JPH03121751A - Preciseness measuring device for machine motion - Google Patents

Preciseness measuring device for machine motion

Info

Publication number
JPH03121751A
JPH03121751A JP25528189A JP25528189A JPH03121751A JP H03121751 A JPH03121751 A JP H03121751A JP 25528189 A JP25528189 A JP 25528189A JP 25528189 A JP25528189 A JP 25528189A JP H03121751 A JPH03121751 A JP H03121751A
Authority
JP
Japan
Prior art keywords
rotating shaft
shaft
motion
attitude control
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25528189A
Other languages
Japanese (ja)
Other versions
JPH07121498B2 (en
Inventor
Kunio Hara
邦夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP1255281A priority Critical patent/JPH07121498B2/en
Publication of JPH03121751A publication Critical patent/JPH03121751A/en
Publication of JPH07121498B2 publication Critical patent/JPH07121498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the preciseness of the circular motion due to relative biaxial motion of a spindle with table accurately in a short time without machining a work actually, by allowing a displacement measuring means to measure the periphery of a master gauge always from the radial direction when the spindle is making circular motion in the area to the table. CONSTITUTION:A displacement sensing means 6 rotates round a master gauge 9 and senses the displacement in the radial direction always. The master gauge 9 is mounted on the housing 2 for a rotary shaft 2a, i.e., at the fixation part. Therefore, no error due to rotation will be generated to ensure measuring the displacement of circular motion due to relative biaxial motion of the spindle 1 with table precisely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は工作機械や三次元測定機などの機械の主軸とテ
ーブルとの間の相対的な2軸移動による円運動の精度を
測定する運動精度測定装置に閏する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a motion that measures the accuracy of circular motion by relative two-axis movement between the main axis and table of a machine such as a machine tool or a three-dimensional measuring machine. Use precision measuring equipment.

〔従来の技術〕[Conventional technology]

工作機械の工具主軸とワークテーブルとの間の相対的な
2軸移動による円運動、り精度を測定する場合、従来は
ワークを実際に切削し、そのワークを別の場所に移動し
、その真円度を物体形状測定用の真円度測定装置により
実測していた。こうして工作機械の円運動の精度を評価
したり、工作機械を動作させる円運動プログラムの補正
等を行っていた。
When measuring circular motion accuracy due to relative two-axis movement between the tool spindle and worktable of a machine tool, conventionally the workpiece was actually cut, the workpiece was moved to another location, and the true Circularity was actually measured using a roundness measuring device for measuring object shapes. In this way, the accuracy of the circular motion of machine tools was evaluated and the circular motion programs used to operate the machine tools were corrected.

また精機学会発行の雑誌「精密機械」昭和60年6月号
の第148ページから第154ページに記載のとおり、
工作機械や三次元測定機などで、直接的に主軸とテーブ
ルとの間の相対的な円運動精度を測定する装置として、
主軸及びテーブルに球面座を設け、両端に球を有した測
定バーを両球面座にマグネットで吸着させ相対的円運動
を行わせ、測定バー内部に組み込まれたひずみゲージに
より、測定バーが拘束されて円運動する際に発生するひ
ずみから主軸とテーブルとの間の刻々の変位量を測定す
るようにしたものがある。
Also, as stated on pages 148 to 154 of the June 1985 issue of the magazine "Precision Machinery" published by the Japan Society of Precision Machinery,
As a device that directly measures the relative circular motion accuracy between the spindle and table in machine tools, coordinate measuring machines, etc.
A spherical seat is provided on the main shaft and table, and a measuring bar with balls at both ends is attracted to both spherical seats using a magnet to perform relative circular motion.The measuring bar is restrained by a strain gauge built into the measuring bar. There is a system that measures the momentary displacement between the main shaft and the table from the strain that occurs when the table moves in a circular motion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来方式では、まず前者の場合、■−度の測
定にワークの切削と真円度の実測という2工程が必要で
あり、条件を何度が変えて測定する場合には非常に工数
を必要とする。
In this conventional method, first of all, in the former case, two steps are required to measure the -degree: cutting the workpiece and actually measuring the roundness, and it takes a lot of man-hours to measure the roundness by changing the conditions many times. Requires.

■カッタ半径がゼロではないので、工具主軸の運動軌跡
そのものが被切削面に転写される訳ではなく、特に、X
−Y軸の象限切り換え時に発生するスティックモーショ
ンと工具主軸の挙動関係については正確に評価できない
■Since the cutter radius is not zero, the motion locus of the tool spindle itself is not transferred to the cutting surface, and in particular,
- It is not possible to accurately evaluate the relationship between the stick motion that occurs when switching quadrants on the Y-axis and the behavior of the tool spindle.

等の問題があった。There were other problems.

また後者の従来技術は、 ■マグネットによる吸着手段を有した球面座や、両端に
球を有し、ひずみゲージを内蔵した特殊な測定バーを必
要とし、製作がむすがしく、高価である。
Furthermore, the latter conventional technology requires (1) a spherical seat with a magnetic attraction means and a special measuring bar with balls at both ends and a built-in strain gauge, making it difficult and expensive to manufacture;

■測定バーの両端は球面座で拘束されているので、通常
、測定バーには傾きが生じてしまい、そのコサインエラ
ーを補正しないと変位が求まらないというめんどうがあ
る。
■Since both ends of the measuring bar are restrained by spherical seats, the measuring bar usually tilts, and the displacement cannot be determined unless the cosine error is corrected.

等の問題があった。There were other problems.

