiber (1). The production of the nonwoven fabric was not necessarily smooth, and the uniformity of the obtained nonwoven fabric was considerably inferior to that of Example 5.

この筐体の内表面は、ステンレススチールの全屈光沢を
そのまま残していた。
The inner surface of this case retains the full luster of stainless steel.

実施例6 実施例4の不織布(3)上に、グイ温度180℃で押出
された溶融状態のポリプロピレンを接触させると同時に
、押出されたポリプロピレン溶融体の背後からカバーフ
ィルムとしての厚さ80色厘のポリプロピレンフィルム
をあてがい、圧着兼冷却用のロール間を通過させた。
Example 6 A molten polypropylene extruded at a temperature of 180° C. was brought into contact with the nonwoven fabric (3) of Example 4, and at the same time a cover film of 80 colors thick was applied from behind the extruded polypropylene melt. A polypropylene film was applied and passed between rolls for pressure bonding and cooling.

これにより、熱溶融性繊維(2)は熱溶融して見掛け一
ヒ消失し、複合金属繊維(1)のみが2層構成のポリプ
ロピレンフィルムからなる基材(4)の表面に融着した
目的成形物が得られた。
As a result, the heat-fusible fibers (2) are thermally melted and their appearance disappears, and only the composite metal fibers (1) are fused to the surface of the base material (4) made of a two-layered polypropylene film. I got something.

得られた成形物の減衰率は、実施例4と同様に好ましい
ものであった。
The damping rate of the obtained molded product was as favorable as in Example 4.

実施例7 融点90℃のポリアミド繊維からなる熱溶融性繊維(2
)を用いたほかは実施例5と同様にして不織布(3)を
製造した。
Example 7 Heat-melt fiber (2
) A nonwoven fabric (3) was produced in the same manner as in Example 5, except that nonwoven fabric (3) was used.

エアーを噛む込まないように留意しながら、上記で得た
不織布(3)を2枚のポリビニルブチラー 9 0 ル膜で挟み、さらにこれを2枚のガラス板で挟んだ。引
き続きガラスの外側から加熱圧着を行い、熱溶融性繊維
(2)を溶融させてポリビニルブチラール膜と一体化さ
せた。
The nonwoven fabric (3) obtained above was sandwiched between two polyvinyl butyral membranes, and this was further sandwiched between two glass plates, taking care not to trap air. Subsequently, heat and pressure bonding was performed from the outside of the glass to melt the heat-fusible fiber (2) and integrate it with the polyvinyl butyral film.

このようにして得られた合せガラスは、広い周波数にわ
たって良好な電磁波シールド性を有していた。
The laminated glass thus obtained had good electromagnetic shielding properties over a wide range of frequencies.

比較例4、 複合金属繊維(1)に代えて銅メッキを施さないステン
レススチール繊維を用いたほかは実施例7を繰り返した
Comparative Example 4 Example 7 was repeated except that stainless steel fiber without copper plating was used instead of composite metal fiber (1).

得られた合せガラスの電磁波シールド性は、実施例7に
比しては明らかに劣っていた。
The electromagnetic shielding property of the obtained laminated glass was clearly inferior to that of Example 7.

実施例8 実施例1で得た不織布(3)2枚を重ね合せ、約150
℃で熱プレスを行ってフィルムを得た。
Example 8 Two sheets of the nonwoven fabric (3) obtained in Example 1 were stacked together and
A film was obtained by heat pressing at ℃.

得られたフィルムの電磁波シールド性は、実施例1を一
ヒ回るものであった。
The electromagnetic shielding property of the obtained film was one degree better than that of Example 1.

