JPH031288B2 - - Google Patents

Info

Publication number
JPH031288B2
JPH031288B2 JP55160952A JP16095280A JPH031288B2 JP H031288 B2 JPH031288 B2 JP H031288B2 JP 55160952 A JP55160952 A JP 55160952A JP 16095280 A JP16095280 A JP 16095280A JP H031288 B2 JPH031288 B2 JP H031288B2
Authority
JP
Japan
Prior art keywords
nifedipine
parts
fine
comparative example
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55160952A
Other languages
Japanese (ja)
Other versions
JPS5785316A (en
Inventor
Kazunori Togo
Atsushi Yamagata
Kozo Sasaki
Isao Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP16095280A priority Critical patent/JPS5785316A/en
Publication of JPS5785316A publication Critical patent/JPS5785316A/en
Publication of JPH031288B2 publication Critical patent/JPH031288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogenated Pyridines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はニフエジピンの易吸収性製剤の製法に
係り、更に詳細には、水溶性の医薬添加物を造粒
して得られる細粒(以下細粒担体という)をニフ
エジピンとポリビニルピロリドン(以下PVPと
いう)とからなる固溶体(solid solution)でコ
ーテイングすることを特徴とする易吸収性のニフ
エジピン細粒製剤の製法に関する。 従来の技術と発明が解決しようとする課題 ニフエジピン(ジメチル 1,4−ジハイドロ
−2,6−ジメチル−4−(2−ニトロフエニル)
−3,5−ピリジンジカルボキシレイト)は代表
的な狭心症治療剤の1つであるが、狭心症発作は
予告なしに来襲するので、患者は常に薬剤を携帯
して発作時に応急服用する必要があり、その薬剤
は服用が容易で急速かつ充分に薬効を発揮するも
のでなくてはならない。 しかしながら、ニフエジピンの常態は融点170
〜174℃の結晶であつて水に極めて難溶であり、
従つてその粉末を通常の顆粒製剤や細粒製剤とし
ても、体内吸収が不良で上記の速効性に応え得な
い。 ニフエジピンのこのような吸収不良性を改善す
るために種々の手段が提供されている。 その1つは、ニフエジピンをポリエチレングリ
コールに溶解し、この溶液をカプセルに充填する
方法(特開昭48−28621号公報参照)である。し
かし、この場合カプセル剤が比較的大型となり服
用容易とはいい難く、またその製造技術が煩雑で
ある。 一方、難吸収性の薬物を易吸収性とする一般的
手段として、難吸収性薬物をPVPやポリエチレ
ングリコール等の水溶性高分子物質に分散させ固
溶体とする方法が知れれており[例えばジヤーナ
ル・オブ・フアーマシユーテイカル・サイエンシ
イズ、第55巻、1323〜1324頁(1966年)参照]、
この固溶体法をニフエジピンに適用すると吸収性
が改善されることも明らかにされている[サー
ド・インターナシヨナル・アダラート ・シンポ
ジウム、33〜41頁(1976年)参照]。又更にニフ
エジピンとPVPとを有機溶媒(例えばメチルア
ルコール、塩化メチレン等)に溶解し、その溶液
から有機溶媒を留去して固型製剤(粉末製剤)を
得ることも提案されている(特開昭54−2316号公
報参照)。 しかしながら、これら固溶体を利用する従来の
方法は、得られる製剤の品質の点からも製造技術
の点からも充分に満足できるものではない。 すなわち、従来方法では、ニフエジピンと
PVPの有機溶媒溶液に必要に応じて結合剤およ
び賦形剤等を添加して練合し、この練合物に常法
による造粒、乾燥、粉砕、整粒等の操作を施して
目的製剤を得るのであるが、以下のとおりの欠点
ないし改良すべき点が存在する。 (1) まず従来の製剤(後記の比較例Aの製剤)の
水に対する溶解性および体内吸収性は第1図の
曲線および第1表に示されるように、未だ充
分とはいい得ない。 (2) 薬物含量の均一性と粒度分布の均一性は共に
細粒製剤の重要な要件である。細粒製剤は薬物
含量の均一な一定範囲内の形状の粒子によつて
構成されていなくてはならない。 しかるに従来法では上記要件を充足すること
が困難である効率がよくない。すなわち、 イ 従来法では練合物から有機溶媒を留去する
に際し、有機溶媒の蒸発に伴つてニフエジピ
ン固溶性が偏析するので生成物中でのニフエ
ジピン含量が不均一となる。このような生成
物を用いてニフエジピン含量の均一な細粒を
得るには多大の困難を伴う。 ロ 従来法での造粒、乾燥、粉砕等に際し得ら
れる細粒の粒度分布がブロードで相当量の規
定外の微細粒子が副生し、規定内細粒の収率
は90%を越えることが出来ない。 課題を解決するための手段 本発明の易吸収性ニフエジピン細粒製剤は下記
