JPH03120509A - Light deflector - Google Patents

Light deflector

Info

Publication number
JPH03120509A
JPH03120509A JP25920789A JP25920789A JPH03120509A JP H03120509 A JPH03120509 A JP H03120509A JP 25920789 A JP25920789 A JP 25920789A JP 25920789 A JP25920789 A JP 25920789A JP H03120509 A JPH03120509 A JP H03120509A
Authority
JP
Japan
Prior art keywords
lens
light source
laser light
laser beam
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25920789A
Other languages
Japanese (ja)
Inventor
Takao Matsunami
松浪 隆夫
Tsutomu Hamada
力 浜田
Masahiro Nakashiro
正裕 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25920789A priority Critical patent/JPH03120509A/en
Publication of JPH03120509A publication Critical patent/JPH03120509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To provide a large amount of displacement with high accuracy with a high frequency by combining an electromagnetic actuator which displaces a lens located at a laser beam source or between the laser beam source and a deflecting means in an optical axial direction with a piezoelectric actuator which displaces the laser beam source or the lens in a subscan direction. CONSTITUTION:A laser beam from the laser beam source 10 is reflected on a rotary polygonal mirror 20 via the lens 14, and is image-formed on a plane to be scanned. The large amount of displacement can be obtained with a low driving force by limiting movable parts in the optical axial direction to only the lens 14, a lens holder 20, and a coil 21, and furthermore, setting a resonance point in the optical axial direction of an optical axial direction supporting spring 15 in the neighborhood of the driving frequency of the lens 14. Also, the amount of displacement is small in the subscan direction, however, the lens is driven integrally with the movable part in the optical axial direction and a supporting body 16, therefore, it is possible to efficiently displace the lens in the subscan direction with a supporting spring 18 in the subscan direction by mounting a laminate type piezoelectric element 17 with a large driving force on the supporting body 16.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は例えばレーザプリンターやレーザ複写機におけ
るレーザ光を偏向手段で走査する光偏向装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical deflection device for scanning a laser beam using a deflection means in, for example, a laser printer or a laser copying machine.

従来の技術 従来より、レーザ光源を用いた偏向装置が知られている
。第4図は、公知のレーザプリンタ用の偏向装置を示す
攻勢図である。同図において、レーザ光源1から射出さ
れたレーザビームはコリメータレンズ2を通って、偏向
手段としての回転多面鏡3により反射され、トーリック
面を有するfθレンズ群4により感光体ドラム等の被走
査面5に結像される。
2. Description of the Related Art Deflection devices using laser light sources have been known. FIG. 4 is a schematic diagram showing a known deflection device for a laser printer. In the figure, a laser beam emitted from a laser light source 1 passes through a collimator lens 2, is reflected by a rotating polygon mirror 3 serving as a deflecting means, and is transmitted to a scanned surface such as a photoreceptor drum by an fθ lens group 4 having a toric surface. 5.

fθレンズ群4はレーザビームが被走査面上を等速に走
査できるようにすると共に常に被走査面上に結像させる
働きをも持っている。また、回転多面鏡3の倒れによる
レーザビームの副走査方向(走査方向と直角に交わる方
向)のぶれもこのfθレンズ群4で補正される。
The fθ lens group 4 allows the laser beam to scan the surface to be scanned at a constant speed, and also functions to always form an image on the surface to be scanned. In addition, the fθ lens group 4 corrects blurring of the laser beam in the sub-scanning direction (direction perpendicular to the scanning direction) due to the tilting of the rotating polygon mirror 3.

しかし、fθレンズ群4のように光学素子を増やすこと
はコスト、組立精度の面で問題があった。また、fθレ
ンズ群4では走査方向及び副走査方向の変動をすべて補
正することは不可能であるという問題を有していた。
However, increasing the number of optical elements like the fθ lens group 4 poses problems in terms of cost and assembly accuracy. Furthermore, the fθ lens group 4 has a problem in that it is impossible to correct all fluctuations in the scanning direction and the sub-scanning direction.