本発明の目的は、機械の主軸とテーブルとの間の相対的
な2軸移動による円運動の精度を、ワークを実際に切削
することなく、また安価で、取扱いの簡単な装置で迅速
かつ高精度に測定することが可能な運動精度測定装置を
提供することにある。
The purpose of the present invention is to quickly and highly improve the accuracy of circular motion by relative two-axis movement between the main axis of the machine and the table without actually cutting the workpiece, and with an inexpensive and easy-to-handle device. An object of the present invention is to provide a motion accuracy measuring device that can measure accurately.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、主軸側の回転軸とテーブル側の回転軸との間
に姿勢制御軸を掛は渡し、主軸とテーブルとの間で相対
的円運動を行わせたとき、変位測定手段が常にラジアル
方向から円運動の変位を測定可能にしたものである。詳
述すると、第1の発明は、主軸とテーブルとの間の相対
的な2軸移動による円運動の運動精度を測定する運動精
度測定装置において、前記主軸側に設けた回転軸と、該
回転軸と略平行に前記テーブル側に設けた回転軸と、一
方の回転軸が他方の回転軸周りに常に同一点が向き合っ
て相対的に前記円運動を行うように一方の回転軸に固定
され、他方の回転軸とはラジアル方向にのみ移動可能に
係合された姿勢制御軸と、該姿勢制御軸を固定した回転
軸又はその姿勢制御軸に設けられた変位測定手段と、前
記姿勢制御軸が移動可能に係合される回転軸のハウジン
グに該回転軸と同軸に固定された円形のマスクゲージと
を具備し、前記主軸が前記テーブルとの間で前記円運動
を行ったとき、前記変位測定手段が前記マスタゲージの
外周を常にラジアル方向から測定することを特徴とする
もの、または、主軸とテーブルとの間の相対的な2軸移
動による円運動の運動精度を測定する運動精度測定装置
において、前記主軸側に設けた回転軸と、該回転軸と略
平行に前記テーブル側に設けた回転軸と、一方の回転軸
が他方の回転軸周りに常に同一点が向き合って相対的に
前記円運動を行うように一方の回転軸に固定され、他方
の回転軸とはラジアル方向にのみ移動可能に係合された
姿勢制御軸と、該姿勢制御軸が移動可能に係合された回
転軸に設けられた変位測定手段と、前記姿勢制御軸が固
定された回転軸のハウジングに該回転軸と同軸に固定さ
れた円形のマスタゲージとを具備し、前記主軸が前記テ
ーブルとの間で前記円運動を行ったとき、前記変位測定
手段が前記マスタゲージの外周を常にラジアル方向から
測定することを特徴とするものである。更に第2の発明
は、主軸とテーブルとの間の相対的な2軸移動による円
運動の運動精度を測定する運動精度測定装置において、
前記主軸側に設けた回転軸と、該回転軸と略平行に前記
テーブル側に設けた回転軸と、一方の回転軸が他方の回
転軸周りに常に同一点が向き合って相対的に前記円運動
を行うように一方の回転軸に固定され、他方の回転軸と
はラジアル方向にのみ移動可能に係合された姿勢制御軸
と、該姿勢制御軸が移動可能に係合された回転軸に設け
られた変位測定手段と、前記姿勢制御軸を固定した回転
軸又はその姿勢制御軸に設けられ、前記変位測定手段が
変位を測定する基準面を有した基準ブロックとを具備し
、前記主軸が前記テーブルとの間で前記円運動を行うと
き、前記変位測定手段が前記基準ブロックに対し常に同
一姿勢で対面して測定することを特徴とするもの、また
は、主軸とテーブルとの間の相対的な2軸移動による円
運動の運動精度を測定する運動精度測定装置において、
前記主軸側に設けた回転軸と、該回転軸と略平行に前記
テーブル側に設けた回転軸と、一方の回転軸が他方の回
転軸周りに常に同一点が向き合って前記円運動を行うよ
うに一方の回転軸に固定され、他方の回転軸とはラジア
ル方向にのみ移動可能に係合された姿勢制御軸と、該姿
勢制御軸を固定した回転軸又はその姿勢制御軸に設けら
れた変位測定手段と、前記姿勢制御軸が移動可能に係合
された回転軸に設けられ、前記変位測定手段が変位を測
定する基準面を有した基準ブロックとを具備し、前記主
軸が前記テーブルとの間で前記円運動を行うとき、前記
変位測定手段が前記基準ブロックに対し常に同一姿勢で
対面して測定することを特徴とするものである。
In the present invention, the attitude control axis is interposed between the rotation axis on the spindle side and the rotation axis on the table side, and when a relative circular movement is performed between the spindle and the table, the displacement measuring means is always in the radial direction. This makes it possible to measure displacement in circular motion from any direction. Specifically, the first invention provides a motion accuracy measurement device that measures the motion accuracy of circular motion by relative two-axis movement between a spindle and a table, including a rotation axis provided on the spindle side, a rotating shaft provided on the table side substantially parallel to the axis; and one rotating shaft is fixed to the other rotating shaft so that the same point always faces the other rotating shaft and performs the circular motion relative to the other rotating shaft, An attitude control axis that is movably engaged with the other rotation axis only in the radial direction, a rotation axis to which the attitude control axis is fixed, or a displacement measuring means provided on the attitude control axis, and the attitude control axis a circular mask gauge fixed coaxially to the rotary shaft housing movably engaged with the rotary shaft; and when the main shaft performs the circular movement with the table, the displacement is measured. A motion accuracy measuring device characterized in that the means always measures the outer circumference of the master gauge from the radial direction, or a motion accuracy measuring device that measures the motion precision of circular motion by relative two-axis movement between the main axis and the table. , a rotating shaft provided on the main shaft side, a rotating shaft provided on the table side substantially parallel to the rotating shaft, and one rotating shaft is always facing the same point around the other rotating shaft, and the rotating shaft is relatively aligned with the above-mentioned circle. an attitude control shaft that is fixed to one rotating shaft so as to perform a motion and is movably engaged with the other rotating shaft only in the radial direction; and a rotating shaft that is movably engaged with the other rotating shaft; a circular master gauge fixed coaxially to a housing of a rotating shaft to which the attitude control shaft is fixed; When the movement is performed, the displacement measuring means always measures the outer circumference of the master gauge from the radial direction. Furthermore, a second invention is a motion accuracy measuring device for measuring the motion precision of circular motion due to relative two-axis movement between a main shaft and a table,
A rotating shaft provided on the main shaft side, a rotating shaft provided on the table side substantially parallel to the rotating shaft, and one rotating shaft is always facing the same point around the other rotating shaft, and the circular movement is performed relative to the other rotating shaft. an attitude control shaft that is fixed to one rotating shaft and is movably engaged with the other rotating shaft only in the radial direction; and a reference block provided on a rotating shaft to which the attitude control axis is fixed or a reference block provided on the attitude control axis and having a reference surface on which the displacement measurement means measures the displacement, When performing the circular movement with the table, the displacement measuring means always faces the reference block in the same posture and performs the measurement, or the relative displacement between the main shaft and the table is In a motion accuracy measurement device that measures the motion precision of circular motion by two-axis movement,
A rotating shaft provided on the main shaft side, and a rotating shaft provided on the table side substantially parallel to the rotating shaft, so that one rotating shaft always faces the same point around the other rotating shaft to perform the circular motion. an attitude control shaft that is fixed to one rotating shaft and movably engaged with the other rotating shaft only in the radial direction, and a rotating shaft to which the attitude control shaft is fixed or a displacement provided on the attitude control shaft and a reference block provided on a rotating shaft movably engaged with the attitude control shaft and having a reference surface on which the displacement measuring means measures displacement, the main shaft being connected to the table. When performing the circular motion between the two, the displacement measuring means always faces the reference block in the same posture and measures the displacement.