の工程に従つて製造される。 (第1工程) 乳糖、白糖、ブドウ糖、D−マンニトールの1
種または2種以上(以下賦型剤という)と水溶性
結合剤を用いて細粒(以下細粒担体という)を製
造する。 (第2工程) 重量比1:2〜1:5のニフエジピンとポリビ
ニルピロリドンを両者を溶解し得る有機溶媒に溶
解し溶液(以下固溶体溶液という)を製造する。 (第3工程) 第2工程で得られる固溶体溶液を第1工程で得
られる細粒上に噴霧し、乾燥することによりその
表面をニフエジピンとポリビニルピロリドンの固
溶体でコーテイングする。 以下各工程について説明する。 まず、第1工程における細粒担体および第3工
程の最終製剤である細粒は共に日本薬局方(9
局)製剤総則に定義されている粒度範囲(32号ふ
るいを通過して150号ふるいに残留するものは全
量の75%。また32号ふるいに残留するものは全量
の5%以下であり、200号ふるいを通過するもの
は全量の10%以下である。)のものであるが、本
発明はこの細粒に限定されるものではなく実質的
にこれと同等の製剤をも包含する。 さて、第1工程は、賦型剤と水溶性の結合剤例
えばヒドロキシプロピルセルロース、ヒドロキシ
メチルプロピルセルロース、ポリピニルピロリド
ン、ポリビニルアルコール、アラピアゴム、ゼラ
チンなどとを配合し、好ましくはさらにアルキル
硫酸エステル、ジアルキルスルフオサクシネート
などのアニオン性界面活性剤を配合し、常法に従
つて細粒に造粒することによつて行われる。 造粒法としては、湿式造粒法、乾式造粒法、流
動層造粒法、転動造粒法など通常用いられるもの
のいずれを適用してもよいが、流動層造粒法また
は、転動造粒法が最も好ましい。 賦形剤と結合剤の使用量は、通常の場合と同様
でよいが、さらに界面活性剤を配合する場合には
全仕込量の2〜5%程度とするのがよい。界面活
性剤は、服用時の製剤の湿潤崩壊を促進し、好ま
しい服用感を与える効果がある。 次に第2工程の固溶体溶液は、ニフエジピンと
PVPを、重量比1:2〜1:5好ましくは、
1:3の割合で、両者に共通の有機溶媒に溶解し
て調製される。 この際ニフエジピンに対するPVPの使用量が
上記範囲を下廻ると、固溶体溶液を細粒担体に噴
霧し乾燥してその表面にニフエジピン固溶体の皮
膜を形成せしめる際に、ニフエジピンが結晶状に
析出して体内吸収性を低下せしめる。 一方PVPの使用量が上記範囲を上廻る場合に
は、ニフエジピンの体内吸収性はそれほど向上せ
ず、ただ徒らに製剤の服用量が増大するので好ま
しくない。 本発明で用いるPVPとしては、平均分子量が
1万〜40万、好ましくは1万〜20万、特に好まし
くは1万〜5万のものである。 また固溶体溶液の溶媒としてはクロロホルム、
ジクロルメタン、アセトン、メタノール、エタノ
ール等が挙げられるが、特にエタノールおよびジ
クロルメタンが好ましい。固溶体溶液に用いる溶
媒の使用量は、溶媒の種類およびPVPの分子量
と使用量によつて一定しないが、通常ニフエジピ
ンを溶解するに必要な量の1.2〜1.5倍である。 続いて第3工程においては、細粒担体はニフエ
ジピン固溶体によつて正確にかつ均一にコーテイ
ングされなければならない。従つて、細粒担体を
常に流動状態に保持しつつ、これに所定量の固溶
体溶液を均一に噴霧し乾燥する。具体的には、通
常の顆粒や細粒の製造に用いられる流動層造粒
機、転動造粒機あるいは遠心流動コーテイング装
置内で噴霧コーテイング操作を施すのが好便であ
る。この場合の諸条件例えば単位時間当りの噴霧
量、処埋温度、細粒担体の流動度等は、通常の顆
粒を製造する場合の諸条件を準用することができ
る。 かかるコーテイング法の採用によつて原料の細
粒担体の破砕および相互結合を防止しつつ、所定
の量のニフエジピン固溶体で正確均一にコーテイ
ングすることができ、しかもその操作は容易で作
業効率も良好である。 上述のようにして得られる本発明の製剤は品質
的に極めて優れている。 すなわち後記第2表に示されるように粒度別の
ニフエジピン含量が均一であり、その上粒度分布
がシヤープであるから所要量のニフエジピンを正
確に投薬することができる。 次に本発明の製剤は、第1図の曲線に示され
るように水に対する溶解性に優れ、第1表に示さ
れるようにニフエジピンの体内吸収性が著しく改
善向上されている。 さらに、本発明においては細粒担体として水溶
性物質のみを用いているので服用時に不溶物を残
さないが、このことと前記粒度分布のシヤープ性
と相俟つて、本発明の製剤は服用感の極めて良好
な製剤ということができる。 本発明の第一の効果は上記のとおり優れたニフ
エジピン製剤を提供する点にあるが、さらに他の
効果として、その製剤を有効かつ正確に製造する
点にある。 すなわち、ニフエジピン固溶体と結合剤および
賦形剤を有機溶媒中で練合した後造粒、乾燥、整
粒する従来法では前述のとおり相当のロスを生じ
最終製剤の収率は一般に90%を越え得ないが、本
発明では予め製造した細粒担体をニフエジピン固
溶体でコーテイングするので造粒に伴うロスがな
く最終製剤の収率は少なくとも95%以上であり、
通常97%〜98%である。 さらに本発明では第1工程で予製された細粒担
体を固溶体溶液でコーテイングするだけで所望の
製剤が得られるため、その操作は簡単であり、し
かも常に正確に好結果を得ることができる。 以下に実施例および比較例を挙げて更に詳細に
説明する。 なお実施例中の水に対する溶出試験および血中
濃度測定は、それぞれ以下に述べる方法に従つて
行つた。また部とはすべて重量部を意味する。 [水に対する溶出試験] USPX溶出試験装置(富山産業製)と、二波
長分光光度型(日立製作所製)にとりつけたフロ
ーセルとをチユーブで連結し、溶出液をポンプで