このため、例えば特開昭59−116603号に開示さ
れているようなレンズあるいはレーザ光源を直接変位さ
せる方式が考えられていた。以下図面を参照しながら説
明する。第5図は、光源移動アクチュエータの構成断面
図である。6はレンズ、7はレーザ光源、8はレーザ光
源7がほぼ中央付近に取り付けられた可動部である。第
6図は、可動部8の要部を示す斜視図である。可動部8
には圧電素子9が取り付けられたてる。外部から圧電素
子9に駆動電圧を印加し、圧電素子9に伸縮が起こるの
を利用してレーザ光源7を光軸方向に変位させ、被走査
面に常に結像させるようにしている。上述した光源移動
アクチュエータによりfθレンズ群の主要機能の一つで
ある結像位置誤差の補正が達成できる。
For this reason, a method of directly displacing a lens or a laser light source has been considered, for example, as disclosed in Japanese Patent Laid-Open No. 59-116603. This will be explained below with reference to the drawings. FIG. 5 is a sectional view of the structure of the light source moving actuator. 6 is a lens, 7 is a laser light source, and 8 is a movable part in which the laser light source 7 is attached approximately to the center. FIG. 6 is a perspective view showing the main parts of the movable part 8. Movable part 8
A piezoelectric element 9 is attached to the top. A driving voltage is applied to the piezoelectric element 9 from the outside, and the expansion and contraction of the piezoelectric element 9 is used to displace the laser light source 7 in the optical axis direction so that an image is always formed on the surface to be scanned. The above-mentioned light source movement actuator makes it possible to correct the imaging position error, which is one of the main functions of the fθ lens group.

発明が解決しようとする課題 ところが、最近のレーザプリンタの高速化、高解像度化
によって、fθレンズ群をレーザ光源あるいはレンズを
変位させる方法に転換するには、該変位量を光軸方向に
は10〜50μm程度、副走査方向には約1μm程度確
保する必要がある。
Problems to be Solved by the Invention However, with the recent increase in speed and resolution of laser printers, in order to convert the fθ lens group to a method of displacing the laser light source or lens, the amount of displacement must be 10 in the optical axis direction. It is necessary to secure about 50 μm or about 1 μm in the sub-scanning direction.

前記圧電素子9を用いた場合、ヒステリシスや温度によ
る同一印加電圧での変位量の変化が大きく、また板状の
圧電素子では駆動力が小さいため複数の圧電素子9を必
要とし、そのために可動部8の質量がさらに増すという
問題点を有していた。
When the piezoelectric element 9 is used, the amount of displacement changes greatly with the same applied voltage due to hysteresis and temperature, and a plate-shaped piezoelectric element has a small driving force, so a plurality of piezoelectric elements 9 are required. The problem was that the mass of 8 was further increased.

また、副走査方向にレンズあるいはレーザ光源を変位さ
せる場合、必要な変位量は小さいものの前記可動部に光
軸方向と副走査方向の両方向に変位させる駆動機構をつ
け加えるのは、光軸方向の駆動力の点から問題があった
In addition, when displacing a lens or a laser light source in the sub-scanning direction, although the amount of displacement required is small, it is necessary to add a drive mechanism to the movable part to displace it in both the optical axis direction and the sub-scanning direction. There was a problem in terms of power.

課題を解決するための手段 上記問題点を解決するために本発明は、レーザ光源又は
前記レーザ光源と前記偏向手段との間に位置するレンズ
を光軸方向に変位させる電磁アクチユエータと、前記レ
ーザ光源又は前記レンズを副走査方向に変位させる圧電
アクチュエータとを有する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides an electromagnetic actuator that displaces a laser light source or a lens located between the laser light source and the deflection means in the optical axis direction, and the laser light source. Alternatively, the image forming apparatus may include a piezoelectric actuator that displaces the lens in the sub-scanning direction.

作   用 本発明によれば、電磁アクチユエータにより、光軸方向
はレーザ光源あるいはレンズと、その保持体、及びコイ
ルからなる必要最少限の可動部質量で精密に駆動するこ
とができ、さらに圧電素子、得に積層形の圧電素子によ
り、好ましくは前記光軸方向の可動部と該可動部の支持
体を一体に、副走査方向に駆動することで、走査方向及
び副走査方向の補正をレンズあるいはレーザ光限により
行うことができ、fθレンズ群は不用となる。
According to the present invention, the optical axis direction can be precisely driven by the electromagnetic actuator with the minimum necessary mass of the movable part consisting of the laser light source or lens, its holder, and the coil, and furthermore, the piezoelectric element, In particular, by driving the movable part in the optical axis direction and the support of the movable part together in the sub-scanning direction using a laminated piezoelectric element, correction in the scanning direction and the sub-scanning direction can be performed using a lens or a laser. This can be done using a light limit, and an fθ lens group is not required.