〔作 用〕[For production]

前記第1の発明では、前記変位検出手段が前記マスクゲ
ージの周囲を回動し、常にラジアル方向の変位を検出す
ることができる。マスタゲージは、回転軸のハウジング
、すなわち固定部に取付けられているので、回転による
誤差が発生せず高い精度で円運動の変位が測定できる。
In the first invention, the displacement detecting means rotates around the mask gauge and can always detect displacement in the radial direction. Since the master gauge is attached to the housing of the rotating shaft, that is, the fixed part, the displacement of circular motion can be measured with high accuracy without errors caused by rotation.

また、前記第2の発明では、前記変位検出手段が前記基
準ブロックに対し常に同一姿勢で対面して変位を測定で
き、特にマスタゲージを製作する必要がない。
Furthermore, in the second aspect of the invention, the displacement detecting means can always face the reference block in the same posture and measure displacement, and there is no need to particularly manufacture a master gauge.

〔実施例〕〔Example〕

第1図は第1の発明の実施例の要部構成図である。第1
図において、1は工作機械の工具主軸、1aはテーバシ
ャンクを介して工具主軸1に装着されるチャック、2は
チャック1dに把持され、回転軸2aを内蔵するハウジ
ング、2bは回転軸2aをハウジング2に回転支持する
ベアリング、2Cはシール、3は回転軸2aの下部の2
股部4に水平に差し込んでねじ止めされ、円運動の半径
に応じてその軸方向にスライド調節可能に固定される姿
勢制御軸、6は姿勢制御軸3の下部にねし止めされた固
定ブロック5により取付けられ、微調整ねじ3aによっ
て姿勢制御軸線方向に進退自在になった無線式マイクロ
メータ、7は無線式マイクロメータ6の先端の測定子、
8は無線式マイクロメータ6の送信アンテナ、10は真
円度が予め保証された円運動の基準となるマスタゲージ
9を外周に形成したハウジング、10aは、ベアリング
10bによってハウジング10に回転支持され、主軸側
の回転軸2aと平行に設けられたテーブル側の回転軸、
10cはシール、10dは回転軸10aの先端の軸溝で
あって姿勢制御軸3を該姿勢制御軸3の軸方向にのみ摺
動自在に受入れるもの、11はハウジング10を機械の
テーブルT上に固定するベース、12は位相検出板12
aを介して回転軸10aの回転位相を検出する位相検出
用近接スイッチである。
FIG. 1 is a diagram showing the main part of an embodiment of the first invention. 1st
In the figure, 1 is a tool spindle of a machine tool, 1a is a chuck attached to the tool spindle 1 via a taber shank, 2 is a housing gripped by the chuck 1d and contains a rotating shaft 2a, and 2b is a housing for connecting the rotating shaft 2a to a housing 2. 2C is a seal, and 3 is a bearing 2 at the bottom of the rotating shaft 2a.
A posture control shaft is inserted horizontally into the crotch portion 4 and fixed with a screw so that it can be slid in the axial direction according to the radius of circular motion. 6 is a fixed block screwed to the bottom of the posture control shaft 3. 5 is a wireless micrometer attached and can be moved forward and backward in the attitude control axis direction by means of a fine adjustment screw 3a; 7 is a measuring tip at the tip of the wireless micrometer 6;
8 is a transmitting antenna of the wireless micrometer 6; 10 is a housing having a master gauge 9 formed on its outer periphery as a reference for circular motion whose roundness is guaranteed in advance; 10a is rotatably supported by the housing 10 by a bearing 10b; A rotation axis on the table side provided parallel to the rotation axis 2a on the main shaft side,
10c is a seal, 10d is a shaft groove at the tip of the rotary shaft 10a which allows the attitude control shaft 3 to be slidably received only in the axial direction of the attitude control shaft 3, and 11 is a shaft groove for placing the housing 10 on the table T of the machine. Base to be fixed, 12 is phase detection plate 12
This is a phase detection proximity switch that detects the rotational phase of the rotary shaft 10a via a.