連続的に還流する方法を用いた。 溶出液としては蒸留水500mlを用い、これを37
±0.5℃に保ちつつ4枚羽根の撹拌プロペラにて
150rpmの速度で撹拌した。 この溶出液中に、ニフエジピン50mgに相当する
試料を投入し、325nmと500nmの差吸光度を経時
的に測定して溶出量を求めた。 [血中濃度測定] 一夜絶食したビーグル犬(体重8〜12Kg)6頭
に、ニフエジピン10mgに相当する試料を経口投与
し、血中濃度を測定した。 投与後30,60,120、および240分の時点でそれ
ぞれ採血し、血漿中ニフエジピン濃度をECDガ
スクロマトグラフイーにより求めた。 実施例 1 以下のようにして、本発明例1および対応する
比較例Aと比較例Bの製剤を調製した。 本発明例 1 処方: 乳糖 930部 ヒドロキシプロピルセルロース 20部 PVP(平均分子量40000) 40部 ニフエジピン 10部 計1000部 操作:流動層造粒乾燥機[グラツトーオーカワラ
(Glatt‐OKawara)WSG−1型。以下各実施例
に於て同じ]に乳糖930部を入れ、これにヒドロ
キシプロピルセルロース20部を水500部に溶解し
た液を噴霧し、造粒、乾燥後、32メツシユの篩で
整粒し細粒担体を得た。 次に、PVP40部とニフエジピン10部をエタノ
ール600部に溶解し、この溶液を、60℃に設定し
た流動層造粒乾燥機中で、先に得た細粒担体950
部に噴霧、コーテイングし(噴霧速度100ml/
min)、乾燥後32メツシユの篩で整粒した。32メ
ツシユ残渣は強制篩過し、整粒品と混合した。 比較例 A (ニフエジピン固溶体の押し出し造粒) 処方:上記の本発明例1と同じ。 操作:乳糖930部にヒドロキシプロピルセルロー
ス20部、PVP40部およびニフエジピン10部を温
エタノール300部に溶解して加え、万能混合撹拌
機(品川工業所、8DMV−R型)にて練合後、
0.5mmのスクリーンを用いて押し出し造粒し、60
℃で棚乾燥した。 これを32メツシユの篩で整粒し32メツシユ残渣
は強制過篩し、整粒品と混合した。 なお本方法の場合、押し出し造粒中にエタノー
ルが蒸発して造粒が困難となることがしばしば認
められた為、その都度少量のエタノールを追加し
て造粒を続けた。 比較例 B (ニフエジピン結晶粉末の押し出し造粒) 処方:前記の本発明例1と同じ。 操作:乳糖930部、PVP40部およびニフエジピン
の結晶性粉末(100メツシユパス)10部の混合物
に、ヒドロキシプロピルセルロース20部を水190
部に溶解したものを加え、万能混合撹拌機にて練
合後、0.5mmのスクリーンを用いて押し出し造粒
し、60℃で棚乾燥した。これを32メツシユの篩で
整粒し、32メツシユ残渣は強制篩過して整粒品と
混合した。 さて、上記の本発明例1、比較例A、比較例B
の製剤について水に対する溶出試験を行い、結果
を第1図に示した。 第1図に於て曲線は本発明例1の製剤、曲線
は比較例Aの製剤、曲線は比較例Bの製剤の
溶出曲線をそれぞれ示す。 また、本発明例1の製剤および比較例Aの製剤
については、さらにビーグル犬への投与時の血中
濃度、製剤の粒度分布、及び粒度別のニフエジピ
ン含量の測定を行い、その結果を第1表(ニフエ
ジピン血中濃度)および第2表(粒度分布およ
び、粒度別ニフエジピン含量)に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing easily absorbable preparations of nifedipine, and more specifically, fine particles (hereinafter referred to as fine particle carriers) obtained by granulating a water-soluble pharmaceutical additive are combined with nifedipine and polyvinyl granules. The present invention relates to a method for producing an easily absorbable nifedipine fine granule preparation, which is coated with a solid solution consisting of pyrrolidone (hereinafter referred to as PVP). Prior art and problems to be solved by the invention Nifedipine (dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl))
-3,5-pyridinedicarboxylate) is one of the typical angina treatment drugs, but since angina attacks can occur without warning, patients should always carry the drug with them and take emergency medication in the event of an attack. The drug must be easy to take, rapidly and fully effective. However, nifedipine normally has a melting point of 170
It is a crystal with a temperature of ~174℃ and is extremely poorly soluble in water.