1

Claims (3)

【特許請求の範囲】[Claims] 1. 金属繊維基体(1a)の表面に金属メッキ層(1
b)を形成させた複合金属繊維(1)と熱溶融性繊維(
2)とからなる不織布(3)の単層または複層を、それ
自身熱圧着して薄膜化するか、基材(4)の表面または
基材(4)、(4)間に熱融着してなる電磁波シールド
性構造物。
1. A metal plating layer (1) is formed on the surface of the metal fiber base (1a).
Composite metal fiber (1) formed with b) and heat-fusible fiber (
A single layer or multiple layers of the nonwoven fabric (3) consisting of (2) and (2) are either thermocompressed to form a thin film, or heat fused on the surface of the base material (4) or between the base materials (4), (4). An electromagnetic shielding structure made of
2. 金属繊維基体(1a)が、ステンレススチール繊
維、アルミニウム繊維またほ銅繊維である請求項1記載
の構造物。
2. 2. A structure according to claim 1, wherein the metal fiber substrate (1a) is a stainless steel fiber, an aluminum fiber or a copper fiber.
3. 金属メッキ層(1b)が、ニッケル、銅、銀また
はチタンの無電解メッキ層である請求項1記載の構造物
3. 2. A structure according to claim 1, wherein the metal plating layer (1b) is an electroless plating layer of nickel, copper, silver or titanium.
JP15000889A 1989-06-12 1989-06-12 Electromagnetic shielding structure Pending JPH0313000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15000889A JPH0313000A (en) 1989-06-12 1989-06-12 Electromagnetic shielding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15000889A JPH0313000A (en) 1989-06-12 1989-06-12 Electromagnetic shielding structure

Publications (1)

Publication Number Publication Date
JPH0313000A true JPH0313000A (en) 1991-01-21

Family

ID=15487459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15000889A Pending JPH0313000A (en) 1989-06-12 1989-06-12 Electromagnetic shielding structure

Country Status (1)

Country Link
JP (1) JPH0313000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179325A1 (en) * 2016-04-11 2017-10-19 株式会社村田製作所 High frequency component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179325A1 (en) * 2016-04-11 2017-10-19 株式会社村田製作所 High frequency component
US10770223B2 (en) 2016-04-11 2020-09-08 Murata Manufacturing Co., Ltd. High frequency component

Similar Documents

Publication Publication Date Title
TWI304321B (en) Layered products, electromagnetic wave shielding molded articles and method for production thereof
US5916659A (en) Composites of fluoropolymers with thermally non-adherent non-fluoropolymers and methods for producing the same
JPH0212175B2 (en)
JPH0313000A (en) Electromagnetic shielding structure
CN107650398A (en) Assign method, composite and its manufacture method of intermediate layer electric conductivity
US3764430A (en) Method for making a metallized barrier structure or film
JPH03246999A (en) Sheet material for electromagnetic wave shielding
JP2741400B2 (en) Method for producing sheet molding for electromagnetic wave shielding
JPS6129083B2 (en)
JPH03274140A (en) Preparation of electromagnetic wave shielding plastic molded product
JPS62275727A (en) Manufacture of electromagnetic wave shielding molded item
CN212461171U (en) Conductive nano-foam
JPH0268999A (en) Conductive thermoplastic resin sheet and molding thereof
JPH088582A (en) Conductive sheet and resin molding using the same
CN216993405U (en) High-efficient thermoforming vacuum plastic film
JPH047899A (en) Sheet molding for electromagnetic-wave shielding and its manufacture
JPS6011351A (en) Thermoplastic resin impregnated fiber laminate
JPH0539673Y2 (en)
JP3100700B2 (en) Method for producing 4-methyl-pentene resin laminate film
JP2837509B2 (en) Manufacturing method of antistatic composite board
JPS61293827A (en) Manufacture of electrically conductive plastic molded body
US3565723A (en) Process for making a metal clad plastic laminate in which a metal shim is used to improve the bonding of the metal foil to the plastic layer
JPH02272799A (en) Manufacture of electromagnetic wave shielding sheet material
JPS62108054A (en) Manufacture of metallic-foil lined laminated board
JPH0226666Y2 (en)