このような構成において、工具主軸1とマスクゲージ9
を取付けたテーブルTとの間で相対的な2軸移動による
円運動を行わせ、その時の円運動の精度を同時に回動す
るマイクロメータ6の測定子7をマスクゲージ9の外周
に接触させて測定し、その変位を無線式マイクロメータ
の送信アンテナ8から送信する。このように、有線式で
はなく無線式にすることにより、何回転分もの円運動の
データを連続して測定することができる。
In such a configuration, the tool spindle 1 and the mask gauge 9
A circular motion is performed by relative two-axis movement between the mask gauge and the table T on which it is attached, and the accuracy of the circular motion at that time is checked by simultaneously contacting the measuring tip 7 of the micrometer 6 that rotates with the outer periphery of the mask gauge 9. The displacement is measured and transmitted from the transmitting antenna 8 of the wireless micrometer. In this way, by using a wireless method instead of a wired method, it is possible to continuously measure circular motion data for many rotations.

姿勢制御軸3はハウジング10の軸溝10d内を半径方
向に自在に摺動し、がつ測定子7への負荷とならないよ
うに装着して常に半径方向の変位を測定できるようにな
っている。従って、マイクロメータ6の測定子7の変位
方向が常にマスタゲージ9の中心方向に向くように機能
し、また、この姿勢制御軸3の固定位置を変えることに
より工具主軸1の円運動の回転半径を容易に変えること
ができる。そして、マイクロメータ6は回転軸2aに直
接的に取付けられていても測定することは可能であるが
、姿勢制御軸3に取付けられている方が、回転半径を変
える場合、姿勢制御軸3と一体で半径調整ができ便利で
ある。
The attitude control shaft 3 freely slides in the radial direction within the shaft groove 10d of the housing 10, and is mounted so as not to put a load on the gauge head 7, so that displacement in the radial direction can always be measured. . Therefore, the displacement direction of the probe 7 of the micrometer 6 always points toward the center of the master gauge 9, and by changing the fixed position of the posture control shaft 3, the rotation radius of the circular motion of the tool spindle 1 can be adjusted. can be easily changed. Although it is possible to measure even if the micrometer 6 is attached directly to the rotation axis 2a, it is better to attach it to the attitude control axis 3 when changing the rotation radius. It is convenient because the radius can be adjusted all in one piece.

また、位相検出用近接スイッチ12は、検出孔(マーカ
)12bを4個等配に設けた位相検出板12aを介して
工具主軸1のX−Y平面における円運動の象限切換わり
の回転位置(回転角度θ)を検出するものである。
Further, the phase detection proximity switch 12 detects the rotational position of the quadrant switching of the circular motion of the tool spindle 1 in the X-Y plane ( The rotation angle θ) is detected.

ここでマスタゲージ9が主軸側のハウジング2に設けら
れ、マイクロメータ6がテーブル側の回転軸10aに設
けられていてもよく、又、姿勢制御軸3の一端が、回転
軸10aに固定されて、他端が回転軸2aの下端部の2
股溝に摺動自在に係合していてもよい。
Here, the master gauge 9 may be provided in the housing 2 on the main shaft side, the micrometer 6 may be provided on the rotating shaft 10a on the table side, and one end of the attitude control shaft 3 may be fixed to the rotating shaft 10a. , the other end is 2 at the lower end of the rotating shaft 2a.
It may be slidably engaged with the crotch groove.

第2図は第2の発明の実施例の要部構成図である。ここ
で、第1図と同様の構成要素には同一の参照番号を付す
。第2区において、13は姿勢制御軸3の所定位置に調
整自在に固定される被測定面用基準ブロック、14は前
記被測定面用基準ブロック13に対向して所定間隔で回
転軸10aの上部に配置される変位計、15は変位計1
4の信号線を受けるロータリーコネクタであって変位計
14の回転位置によらず接続可能とするものである。
FIG. 2 is a diagram showing the main parts of an embodiment of the second invention. Here, the same reference numerals are given to the same components as in FIG. 1. In the second section, 13 is a reference block for a surface to be measured that is adjustable and fixed at a predetermined position on the attitude control shaft 3, and 14 is an upper part of the rotating shaft 10a facing the reference block 13 for a surface to be measured at a predetermined interval. 15 is displacement meter 1
This is a rotary connector that receives the signal line No. 4, and allows connection regardless of the rotational position of the displacement meter 14.

このような構成において、工具主軸1とテーブルTとの
間で相対的な2軸移動による円運動を行うときに、この
円運動の変位を被測定面用基準ブロック13と変位計1
4との間のギャップの変化として据え、変位計14の出
力をロータリーコネクタ15を介して出力する。この場
合、ロータリーコネクタ15の使用により何回転分もの
円運動データを連続して測定することができる。
In such a configuration, when a circular motion is performed by relative two-axis movement between the tool spindle 1 and the table T, the displacement of this circular motion is measured by the reference block 13 for the surface to be measured and the displacement meter 1.
4, and the output of the displacement meter 14 is outputted via the rotary connector 15. In this case, by using the rotary connector 15, circular motion data for many rotations can be continuously measured.