Therefore, even if the powder is made into a normal granule preparation or fine granule preparation, it is poorly absorbed in the body and cannot meet the above-mentioned rapid effect. Various measures have been proposed to improve this malabsorption property of nifedipine. One method is to dissolve nifedipine in polyethylene glycol and fill capsules with this solution (see Japanese Patent Application Laid-open No. 28621/1983). However, in this case, the capsules are relatively large and are not easy to take, and the manufacturing technology is complicated. On the other hand, as a general method for making a poorly absorbed drug easily absorbable, it is known to disperse the poorly absorbed drug in a water-soluble polymeric substance such as PVP or polyethylene glycol to form a solid solution [for example, journal of Pharmaceutical Sciences, Vol. 55, pp. 1323-1324 (1966)],
It has also been shown that absorption is improved when this solid solution method is applied to nifedipine [see Third International Adalate Symposium, pp. 33-41 (1976)]. Furthermore, it has also been proposed to obtain a solid preparation (powder preparation) by dissolving nifedipine and PVP in an organic solvent (e.g., methyl alcohol, methylene chloride, etc.) and distilling off the organic solvent from the solution (Unexamined Patent Publication No. (See Publication No. 54-2316). However, conventional methods using these solid solutions are not fully satisfactory in terms of the quality of the resulting preparations and the manufacturing technology. In other words, in the conventional method, nifedipine and
A binder and excipients are added and kneaded as necessary to an organic solvent solution of PVP, and this kneaded product is subjected to operations such as granulation, drying, pulverization, and sizing using conventional methods to form the desired product. However, there are the following drawbacks or points that should be improved. (1) First, the solubility in water and absorption in the body of the conventional formulation (formulation of Comparative Example A described later) are still not sufficient, as shown by the curve in FIG. 1 and Table 1. (2) Uniformity of drug content and uniformity of particle size distribution are both important requirements for fine particle formulations. Fine granule preparations must be composed of particles with uniform drug content and shapes within a certain range. However, the conventional method is difficult to satisfy the above requirements and is not efficient. That is, (a) In the conventional method, when the organic solvent is distilled off from the kneaded product, the solid solubility of nifedipine segregates as the organic solvent evaporates, resulting in non-uniform content of nifedipine in the product. Using such products, it is very difficult to obtain granules with uniform nifedipine content. (b) The particle size distribution of fine particles obtained during granulation, drying, pulverization, etc. using conventional methods is broad, and a considerable amount of non-specified fine particles are produced as by-products, and the yield of within-specified fine particles may exceed 90%. Can not. Means for Solving the Problems The easily absorbable nifedipine fine granule preparation of the present invention is manufactured according to the following steps. (1st step) Lactose, sucrose, glucose, D-mannitol 1
Fine particles (hereinafter referred to as fine particle carrier) are produced using a seed or two or more species (hereinafter referred to as excipient) and a water-soluble binder. (Second Step) Nifedipine and polyvinylpyrrolidone in a weight ratio of 1:2 to 1:5 are dissolved in an organic solvent capable of dissolving both to produce a solution (hereinafter referred to as a solid solution solution). (Third step) The solid solution solution obtained in the second step is sprayed onto the fine particles obtained in the first step and dried to coat the surface with the solid solution of nifedipine and polyvinylpyrrolidone. Each step will be explained below. First, both the fine particle carrier in the first step and the fine particles that are the final preparation in the third step are used in the Japanese Pharmacopoeia (9).
Particle size range defined in the General Regulations for Pharmaceutical Products (75% of the total amount passes through the No. 32 sieve and remains on the No. 150 sieve. In addition, less than 5% of the total amount remains on the No. 32 sieve, and 200 10% or less of the total amount passes through the No. sieve.) However, the present invention is not limited to these fine particles, but also includes preparations that are substantially equivalent thereto. Now, in the first step, an excipient and a water-soluble binder such as hydroxypropylcellulose, hydroxymethylpropylcellulose, polypynylpyrrolidone, polyvinyl alcohol, gum arapia, gelatin, etc. are blended, and preferably, an alkyl sulfate ester, This is carried out by blending an anionic surfactant such as dialkyl sulfosuccinate and granulating it into fine particles according to a conventional method. As the granulation method, any commonly used method such as wet granulation, dry granulation, fluidized bed granulation, or rolling granulation may be applied, but fluidized bed granulation or rolling Most preferred is the granulation method. The amounts of excipients and binders used may be the same as in the usual case, but when a surfactant is further added, it is preferably about 2 to 5% of the total amount charged. Surfactants have the effect of promoting wet disintegration of the preparation upon administration and providing a pleasant feeling of administration. Next, the solid solution solution in the second step is mixed with nifedipine.
PVP preferably in a weight ratio of 1:2 to 1:5,
Both are prepared by dissolving them in a common organic solvent at a ratio of 1:3. At this time, if the amount of PVP used for nifedipine is less than the above range, when the solid solution solution is sprayed onto the fine particle carrier and dried to form a film of nifedipine solid solution on the surface, nifedipine will precipitate in crystal form and cause in the body. Reduces absorption. On the other hand, if the amount of PVP used exceeds the above range, the absorption of nifedipine in the body will not improve much and the dosage of the preparation will increase unnecessarily, which is not preferable. The PVP used in the present invention has an average molecular weight of 10,000 to 400,000, preferably 10,000 to 200,000, particularly preferably 10,000 to 50,000. In addition, as a solvent for the solid solution solution, chloroform,
Examples include dichloromethane, acetone, methanol, ethanol, etc., with ethanol and dichloromethane being particularly preferred. The amount of solvent used in the solid solution solution varies depending on the type of solvent and the molecular weight and amount of PVP used, but is usually 1.2 to 1.5 times the amount required to dissolve nifedipine. Subsequently, in a third step, the fine-grained carrier must be precisely and uniformly coated with the nifedipine solid solution. Therefore, while maintaining the fine particle carrier in a fluid state, a predetermined amount of the solid solution solution is uniformly sprayed onto the fine particle carrier and dried. Specifically, it is convenient to carry out the spray coating operation in a fluidized bed granulator, a tumbling granulator, or a centrifugal fluid coating apparatus used for the production of ordinary granules and fine granules. Conditions in this case, such as the amount of spray per unit time, processing temperature, fluidity of the fine particle carrier, etc., can be the same as those for producing ordinary granules. By adopting such a coating method, it is possible to accurately and uniformly coat with a predetermined amount of nifedipine solid solution while preventing the fine particle carriers of the raw material from being crushed and mutually bonded. Moreover, the operation is easy and the work efficiency is good. be. The preparation of the present invention obtained as described above is extremely excellent in quality. That is, as shown in Table 2 below, the nifedipine content for each particle size is uniform, and the particle size distribution is sharp, so the required amount of nifedipine can be administered accurately. Next, the preparation of the present invention has excellent solubility in water as shown by the curve in FIG. 1, and as shown in Table 1, the absorption of nifedipine in the body has been significantly improved. Furthermore, in the present invention, only a water-soluble substance is used as a fine particle carrier, so no insoluble matter is left behind when taking it. This, combined with the sharpness of the particle size distribution mentioned above, makes the preparation of the present invention have a pleasant feeling when taken. It can be said that it is an extremely good formulation. The first effect of the present invention is that it provides an excellent nifedipine preparation as described above, but another effect is that the preparation can be manufactured effectively and accurately. In other words, the conventional method of kneading nifedipine solid solution, binder, and excipient in an organic solvent, followed by granulation, drying, and sizing results in considerable loss as mentioned above, and the yield of the final preparation generally exceeds 90%. However, in the present invention, the fine particle carrier prepared in advance is coated with the nifedipine solid solution, so there is no loss associated with granulation, and the yield of the final preparation is at least 95%.