実施例 以下本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明に係わる光偏向装置の概略構成を示す。FIG. 1 shows a schematic configuration of an optical deflection device according to the present invention.

10はレーザ光源、11はレンズアクチニエータ、12
は回転多面鏡、13は感光ドラム等・の被走査面である
。第2図は本発明の光偏向装置のアクチェヱータ部の概
略構成を示す斜視図である。14はレンズ、15はレン
ズ14の光軸方向の変位を許す光軸方向支持バネ、16
はレンズ14を支持バネ15を解して支持する支持体、
17は支持体16を副走査方向に駆動する積層型の圧電
素子、18は支持体16を副走査方向の変位を許して支
持する副走査方向支持バネ、19はレンズ14を光軸方
向に駆動する電磁アクチユエータである。
10 is a laser light source, 11 is a lens actiniator, 12
1 is a rotating polygonal mirror, and 13 is a scanned surface of a photosensitive drum or the like. FIG. 2 is a perspective view showing a schematic configuration of an actuator section of the optical deflection device of the present invention. 14 is a lens; 15 is an optical axis support spring that allows displacement of the lens 14 in the optical axis direction; 16
is a support body that supports the lens 14 through a support spring 15;
17 is a laminated piezoelectric element that drives the support 16 in the sub-scanning direction; 18 is a support spring in the sub-scanning direction that supports the support 16 by allowing displacement in the sub-scanning direction; and 19 is a component that drives the lens 14 in the optical axis direction. This is an electromagnetic actuator.

第3図はレンズ14を光軸方向に駆動する電磁アクチユ
エータ19の断面図である。レンズ14はレンズホルダ
ー20に保持され、またレンズホルダー20の側面には
コイル21が取り付けにれ、磁気回路22が発生する磁
束と鎖交するように位置している。
FIG. 3 is a sectional view of the electromagnetic actuator 19 that drives the lens 14 in the optical axis direction. The lens 14 is held by a lens holder 20, and a coil 21 is attached to the side surface of the lens holder 20, and is positioned so as to interlink with the magnetic flux generated by the magnetic circuit 22.

光軸方向支持バネ15は2枚の板状のバネであり、レン
ズ14が光軸方向に変位するように光軸方向に対して垂
直にしかも間隔をおいて重心を支持するようレンズホル
ダー20に取り付けられている。副走査方向支持バネ1
8も2枚の板状の支持バネであり、レンズ14が副走査
方向に変位するように副走査方向に対して垂直に、しか
も間隔をおいて重心を支持するよう取り付けられている
The optical axis direction support springs 15 are two plate-shaped springs, and are attached to the lens holder 20 so as to support the center of gravity perpendicularly to the optical axis direction and spaced apart so that the lens 14 is displaced in the optical axis direction. installed. Sub-scanning direction support spring 1
8 are also two plate-shaped support springs, which are attached perpendicularly to the sub-scanning direction so that the lens 14 is displaced in the sub-scanning direction, and at a distance therebetween to support the center of gravity.

上記の構成において、レーザ光源10から出射されたレ
ーザ光は、レンズ14を逼り回転多面鏡20により反射
され被走査面上で結像する。被走査面上で必ず結像させ
るためにレンズ14をレンズアクチュエータ11により
光軸方向に変位させ、また、回転多面鏡の面倒れやその
他の構成部品の温度や振動による副走査方向へのレーザ
光のずれをレンズアクチュエータ11によりレンズ14
を副走査方向に変位させることで補正することができる
In the above configuration, the laser light emitted from the laser light source 10 passes through the lens 14, is reflected by the rotating polygon mirror 20, and forms an image on the surface to be scanned. In order to ensure that an image is formed on the scanned surface, the lens 14 is displaced in the optical axis direction by the lens actuator 11, and the laser beam in the sub-scanning direction is caused by the surface tilt of the rotating polygon mirror and the temperature and vibration of other components. The lens actuator 11 adjusts the displacement of the lens 14.
This can be corrected by displacing in the sub-scanning direction.

しかし、レンズ14を光軸方向に500Hz以上の高い
周波数で、しかも10〜50μm程度を精度よく変位さ
せるには可動部の質量をできるだけ抑え、ヒステリシス
や温度依存の小さな駆動方向にする必要がある。
However, in order to accurately displace the lens 14 in the optical axis direction at a high frequency of 500 Hz or more and by about 10 to 50 μm, it is necessary to suppress the mass of the movable part as much as possible and to make the drive direction small in hysteresis and temperature dependence.