前述のように姿勢制御軸3により常に半径方向の変位の
み測定でき、かつ被測定面用基準ブロック13を取付け
な姿勢制御軸3を回転軸2aの下部4に固定する位置を
スライドすることによって工具主軸1の円運動の回転半
径を容易に変えることができる。
As mentioned above, only the displacement in the radial direction can always be measured using the attitude control axis 3, and the position where the attitude control axis 3 is fixed to the lower part 4 of the rotating shaft 2a can be adjusted without attaching the reference block 13 for the surface to be measured. The radius of rotation of the circular motion of the main shaft 1 can be easily changed.

ここで基準ブロック13が回転軸10aに設けられ、回
転軸2a側の姿勢制御軸3に変位計14が設けられてい
てもよい。又、姿勢制御軸3の一端が回転軸10aに固
定されて、他端が回転軸2aの下端部の2股溝に摺動自
在に係合していてもよい。
Here, the reference block 13 may be provided on the rotating shaft 10a, and the displacement meter 14 may be provided on the attitude control shaft 3 on the rotating shaft 2a side. Alternatively, one end of the attitude control shaft 3 may be fixed to the rotating shaft 10a, and the other end may be slidably engaged in a bifurcated groove at the lower end of the rotating shaft 2a.

第3図は第1図の装置の運動精度測定装置の概略システ
ム構成図である。送信アンテナ8の信号をうけるループ
アンテナ16を送信アンテナ8の近値で、かつマスクゲ
ージ9の外周のマイクロメータ6の回転運動の邪魔にな
らないような適切な場所に設け、信号線により受信機1
7に受け、例えば、オシロスコープ18により波形観察
を行う。更に近接スイッチ12による円運動の象限の切
換わり位置信号と合わせて、パソコン19で演算し、真
円度表示をペンレコーダ20に記録したり、パソコン1
9に画面表示したりすることができるようになっている
FIG. 3 is a schematic system configuration diagram of the motion accuracy measuring device of the device shown in FIG. A loop antenna 16 that receives the signal from the transmitting antenna 8 is installed near the transmitting antenna 8 and at an appropriate location so as not to interfere with the rotational movement of the micrometer 6 on the outer periphery of the mask gauge 9.
7, the waveform is observed using, for example, an oscilloscope 18. Furthermore, the computer 19 calculates the circular motion quadrant switching position signal from the proximity switch 12, records the roundness display on the pen recorder 20, and records the circularity display on the pen recorder 20.
9 can be displayed on the screen.

また、第2図の有線式による場合にはロータリーコネク
タ15から信号線により受信機17で受け、後処理は同
様に行う。なお、円運動の象限の切換わり位置信号を近
接スイッチ12を用いず、NC装置(図示せず)が発す
るX、Y軸の指令値の正負符号の切換わりタイミングか
ら検出する方法もある。
In the case of the wired system shown in FIG. 2, the signal is received by the receiver 17 via a signal line from the rotary connector 15, and post-processing is performed in the same way. There is also a method of detecting the quadrant switching position signal of the circular motion without using the proximity switch 12 from the switching timing of the positive and negative signs of the X and Y axis command values issued by the NC device (not shown).

第4図は真円度測定の手順を示すフローチャートである
。本図は第1図の発明の場合である。先ず、ベース11
を機械テーブルT上にクランプ治具にて固定する(ステ
ップ1)。この場合、ベース11に取付けた近接スイッ
チの位置を特定するため、ベース11の外周の一部分に
平坦部を設け、この平坦部とX軸とが平行になるように
する。次にループアンテナ16を所定位置に配置し、受
信機17と接続する(2)。次にマスタゲージ9の中心
と工具主軸1の中心を一致させるべく、X、Y軸の送り
量を調節して、心出しを行う(3)。次に工具主軸1に
装着したチャック1aにハウジング2をセットし、工具
主軸1が回転しないようクランプしておく(4)。次に
マスタゲージ9の中心から工具主軸1の円運動の半径R
だけ工具主軸1を、X軸方向またはY軸方向にNC装置
(図示せず)の送り軸カウンタを見ながら移動させる(
5〉。次に工具主軸1の円運動プログラムをプログラミ
ングする(6)。
FIG. 4 is a flowchart showing the procedure for measuring roundness. This figure shows the case of the invention shown in FIG. First, base 11
is fixed on the machine table T using a clamp jig (step 1). In this case, in order to specify the position of the proximity switch attached to the base 11, a flat portion is provided on a portion of the outer periphery of the base 11, and this flat portion is made parallel to the X axis. Next, the loop antenna 16 is placed at a predetermined position and connected to the receiver 17 (2). Next, in order to align the center of the master gauge 9 with the center of the tool spindle 1, centering is performed by adjusting the feed amounts of the X and Y axes (3). Next, the housing 2 is set on the chuck 1a attached to the tool spindle 1, and the tool spindle 1 is clamped so that it does not rotate (4). Next, the radius R of the circular motion of the tool spindle 1 from the center of the master gauge 9
Move the tool spindle 1 in the X-axis direction or Y-axis direction while watching the feed axis counter of the NC device (not shown).
5〉. Next, a circular motion program for the tool spindle 1 is programmed (6).

次にZ軸を送って回転軸10aの軸溝10dに姿勢制御
軸3を係合し、さらにマイクロメータ6をその測定子7
がマスタゲージ9の外周に接触する直前まで姿勢制御軸
3を移動させ回転軸2aの2股部4に固定する(7)。
Next, the Z-axis is sent to engage the attitude control shaft 3 in the shaft groove 10d of the rotating shaft 10a, and the micrometer 6 is further inserted into its measuring tip 7.
The attitude control shaft 3 is moved until just before it contacts the outer periphery of the master gauge 9 and is fixed to the bifurcated portion 4 of the rotating shaft 2a (7).