Usually 97% to 98%. Furthermore, in the present invention, the desired formulation can be obtained simply by coating the fine particle carrier prepared in the first step with a solid solution solution, so the operation is simple and accurate results can always be obtained. A more detailed explanation will be given below with reference to Examples and Comparative Examples. In addition, the elution test for water and the blood concentration measurement in the examples were conducted according to the methods described below. In addition, all parts refer to parts by weight. [Elution test for water] A method is used in which the USPX dissolution test device (manufactured by Toyama Sangyo) is connected with a flow cell attached to a dual-wavelength spectrophotometer (manufactured by Hitachi) with a tube, and the eluate is continuously refluxed with a pump. Using. Use 500 ml of distilled water as the eluent, and add 37
Using a 4-blade stirring propeller while maintaining the temperature at ±0.5℃
Stirred at a speed of 150 rpm. A sample equivalent to 50 mg of nifedipine was added to this eluate, and the difference in absorbance between 325 nm and 500 nm was measured over time to determine the elution amount. [Blood Concentration Measurement] A sample equivalent to 10 mg of nifedipine was orally administered to six beagle dogs (weight 8 to 12 kg) that had been fasted overnight, and the blood concentration was measured. Blood was collected at 30, 60, 120, and 240 minutes after administration, and the plasma nifedipine concentration was determined by ECD gas chromatography. Example 1 Inventive Example 1 and the corresponding formulations of Comparative Examples A and B were prepared as follows. Example 1 of the present invention Formula: Lactose 930 parts Hydroxypropyl cellulose 20 parts PVP (average molecular weight 40000) 40 parts Nifedipine 10 parts Total 1000 parts Operation: Fluidized bed granulation dryer [Glatt-OKawara WSG-1 model] . 930 parts of lactose was added to a solution containing 20 parts of hydroxypropyl cellulose dissolved in 500 parts of water. After granulation and drying, the granules were sieved through a 32-mesh sieve to make them fine. A granular carrier was obtained. Next, 40 parts of PVP and 10 parts of nifedipine were dissolved in 600 parts of ethanol, and this solution was added to the previously obtained fine particle carrier 950 in a fluidized bed granulation dryer set at 60°C.
Spray and coat the area (spray rate 100ml/
min), and after drying, it was sieved through a 32-mesh sieve. 32 The mesh residue was forced through a sieve and mixed with the sized product. Comparative Example A (Extrusion granulation of nifedipine solid solution) Prescription: Same as inventive example 1 above. Procedure: To 930 parts of lactose, add 20 parts of hydroxypropylcellulose, 40 parts of PVP, and 10 parts of nifedipine dissolved in 300 parts of warm ethanol, and after kneading with a universal mixer (Shinagawa Kogyo, Model 8DMV-R),
Extrusion granulation using a 0.5 mm screen, 60
Shelf dried at °C. This was sieved using a 32-mesh sieve, and the 32-mesh residue was forcibly sieved and mixed with the sized product. In the case of this method, it was often observed that ethanol evaporated during extrusion granulation, making granulation difficult, so granulation was continued by adding a small amount of ethanol each time. Comparative Example B (Extrusion granulation of nifedipine crystal powder) Prescription: Same as Example 1 of the present invention. Procedure: In a mixture of 930 parts of lactose, 40 parts of PVP and 10 parts of crystalline powder of nifedipine (100 ml), add 20 parts of hydroxypropyl cellulose to 190 parts of water.
After kneading with a multipurpose mixer, the mixture was extruded and granulated using a 0.5 mm screen, and dried on a shelf at 60°C. This was sized using a 32 mesh sieve, and the 32 mesh residue was forced through the sieve and mixed with the sized product. Now, the above-mentioned invention example 1, comparative example A, and comparative example B
A water dissolution test was conducted on the formulation, and the results are shown in FIG. In FIG. 1, the curve shows the dissolution curve of the formulation of Inventive Example 1, the curve shows the dissolution curve of the formulation of Comparative Example A, and the curve shows the dissolution curve of the formulation of Comparative Example B, respectively. Furthermore, for the formulation of Invention Example 1 and Comparative Example A, the blood concentration at the time of administration to beagle dogs, the particle size distribution of the formulation, and the nifedipine content by particle size were measured, and the results were reported in the first It is shown in Table (Blood concentration of Nifedipine) and Table 2 (Particle size distribution and Nifedipine content by particle size).