そこで、本実施例では光軸方向の可動部はレンズ14と
レンズホルダー20とコイル21のみとし、さらに光軸
方向支持バネ15の光軸方向の共振点をレンズの駆動周
波数近傍に設定することで小さな駆動力で大きな変位量
を得ることが出来る。
Therefore, in this embodiment, the only movable parts in the optical axis direction are the lens 14, lens holder 20, and coil 21, and the resonance point of the optical axis support spring 15 in the optical axis direction is set near the driving frequency of the lens. A large amount of displacement can be obtained with a small driving force.

また、副走査方向は変位量は小さいが光軸方向の可動部
や支持体16を一体に駆動させるため、駆動力の大きい
積層型の圧電素子を支持体16に取り付は副走査方向支
持バネ18により副走査方向に効率よく変位させること
が出来る。
In addition, although the amount of displacement in the sub-scanning direction is small, in order to drive the movable part in the optical axis direction and the support body 16 together, a laminated piezoelectric element with a large driving force is attached to the support body 16 using a support spring in the sub-scanning direction. 18 allows efficient displacement in the sub-scanning direction.

なお、上記実施例では支持体16はコの字形にしたが、
可動部の周囲を取り組むような箱型でも良いし、副走査
方向支持バネを副走査方向に垂直な面内で支持体16の
周囲に配置して良いことは言うまでもない。
In addition, in the above embodiment, the support body 16 was made into a U-shape.
It goes without saying that it may be a box shape that wraps around the movable part, or that the sub-scanning direction support springs may be arranged around the support body 16 in a plane perpendicular to the sub-scanning direction.

また、レンズを駆動させずにレーザ光源を駆動してもよ
い。
Alternatively, the laser light source may be driven without driving the lens.

発明の効果 以上のように本発明によれば、レーザ光源又はレーザ光
源と偏向手段との間に位置するレンズを光軸方向に変位
させる電磁アクチュエータと、前記レーザ光源又は前記
レンズを副走査方向に変位させる圧電アクチュエータと
を組み合わせることにより0、高い周波数で大きな変位
を精度よく与えることでき、fθレンズ群を用いずに光
偏向装置を実現することが出来る。
Effects of the Invention As described above, the present invention includes an electromagnetic actuator that displaces a laser light source or a lens located between the laser light source and a deflecting means in the optical axis direction, and an electromagnetic actuator that displaces the laser light source or the lens in the sub-scanning direction. By combining it with a piezoelectric actuator for displacement, it is possible to accurately apply a large displacement at zero and high frequencies, and it is possible to realize an optical deflection device without using an fθ lens group.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光偏向装置の一実施例を示す斜視図、
第2図はレンズアクチュエータの概略構成を示す斜視図
、第3図は電磁アクチニエータの断面図、第4図は従来
の光偏向装置の概略構成を示す斜視図、第5図は従来の
圧電素子を用いたレンズアクチュエータの断面図、第6
図は同要部の斜視図である。 10・・・・・・レーザ光源、11・・・・・・レンズ
アクチュエータ、12・・・・・・回転多面鏡、13・
・・・・・被走査面、14・・・・・・レンズ、15・
・・・・・光軸方向支持バネ、16・・・・・・支持体
、17・・・・・・圧電素子、18・・・・・・副走査
方向支持バネ、19・・・・・・電磁アクチュエータ。 2(−一一コイル −一 +? 臥
FIG. 1 is a perspective view showing an embodiment of the optical deflection device of the present invention;
Fig. 2 is a perspective view showing a schematic configuration of a lens actuator, Fig. 3 is a sectional view of an electromagnetic actiniator, Fig. 4 is a perspective view showing a schematic structure of a conventional optical deflection device, and Fig. 5 is a perspective view of a conventional piezoelectric element. Cross-sectional view of the lens actuator used, No. 6
The figure is a perspective view of the main parts. 10... Laser light source, 11... Lens actuator, 12... Rotating polygon mirror, 13.
...Scanned surface, 14... Lens, 15.
... Optical axis direction support spring, 16 ... Support body, 17 ... Piezoelectric element, 18 ... Sub-scanning direction support spring, 19 ...・Electromagnetic actuator. 2(-11 coil-1+?