次に受信機17を見ながら測定子7をマスクゲージ9の
外周に接触させ、受信機17の針が中央に位置するよう
に微調整ねじ3aで調整してからマイクロメータ6を固
定ブロック5に固定する(8)。
Next, while looking at the receiver 17, touch the probe 7 to the outer periphery of the mask gauge 9, adjust with the fine adjustment screw 3a so that the needle of the receiver 17 is located in the center, and then place the micrometer 6 on the fixed block 5. Fix it (8).

次に、円運動プログラムをスタートさせる(9)。Next, start the circular motion program (9).

工具主軸1の円運動により測定子7の変位がループアン
テナ16に受信され受信8!17を介してオシロスコー
プ18により波形を観察する(10)。
The displacement of the probe 7 due to the circular motion of the tool spindle 1 is received by the loop antenna 16, and the waveform is observed by the oscilloscope 18 via the receiver 8!17 (10).

第5図はオシロスコープによる表示波形例である。縦軸
は測定子7により検出された実測変位である。ΔRは、
X、Y軸のサーボ遅れにより発生する円運動半径の減少
量である。円運動は+Xから開始され、十X → −Y
 → −X →+Y → +X と時計廻りに一周して
円運動が終了する。−Y、−X、+Yで見られるヒゲ形
状は象限切り換え時に発生するスティックモーションで
あり、その量を最小にするように円運動プログラムに反
映させることができる。
FIG. 5 is an example of a waveform displayed by an oscilloscope. The vertical axis is the actual displacement detected by the probe 7. ΔR is
This is the amount of decrease in the radius of circular motion caused by servo delays on the X and Y axes. The circular motion starts from +X and moves from 10X → −Y
→ -X → +Y → +X, and the circular motion completes one rotation clockwise. The whisker shapes seen in -Y, -X, and +Y are stick motions that occur when switching quadrants, and can be reflected in the circular motion program to minimize the amount of stick motion.

第1の実施例は、マスタゲージ9がテーブルTに固定さ
れたハウジング10に設けられているので、回転軸10
aの回転誤差の影響を受けず、精度の高い測定ができる
。第2の実施例は、真円度の保証されたマスクゲージ9
を必要とせず、単なる基準ブロック13を用意しさえば
良く、より安価な構成となっている。又、両実施例共、
無線又はロータリーコネクタで測定信号を外部に取り出
せるようになっているので、複数回転させて、円運動速
度が安定した定常状態時の運動精度が測定可能である。
In the first embodiment, since the master gauge 9 is provided in the housing 10 fixed to the table T, the rotating shaft 10
Highly accurate measurement is possible without being affected by the rotation error of a. The second embodiment is a mask gauge 9 with guaranteed roundness.
It is not necessary to prepare a simple reference block 13, resulting in a cheaper configuration. In addition, in both embodiments,
Since the measurement signal can be taken out via a wireless or rotary connector, it is possible to perform multiple rotations and measure the motion accuracy in a steady state where the circular motion speed is stable.

なお、本発明の装置は、主軸が回転しない工作機械や三
次元測定機の主軸とテーブルとの間の相対的2軸移動に
より円運動精度の測定にも用いることができるし、立形
主軸の機械でも、横形主軸の機械でも同様に用いること
ができる。
The device of the present invention can also be used to measure circular motion accuracy by relative two-axis movement between the spindle and table of machine tools and coordinate measuring machines whose spindles do not rotate, and can also be used to measure circular motion accuracy by relative two-axis movement between the spindle and table of machine tools or coordinate measuring machines in which the spindle does not rotate. It can be similarly used in machines with horizontal spindles.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば機械の主軸とテー
ブルとの間の相対的な2軸移動による円運動の精度を、
ワークを実際に切削することなく、短時間に精度よく測
定できる。また特別な測定器を用いず、通常市販されて
いる変位測定器を用い、常に円運動のラジアル方向から
変位を測定するように構成したので、安価で取扱いの簡
単な運動精度測定装置が得られる。
As explained above, according to the present invention, the accuracy of circular motion due to relative two-axis movement between the main axis of the machine and the table can be improved.
Measurements can be made quickly and accurately without actually cutting the workpiece. In addition, since the structure is configured to always measure displacement from the radial direction of circular motion using a commercially available displacement measuring device without using a special measuring device, an inexpensive and easy-to-handle motion accuracy measuring device can be obtained. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明の実施例の要部構成図、第2図は第
2の発明の実施例の要部構成図、第3図は第1図の装置
のシステム構成図、第4図は第1図の装置による真円度
測定の手順を示すフローチャート、及び 第5図は本発明の出力波形例である。 (符号の説明) 1・・・工具主軸、   2・・・ハウジング、2a・
・・回転軸、   3・・・姿勢制御軸、6・・・無線
式マイクロメータ、 7・・・測定子、    8・・・送信アンテナ、9・
・・マスタゲージ、 10・・・ハウジング、10a・
・・回転軸、   11・・・ベース12・・・近接ス
イッチ、 13・・・被測定用基準ブロック、 14・・・変位計、    15・・・ロータリーコネ
クタ。 第 2 図 処 図 第 図
FIG. 1 is a block diagram of the main parts of the embodiment of the first invention, FIG. 2 is a block diagram of the main parts of the embodiment of the second invention, FIG. 3 is a system block diagram of the apparatus of FIG. 1, and FIG. This figure is a flowchart showing the procedure for measuring roundness using the apparatus shown in FIG. 1, and FIG. 5 is an example of the output waveform of the present invention. (Explanation of symbols) 1... Tool spindle, 2... Housing, 2a.
...Rotation axis, 3.Attitude control axis, 6.Wireless micrometer, 7.Measure head, 8.Transmission antenna, 9.
...Master gauge, 10...Housing, 10a.
... Rotating axis, 11... Base 12... Proximity switch, 13... Reference block for measurement, 14... Displacement meter, 15... Rotary connector. 2nd illustration