【表】【table】

【表】 理論含有率は1%である。
第1図から明らかな通り、本発明方法によつて
得られる製剤(本発明1、曲線)は、水に対す
る溶出性が極めて良好であつて、製剤中のニフエ
ジピンは数分以内にほぼ100%溶出し、しかも飽
和濃度(約10μg/ml)の約10倍にも及ぶ高濃度
(過飽和状態)を安定に保持するが、一方従来法
による製剤(比較例A、曲線)の場合は、ニフ
エジピンは僅かにその1/2程度が溶出するのみで
あり、溶出後も直ちに難溶性の結晶として析出す
る傾向が認められる。 このような両製剤の差異は、それらの体内吸収
性、即ちビーグル犬への投与時の血中濃度(第1
表)にも明確に現われており、本発明例1の製剤
では、ニフエジピンは投与後速やかに高い血中濃
度に達し、血中濃度曲線下面積(AUC)も充分
な値を示すのに対し、従来法(比較例A)の場合
は、有効な治療効果を期待できるだけの血中濃度
に到達しない。 さらに第2表に示されるように、本願発明の細
粒剤は均一性(粒度分布、ニフエジピン含量分
布)において極めて優れている。 すなわち、まず粒度分布において、本発明例1
の製剤は、200メツシユ通過分が2%と少なく、
日本薬局方製剤総則の細粒剤規格(32メツシユ
残;5%以下、32〜150メツシユ残;75%以上、
200メツシユ通過;10%以下)に完全に合格する
ので、全量(100%)が合格品となる。 これに対して比較例Aの製剤は、200メツシユ
通過分が21%と多く、細粒剤規格に合格しない。
そこで、細粒剤規格に合格するためには、200メ
ツシユ通過分を少なくとも約11%除去しなければ
ならず、合格品は90%を越え得ない。 次に、ニフエジピン含量の分布においても本発
明例1の製剤が優れている。 第2表に示されるように、ニフエジピンは200
メツシユ通過分のような微粉末に高濃度に偏在す
る傾向がある。本発明例1の製剤では200メツシ
ユ通過分が少なく、かつニフエジピン含量はそう
高くないので、製剤全体としてのニフエジピン含
量分布は均一性に優れている。 これに対して、比較例Aの製剤では200メツシ
ユ通過分が21%と多く、かつこの部分のニフエジ
ピン含量率が高いので、この部分にニフエジピン
が多量に偏在し、その結果32〜150メツシユ分の
ニフエジピン含量が少なくなり、製剤全体として
のニフエジピン含量分布が極めて不均一である。 実施例 2 本願発明の特に第2工程におけるニフエジピン
とPVPの使用比に関し以下に本発明例2、本発
明例3およびそれらに対応する比較例Cと比較例
Dの製剤を調製した。 本発明例2および3 実施例1の本発明例1と同様にして、乳糖750
部、D−マンニトール200部及びヒドロキシプロ
ピルメチルセルロース30部からなる細粒担体を調
製した。 この担体に、ニフエジピンとPVP(平均分子量
40000)を20部:40部(本発明例2および20部:
60部(本発明例3)の量比でエタノール1000部に
溶解した溶液をニフエジピン含量が2%となるよ
うに流動層造粒乾燥機を用いて噴霧、コーテイン
グし(温度60℃、噴霧速度100ml/min)乾燥後
32メツシユの篩で整粒した。32メツシユ残渣は強
制篩過し整粒品と混合した。 比較例Cおよび比較例D ニフエジピンとPVPを20部:0部(比較例C)
および20部:30部(比較例D)の量比で使用する
以外は本発明例2と同様にして細粒剤を得た。 上記の4種の細粒剤について、水に対する溶出
性を調べ、結果を第2図に示した。 第2図に於て、曲線〜は、それぞれ、本発
明例2(曲線)、本発明例3(曲線)、比較例C
(曲線)および比較例D(曲線)の製剤すなわ
ちニフエジピンとPVPとを20:40、20:60、
20:0及び20:30(部)の割合で溶解した溶液で
コーテイングして得られた製剤の溶出曲線を表わ
す。 第2図から明らかな通り、本発明の製剤(本発
明例2および3)はきわめて高いニフエジピンの
溶出性を示すが、ニフエジピンに対するPVPの
使用量が、2倍に達しない場合(比較例C、比較
例D)には、安定な固溶体皮膜は形成され難くニ
フエジピンの溶出性が低下する。 実施例 3 本願発明の特に第3工程について、実施例1の
本発明例1における噴霧乾燥法に代えて他のコー
テイング法により本発明の製剤を調製した。 すなわち、実施例1の本発明例1と同様の組成
からなる細粒担体950部に、PVP(平均分子量
40000)40部とニフエジピン10部をジクロルメタ
ン500部に溶解した溶液を、以下の方法を用いて
コーテイングした。 本発明例 4 流動層造粒乾燥機によるコーテイング; 温度を40℃とし、噴霧速度を80ml/minとする
ほかは実施例1の本発明例1と同様にしてコーテ
イング、整粒した。 本発明例 5 遠心流動コーテイング装置によるコーテイン
グ; 細粒担体950部を遠心流動コーテイング装置に
入れ、温度40℃、噴霧速度25ml/minで上記の溶
液を噴霧しコーテイングし、乾燥後32メツシユの
篩で整粒した。32メツシユ残渣は強制篩過し、整
粒品と混合した。 以上の本発明例4及び5で得られた製剤につい
て水に対する溶出試験を実施し、結果を第3図に
示した。第3図において、曲線およびは、そ
れぞれ、本発明例4(曲線)および本発明例5
(曲線)の製剤におけるニフエジピンの溶出曲
線を示す。第3図から明らかなように、これら本
発明の製剤はいずれも優れたニフエジピンの溶出
性を示した。
[Table] The theoretical content is 1%.
As is clear from Figure 1, the preparation obtained by the method of the present invention (invention 1, curve) has extremely good dissolution properties in water, with almost 100% of nifedipine dissolving in the preparation within a few minutes. Moreover, it stably maintains a high concentration (supersaturated state) that is approximately 10 times the saturation concentration (approximately 10 μg/ml), whereas in the case of the formulation made by the conventional method (Comparative Example A, curve), nifedipine is only slightly Only about 1/2 of the amount is eluted, and even after elution, there is a tendency to immediately precipitate as poorly soluble crystals. The difference between these two formulations lies in their absorption in the body, that is, the blood concentration (first
It is clearly shown in Table 1 that in the formulation of Example 1 of the present invention, nifedipine quickly reaches a high blood concentration after administration, and the area under the blood concentration curve (AUC) also shows a sufficient value. In the case of the conventional method (Comparative Example A), the blood concentration does not reach a level at which an effective therapeutic effect can be expected. Further, as shown in Table 2, the fine granules of the present invention are extremely excellent in uniformity (particle size distribution, nifedipine content distribution). That is, first, in the particle size distribution, Invention Example 1
For this formulation, the amount passing through 200 meshes is as low as 2%.