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光源と、該レーザ光源より出射する光ビー
ムを偏向させる偏向手段と、前記光ビームの光走査位置
検出手段とを有する光偏向装置におけて、前記レーザ光
源又は前記レーザ光源と前記偏向手段との間に位置する
レンズを光軸方向に変位させる電磁アクチュエータと、
前記レーザ光源又は前記レンズを副走査方向に変位させ
る圧電アクチュエータとを有することを特徴とする光偏
向装置。
(1) In an optical deflection device including a laser light source, a deflection means for deflecting a light beam emitted from the laser light source, and an optical scanning position detection means for the light beam, the laser light source or the laser light source and the an electromagnetic actuator that displaces a lens located between the deflection means in the optical axis direction;
An optical deflection device comprising: a piezoelectric actuator that displaces the laser light source or the lens in a sub-scanning direction.
(2)前記副走査方向に変位させる圧電アクチュエータ
は、前記光軸方向に変位する前記レーザ光源又は前記レ
ンズを含む可動部と該可動部の支持部を一体に駆動させ
ることを特徴とする請求項1記載の光偏向装置。
(2) The piezoelectric actuator for displacing in the sub-scanning direction integrally drives a movable portion including the laser light source or the lens that is displaced in the optical axis direction and a support portion of the movable portion. 1. The optical deflection device according to 1.
JP25920789A 1989-10-03 1989-10-03 Light deflector Pending JPH03120509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25920789A JPH03120509A (en) 1989-10-03 1989-10-03 Light deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25920789A JPH03120509A (en) 1989-10-03 1989-10-03 Light deflector

Publications (1)

Publication Number Publication Date
JPH03120509A true JPH03120509A (en) 1991-05-22

Family

ID=17330880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25920789A Pending JPH03120509A (en) 1989-10-03 1989-10-03 Light deflector

Country Status (1)

Country Link
JP (1) JPH03120509A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287125A (en) * 1991-08-05 1994-02-15 Xerox Corporation Raster output scanner with process direction spot position control
US5557452A (en) * 1995-02-06 1996-09-17 University Of Hawaii Confocal microscope system
US10479018B2 (en) 2015-03-30 2019-11-19 Renishaw Plc Additive manufacturing apparatus and methods
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287125A (en) * 1991-08-05 1994-02-15 Xerox Corporation Raster output scanner with process direction spot position control
US5557452A (en) * 1995-02-06 1996-09-17 University Of Hawaii Confocal microscope system
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
US10479018B2 (en) 2015-03-30 2019-11-19 Renishaw Plc Additive manufacturing apparatus and methods
US11446863B2 (en) 2015-03-30 2022-09-20 Renishaw Plc Additive manufacturing apparatus and methods
US11780161B2 (en) 2015-03-30 2023-10-10 Renishaw Plc Additive manufacturing apparatus and methods

Similar Documents

Publication Publication Date Title
JP4574396B2 (en) Optical deflector
US7990572B2 (en) Device adapted for adjustment of scan position of light beam
US5054866A (en) Scanning optical apparatus
JP4965284B2 (en) Optical scanning device and image forming device
US7570279B2 (en) Optical scanning apparatus and image forming apparatus
US7548362B2 (en) Optical deflecting device and image forming apparatus using the same
JP2008191537A (en) Vibrating element and light deflector equipped with the same
KR20090106168A (en) Light scanning unit, image forming apparatus employing the same, and light scanning method
JPH03120509A (en) Light deflector
JP2001281587A (en) Holding structure of light source part for optical scanner
JP2008102487A (en) Optical scanner and image forming apparatus with the same
US6002506A (en) Optical deflector and beam scanner using the same
JPH09318901A (en) Light deflector
US7102805B2 (en) Scanner having scan angle multiplier
JP2011257696A (en) Optical scanner and image forming apparatus
JPH03168610A (en) Optical deflector
KR100954906B1 (en) Optical scanning device and image forming apparatus using the same
JP2010066598A (en) Optical scanner and image forming apparatus
JP2008070398A (en) Rocking apparatus, optical deflector using rocking apparatus, method and apparatus of adjusting frequency of rocking apparatus and image forming apparatus using optical deflector
JP2005115211A (en) Optical scanner and image forming apparatus
JPH112774A (en) Optical deflector and multi-beam scanner using it
JPH02304516A (en) Image surface curvature corrector for scanning optical device
JPH0364725A (en) Optical scanner
JPH0365918A (en) Optical scanner
JPH0356920A (en) Optical scanner