Claims (1)

【特許請求の範囲】 1、主軸とテーブルとの間の相対的な2軸移動による円
運動の運動精度を測定する運動精度測定装置において、
前記主軸側に設けた回転軸と、該回転軸と略平行に前記
テーブル側に設けた回転軸と、一方の回転軸が他方の回
転軸周りに常に同一点が向き合って相対的に前記円運動
を行うように一方の回転軸に固定され、他方の回転軸と
はラジアル方向にのみ移動可能に係合された姿勢制御軸
と、該姿勢制御軸を固定した回転軸又はその姿勢制御軸
に設けられた変位測定手段と、前記姿勢制御軸が移動可
能に係合される回転軸のハウジングに該回転軸と同軸に
固定された円形のマスタゲージとを具備し、前記主軸が
前記テーブルとの間で前記円運動を行ったとき、前記変
位測定手段が前記マスタゲージの外周を常にラジアル方
向から測定することを特徴とした機械の運動精度測定装
置。 2、主軸とテーブルとの間の相対的な2軸移動による円
運動の運動精度を測定する運動精度測定装置において、
前記主軸側に設けた回転軸と、該回転軸と略平行に前記
テーブル側に設けた回転軸と、一方の回転軸が他方の回
転軸周りに常に同一点が向き合つて相対的に前記円運動
を行うように一方の回転軸に固定され、他方の回転軸と
はラジアル方向にのみ移動可能に係合された姿勢制御軸
と、該姿勢制御軸が移動可能に係合された回転軸に設け
られた変位測定手段と、前記姿勢制御軸が固定された回
転軸のハウジングに該回転軸と同軸に固定された円形の
マスタゲージとを具備し、前記主軸が前記テーブルとの
間で前記円運動を行ったとき、前記変位測定手段が前記
マスタゲージの外周を常にラジアル方向から測定するこ
とを特徴とした機械の運動精度測定装置。 3、主軸とテーブルとの間の相対的な2軸移動による円
運動の運動精度を測定する運動精度測定装置において、
前記主軸側に設けた回転軸と、該回転軸と略平行に前記
テーブル側に設けた回転軸と、一方の回転軸が他方の回
転軸周りに常に同一点が向き合って相対的に前記円運動
を行うように一方の回転軸に固定され、他方の回転軸と
はラジアル方向にのみ移動可能に係合された姿勢制御軸
と、該姿勢制御軸が移動可能に係合された回転軸に設け
られた変位測定手段と、前記姿勢制御軸を固定した回転
軸又はその姿勢制御軸に設けられ、前記変位測定手段が
変位を測定する基準面を有した基準ブロックとを具備し
、前記主軸が前記テーブルとの間で前記円運動を行うと
き、前記変位測定手段が前記基準ブロックに対し常に同
一姿勢で対面して測定することを特徴とした機械の運動
精度測定装置。 4、主軸とテーブルとの間の相対的な2軸移動による円
運動の運動精度を測定する運動精度測定装置において、
前記主軸側に設けた回転軸と、該回転軸と略平行に前記
テーブル側に設けた回転軸と、一方の回転軸が他方の回
転軸周りに常に同一点が向き合って前記円運動を行うよ
うに一方の回転軸に固定され、他方の回転軸とはラジア
ル方向にのみ移動可能に係合された姿勢制御軸と、該姿
勢制御軸を固定した回転軸又はその姿勢制御軸に設けら
れた変位測定手段と、前記姿勢制御軸が移動可能に係合
された回転軸に設けられ、前記変位測定手段が変位を測
定する基準面を有した基準ブロックとを具備し、前記主
軸が前記テーブルとの間で前記円運動を行うとき、前記
変位測定手段が前記基準ブロックに対し常に同一姿勢で
対面して測定することを特徴とした機械の運動精度測定
装置。
[Claims] 1. A motion accuracy measurement device that measures the motion precision of circular motion due to relative two-axis movement between a main shaft and a table,
A rotating shaft provided on the main shaft side, a rotating shaft provided on the table side substantially parallel to the rotating shaft, and one rotating shaft is always facing the same point around the other rotating shaft, and the circular movement is performed relative to the other rotating shaft. an attitude control shaft that is fixed to one rotating shaft and movably engaged with the other rotating shaft only in the radial direction; and a circular master gauge fixed coaxially to a housing of a rotating shaft to which the attitude control shaft is movably engaged, the main shaft being between the main shaft and the table. When the circular motion is performed, the displacement measuring means always measures the outer circumference of the master gauge from the radial direction. 2. In a motion accuracy measurement device that measures the motion precision of circular motion due to relative two-axis movement between the main axis and the table,
A rotation axis provided on the main shaft side, a rotation axis provided on the table side approximately parallel to the rotation axis, and one rotation axis is always facing the same point around the other rotation axis, and the rotation axis is relatively connected to the circle. an attitude control shaft that is fixed to one rotating shaft so as to perform a motion and is movably engaged with the other rotating shaft only in the radial direction; and a rotating shaft that is movably engaged with the other rotating shaft; a circular master gauge fixed coaxially to a housing of a rotating shaft to which the attitude control shaft is fixed; A motion accuracy measuring device for a machine, wherein the displacement measuring means always measures the outer circumference of the master gauge from the radial direction when the machine moves. 3. In a motion accuracy measurement device that measures the motion precision of circular motion due to relative two-axis movement between the main axis and the table,
A rotating shaft provided on the main shaft side, a rotating shaft provided on the table side substantially parallel to the rotating shaft, and one rotating shaft is always facing the same point around the other rotating shaft, and the circular movement is performed relative to the other rotating shaft. an attitude control shaft that is fixed to one rotating shaft and is movably engaged with the other rotating shaft only in the radial direction; and a reference block provided on a rotating shaft to which the attitude control axis is fixed or a reference block provided on the attitude control axis and having a reference surface on which the displacement measurement means measures the displacement, An apparatus for measuring motion accuracy of a machine, characterized in that when performing the circular motion with a table, the displacement measuring means always faces the reference block in the same posture for measurement. 4. In a motion accuracy measurement device that measures the motion precision of circular motion due to relative two-axis movement between the main axis and the table,
A rotating shaft provided on the main shaft side, and a rotating shaft provided on the table side substantially parallel to the rotating shaft, so that one rotating shaft always faces the same point around the other rotating shaft to perform the circular motion. an attitude control shaft that is fixed to one rotating shaft and movably engaged with the other rotating shaft only in the radial direction, and a rotating shaft to which the attitude control shaft is fixed or a displacement provided on the attitude control shaft and a reference block provided on a rotating shaft movably engaged with the attitude control shaft and having a reference surface on which the displacement measuring means measures displacement, the main shaft being connected to the table. An apparatus for measuring motion accuracy of a machine, characterized in that when performing the circular motion between the two, the displacement measuring means always faces the reference block in the same posture for measurement.
JP1255281A 1989-10-02 1989-10-02 Machine motion accuracy measuring device Expired - Lifetime JPH07121498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255281A JPH07121498B2 (en) 1989-10-02 1989-10-02 Machine motion accuracy measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255281A JPH07121498B2 (en) 1989-10-02 1989-10-02 Machine motion accuracy measuring device