Japanese Pharmacopoeia's general regulations for fine granules (32 meshes remaining; 5% or less; 32-150 meshes remaining; 75% or more;
200 meshes (10% or less), the entire quantity (100%) is a passing product. On the other hand, the formulation of Comparative Example A had a large amount of 21% passing through 200 meshes, and did not pass the fine granule specification.
Therefore, in order to pass the fine granule specification, at least about 11% of the amount passing through 200 meshes must be removed, and a passing product cannot exceed 90%. Next, the formulation of Example 1 of the present invention is also excellent in the distribution of nifedipine content. As shown in Table 2, nifedipine is 200
It tends to be unevenly distributed in high concentrations in fine powders such as those that pass through the mesh. In the formulation of Example 1 of the present invention, the amount passing through 200 meshes is small and the nifedipine content is not so high, so the nifedipine content distribution as a whole formulation is excellent in uniformity. On the other hand, in the formulation of Comparative Example A, the amount that passed through 200 meshes was as high as 21%, and the nifedipine content rate in this area was high, so a large amount of nifedipine was unevenly distributed in this area, and as a result, the amount that passed through 32 to 150 meshes was high. The nifedipine content is low and the nifedipine content distribution as a whole formulation is extremely non-uniform. Example 2 Regarding the usage ratio of nifedipine and PVP in the second step of the present invention, formulations of Invention Example 2, Invention Example 3, and corresponding Comparative Example C and Comparative Example D were prepared below. Invention Examples 2 and 3 In the same manner as Invention Example 1 of Example 1, lactose 750
A fine particle carrier was prepared consisting of 200 parts of D-mannitol and 30 parts of hydroxypropyl methylcellulose. Nifedipine and PVP (average molecular weight
40000): 20 parts: 40 parts (Invention Example 2 and 20 parts:
A solution prepared by dissolving 60 parts (invention example 3) in 1000 parts of ethanol was sprayed and coated using a fluidized bed granulation dryer so that the nifedipine content was 2% (temperature 60°C, spray rate 100ml). /min) After drying
The grains were sorted using a 32 mesh sieve. 32 The mesh residue was forced through a sieve and mixed with the sized product. Comparative Example C and Comparative Example D Nifedipine and PVP 20 parts:0 parts (Comparative Example C)
A fine granule was obtained in the same manner as in Inventive Example 2, except that the ratio of 20 parts to 30 parts (Comparative Example D) was used. The above four types of fine granules were examined for their dissolution properties in water, and the results are shown in Figure 2. In FIG. 2, curves ~ are respectively Invention Example 2 (curve), Invention Example 3 (curve), and Comparative Example C.
(curve) and the formulation of Comparative Example D (curve) i.e. nifedipine and PVP at 20:40, 20:60,
The dissolution curves of the formulations obtained by coating with solutions dissolved in the ratio of 20:0 and 20:30 (parts) are shown. As is clear from FIG. 2, the preparations of the present invention (Inventive Examples 2 and 3) exhibit extremely high dissolution of nifedipine, but when the amount of PVP used does not reach twice that of nifedipine (Comparative Example C, In Comparative Example D), a stable solid solution film was difficult to form and the dissolution of nifedipine was reduced. Example 3 Particularly regarding the third step of the present invention, a formulation of the present invention was prepared by using another coating method instead of the spray drying method in Example 1 of the present invention. That is, PVP (average molecular weight
40000) and 10 parts of nifedipine dissolved in 500 parts of dichloromethane were coated using the following method. Invention Example 4 Coating using a fluidized bed granulation dryer: Coating and granulation were carried out in the same manner as in Invention Example 1 of Example 1, except that the temperature was 40° C. and the spray rate was 80 ml/min. Example 5 of the present invention Coating using a centrifugal fluid coating device: 950 parts of the fine particle carrier was placed in a centrifugal fluid coating device, and the above solution was sprayed and coated at a temperature of 40°C and a spraying rate of 25 ml/min. After drying, the coating was passed through a 32 mesh sieve. The grains were sorted. 32 The mesh residue was forced through a sieve and mixed with the sized product. A water dissolution test was conducted on the formulations obtained in Examples 4 and 5 of the present invention, and the results are shown in FIG. In FIG. 3, the curve and the curve represent Invention Example 4 (curve) and Invention Example 5, respectively.
(Curve) shows the dissolution curve of nifedipine in the formulation. As is clear from FIG. 3, all of these formulations of the present invention exhibited excellent nifedipine dissolution properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、いずれも製剤のニフエジピ
ン溶出試験結果を示す線図であり、第1図は本発
明例1、比較例Aおよび比較例Bのデータ、第2
図は本発明例2および3、比較例Cおよび比較例
Dのデータ、第3図は本発明例4および5のデー
タを示す。
Figures 1 to 3 are diagrams showing the nifedipine dissolution test results of the preparations; Figure 1 shows the data of Invention Example 1, Comparative Example A, and Comparative Example B;
The figures show data for Inventive Examples 2 and 3, Comparative Example C and Comparative Example D, and FIG. 3 shows data for Inventive Examples 4 and 5.

Claims (1)

【特許請求の範囲】 1 下記の製造工程: (第1工程) 乳糖、白糖、ブドウ糖、D−マンニトールの1
種または2種以上と水溶性結合剤を用いて細粒を
製造する、 (第2工程) 重量比1:2〜1:5のニフエジピンとポリビ
ニルピロリドンとを両者を溶解し得る有機溶媒に
溶解し溶液を製造する、 (第3工程) 第2工程で得られる溶液を第1工程で得られる
細粒上に噴霧し、乾燥することによりその表面を
ニフエジピンとポリビニルピロリドンの固溶体で
コーテイングする、 ことを特徴とする易吸収性ニフエジピン細粒製剤
の製造方法。
[Claims] 1 The following manufacturing process: (1st step) 1 of lactose, sucrose, glucose, D-mannitol
Produce fine granules using the seed or two or more and a water-soluble binder. (Second step) Dissolve nifedipine and polyvinylpyrrolidone in a weight ratio of 1:2 to 1:5 in an organic solvent that can dissolve both. Producing a solution (3rd step) The solution obtained in the 2nd step is sprayed onto the fine particles obtained in the 1st step, and the surface is coated with a solid solution of nifedipine and polyvinylpyrrolidone by drying. A method for producing a characterized easily absorbable nifedipine fine granule preparation.
JP16095280A 1980-11-14 1980-11-14 Preparation of easily absorbable nifedipine preparation Granted JPS5785316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16095280A JPS5785316A (en) 1980-11-14 1980-11-14 Preparation of easily absorbable nifedipine preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16095280A JPS5785316A (en) 1980-11-14 1980-11-14 Preparation of easily absorbable nifedipine preparation

Publications (2)

Publication Number Publication Date
JPS5785316A JPS5785316A (en) 1982-05-28
JPH031288B2 true JPH031288B2 (en) 1991-01-10

Family

ID=15725741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16095280A Granted JPS5785316A (en) 1980-11-14 1980-11-14 Preparation of easily absorbable nifedipine preparation

Country Status (1)

Country Link
JP (1) JPS5785316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432392B2 (en) 2003-08-29 2008-10-07 Japan Tobacco Inc. Ester derivatives and medical use thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846019A (en) * 1981-09-14 1983-03-17 Kanebo Ltd Nifedipine preparation with prolonged action
DE3318649A1 (en) * 1983-05-21 1984-11-22 Bayer Ag, 5090 Leverkusen TWO-PHASE FORMULATION
DE3419129A1 (en) * 1984-05-23 1985-11-28 Bayer Ag, 5090 Leverkusen NIFEDIPINE PREPARATIONS AND METHOD FOR THE PRODUCTION THEREOF
EP0175671A1 (en) * 1984-08-23 1986-03-26 Kuhlemann & Co. Pharmaceutical preparation and method for the administration of this pharmaceutical preparation
DE3438830A1 (en) * 1984-10-23 1986-04-30 Rentschler Arzneimittel PHARMACEUTICAL FORM CONTAINING NIFEDIPIN AND METHOD FOR THE PRODUCTION THEREOF
DE3440288A1 (en) * 1984-11-05 1986-05-07 Gergely, Gerhard, Dr.-Ing., Wien PHARMACEUTICAL PREPARATION WITH A CONTENT OF AT LEAST ONE Mucous-irritating SUBSTANCE OR THE LIKE, PARTICULARLY PROFESSIONALS, AND METHOD FOR THE PRODUCTION THEREOF
JPH0667824B2 (en) * 1988-03-30 1994-08-31 友昭 福田 Microcapsule manufacturing method
DK0580860T4 (en) * 1991-04-16 2005-03-21 Nippon Shinyaku Co Ltd Process for preparing a solid dispersion
JP4644397B2 (en) * 2001-09-05 2011-03-02 信越化学工業株式会社 Method for producing pharmaceutical solid preparation containing poorly soluble drug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283916A (en) * 1976-01-02 1977-07-13 Beecham Group Ltd Medical composition for aural administration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283916A (en) * 1976-01-02 1977-07-13 Beecham Group Ltd Medical composition for aural administration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432392B2 (en) 2003-08-29 2008-10-07 Japan Tobacco Inc. Ester derivatives and medical use thereof

Also Published As

Publication number Publication date
JPS5785316A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
DE69636864T2 (en) MEDIUM FOR ORAL ADMINISTRATION
US6511681B2 (en) Aqueous solubility pharmaceutical formulations
AU782282B2 (en) Pharmaceutical composition containing fenofibrate and preparation method
JP3265680B2 (en) Oral pharmaceutical composition
CA2317106C (en) Method and composition of an oral preparation of itraconazole
US4344934A (en) Therapeutic compositions with enhanced bioavailability
US20010048946A1 (en) Solid pharmaceutical dosage forms in form of a particulate dispersion
EP0012523B2 (en) Therapeutic compositions with enhanced bioavailability and process for their preparation
NZ245483A (en) Process for preparing a solid dispersion of romglizone
EP1291014A1 (en) A process for producing a pharmaceutical solid preparation containing a poorly soluble drug
JPS63165318A (en) Light-stable nifedipin concentrate and manufacture
JPH031288B2 (en)
JP2879905B2 (en) Composition for oral administration containing ibuprofen
JPH0328404B2 (en)
JPH029007B2 (en)
JPH0920663A (en) Controlled release granule containing ibudilast and its production
JPH05255075A (en) Production of taste-modifying peroral composition
KR101060885B1 (en) Benidipine hydrochloride-containing pharmaceutical composition
EP2953615B1 (en) Solid dispersion comprising amorphous cilostazol
JP2000516601A (en) Granules containing water-soluble compounds and cellulose
JP3494321B2 (en) Dry syrup of theophylline sustained release microcapsules and method for producing the same
US4804540A (en) Process for preparing the combination products of triamterene and hydrochlorothiazide
JPH0347124A (en) Oral absorption drug
EP0381174B1 (en) Process for the manufacture of solid pharmaceutical preparations
JPH02206A (en) Novel drug preparation containing exifone and water-soluble polymeric compound