Publications (2)

Publication Number Publication Date
JPH03121751A true JPH03121751A (en) 1991-05-23
JPH07121498B2 JPH07121498B2 (en) 1995-12-25

Family

ID=17276575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255281A Expired - Lifetime JPH07121498B2 (en) 1989-10-02 1989-10-02 Machine motion accuracy measuring device

Country Status (1)

Country Link
JP (1) JPH07121498B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196410A (en) * 1992-01-21 1993-08-06 Makino Milling Mach Co Ltd Method and device ofr measuring accuracy in circular motion of machine
JP2005335055A (en) * 2004-04-28 2005-12-08 Nissan Motor Co Ltd Apparatus and method for machining circular bore
JP2006326786A (en) * 2005-05-27 2006-12-07 Nippei Toyama Corp Device for measuring rotary motion accuracy of machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480229B1 (en) * 2013-06-12 2015-01-09 경북대학교 산학협력단 Center mounting apparatus and ballbar system having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130152A (en) * 1985-11-30 1987-06-12 Osaka Kiko Co Ltd Method and device for measuring accuracy of feed in machine tool
JPH01129050U (en) * 1988-02-26 1989-09-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130152A (en) * 1985-11-30 1987-06-12 Osaka Kiko Co Ltd Method and device for measuring accuracy of feed in machine tool
JPH01129050U (en) * 1988-02-26 1989-09-04

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196410A (en) * 1992-01-21 1993-08-06 Makino Milling Mach Co Ltd Method and device ofr measuring accuracy in circular motion of machine
JP2005335055A (en) * 2004-04-28 2005-12-08 Nissan Motor Co Ltd Apparatus and method for machining circular bore
JP4697393B2 (en) * 2004-04-28 2011-06-08 日産自動車株式会社 Circular hole processing apparatus and processing method
JP2006326786A (en) * 2005-05-27 2006-12-07 Nippei Toyama Corp Device for measuring rotary motion accuracy of machine

Also Published As

Publication number Publication date
JPH07121498B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US10145682B2 (en) Reduction of errors of a rotating device used during the determination of coordinates of a workpiece or during the machining of a workpiece
EP2287688B1 (en) Method of machine tool calibration
US4080741A (en) Measuring apparatus
EP3134707B1 (en) Calibration of measurement probes
JPH07109361B2 (en) Indexing mechanism
EP0258471A1 (en) Method and device to measure motion errors of NC machine tools
JPH05256602A (en) Calibrating and measuring apparatus
US5461797A (en) Object measuring system
CN101249618A (en) Machine tool having workpiece reference position setting function by contact detection
CN112008496A (en) Method and system for measuring position of machine tool object
JP2831610B2 (en) measuring device
JPH03121751A (en) Preciseness measuring device for machine motion
JPH0671691B2 (en) Machining position coordinate system correction device
EP4276408A1 (en) Method for measuring orthogonality of orthogonal axis system
JP7266511B2 (en) POSITION MEASURING METHOD OF OBJECT IN MACHINE TOOL, POSITION MEASURING SYSTEM, AND POSITION MEASURING PROGRAM
JP2023010002A (en) Machine tool error identification method, error identification program, and machine tool
EP3418682B1 (en) Measuring method using touch probe
JP2010260119A (en) Method of automatically measuring correction value of spindle or attachment spindle
JPH0545921Y2 (en)
JPH0463665A (en) Inclination angle measuring method for slant hole machining device
Tsutsumi et al. New measuring method of circular movement of NC machine tools: Development of alternative method for standardization
JP3008828B2 (en) Method and apparatus for measuring distance between opposing surfaces in slit
JPS60177848A (en) Correction of original point in nc machine tool
JPS61260966A (en) Machine tool with automatic measuring function
JPH0691486A (en) Interpolation feeding accuracy measuring method and device of numerical control machine tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14