JPH0311733Y2 - - Google Patents

Info

Publication number
JPH0311733Y2
JPH0311733Y2 JP8585082U JP8585082U JPH0311733Y2 JP H0311733 Y2 JPH0311733 Y2 JP H0311733Y2 JP 8585082 U JP8585082 U JP 8585082U JP 8585082 U JP8585082 U JP 8585082U JP H0311733 Y2 JPH0311733 Y2 JP H0311733Y2
Authority
JP
Japan
Prior art keywords
liquid
electrode
spongy
porous material
liquid junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8585082U
Other languages
Japanese (ja)
Other versions
JPS58187764U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8585082U priority Critical patent/JPS58187764U/en
Publication of JPS58187764U publication Critical patent/JPS58187764U/en
Application granted granted Critical
Publication of JPH0311733Y2 publication Critical patent/JPH0311733Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はPHや各種イオン濃度の測定に使用され
る比較電極に関するものである。
[Detailed description of the invention] The present invention relates to a reference electrode used for measuring pH and various ion concentrations.

最近、各種工業で広範囲に純水が使用され、PH
値の側定、制御が行われている。また、0.1μs/
cm程度の高純水も製造可能になり、そのPH値も安
定に測定できることが要求されている。
Recently, pure water has been widely used in various industries, and the PH
Values are determined and controlled. Also, 0.1μs/
It has become possible to produce highly purified water on the order of cm, and it is now required to be able to stably measure its PH value.

イオン濃度が極めて低い純水のPH測定は各種PH
測定のなかでも最も困難な部類に属する。これは
液そのものの非緩性の他に比較電極液絡部が低イ
オン濃度液に接するために液間電位差および流動
電位が発生し、測定値がふらつき、また誤差が生
じることになる。
PH measurement of pure water with extremely low ion concentration uses various PH methods.
It is one of the most difficult measurements. This is because, in addition to the non-relaxation nature of the liquid itself, the liquid junction of the reference electrode comes into contact with the low ion concentration liquid, resulting in a difference in potential between liquids and a flowing potential, causing fluctuations in measured values and errors.

これを防ぐためには、液絡部が常にイオン濃度
の高い液(例えば塩化カリウム溶液)でおおわ
れ、イオン濃度の小さい溶液が液絡部に直接接触
しないようにすればよい。
In order to prevent this, the liquid junction may be always covered with a liquid having a high ion concentration (for example, a potassium chloride solution) so that a solution having a low ion concentration does not come into direct contact with the liquid junction.

このために、第1図のように、測定電極(ガラ
ス電極)1、比較電極2および温度補償電極3を
取付ける測定チヤンバ5に窪み6を設け、その中
に比較電極2の液絡部8を入れ、液絡部8が常に
静止液中にあるようにし、液絡部8から流出する
内部液(飽和塩化カリウム溶液)によつて液絡部
8の近傍がイオン濃度の高い溶液になるようにし
て被測定液4の測定を行つている。しかしなが
ら、近年0.1μs/cm以下の超純水が使用されるよ
うになると、わずかな流量の変化により液絡部8
の近傍の静止液が少し乱れても、測定値が不安定
となる。
For this purpose, as shown in FIG. 1, a depression 6 is provided in the measurement chamber 5 in which the measurement electrode (glass electrode) 1, the comparison electrode 2 and the temperature compensation electrode 3 are installed, and the liquid junction part 8 of the comparison electrode 2 is placed in the depression 6. so that the liquid junction 8 is always in the stationary liquid, and the internal liquid (saturated potassium chloride solution) flowing out from the liquid junction 8 becomes a solution with high ion concentration near the liquid junction 8. The liquid to be measured 4 is being measured. However, in recent years, as ultrapure water of 0.1μs/cm or less has been used, slight changes in flow rate can cause the liquid junction to
Even if the stationary liquid near is slightly disturbed, the measured value will become unstable.

また、第2図のように、流量変化による影響を
極力受けないように、底部に開口部7aを有する
カバー7の中に液絡部8を配置すると、測定電極
1と比較電極2の間の距離がのび、低イオン濃度
液であるがために測定電極1と比較電極2間の溶
液抵抗が増して測定系のインピーダンスが高くな
り、外部からの誘導を受けやすくなるという欠点
が生じた。
In addition, as shown in FIG. 2, if the liquid junction part 8 is placed inside the cover 7 having an opening 7a at the bottom so as to be as little affected as possible by changes in flow rate, the gap between the measuring electrode 1 and the reference electrode 2 can be Disadvantages occurred in that the distance was long and the solution resistance between the measurement electrode 1 and the comparison electrode 2 increased due to the low ion concentration solution, increasing the impedance of the measurement system and making it susceptible to external induction.

第3図は従来の純水のPH測定に使用されている
ダブルジヤンクシヨンタイプの比較電極の断面図
である。支持管9に、内部液10の流出量を一定
に調節する多孔質物質8aとこれを保持する中空
のプラグ8bからなる液絡部8を取付け、多孔質
物質8aから流出する内部液(飽和塩化カリウム
溶液)10が直接、被測定液に接触する構造であ
る。そのために、被測定液の流れによつて多孔質
物質8a近傍のイオン濃度が乱されるので、測定
値が不安定になる欠点がある。内部液10の中に
内極(銀−塩化銀電極)11を浸漬し、一定の超
電力を発生する。12は内部液10の補給口、1
3はキヤツプ、14はリード線である。
FIG. 3 is a cross-sectional view of a double junction type reference electrode used in the conventional PH measurement of pure water. A liquid junction part 8 consisting of a porous substance 8a that adjusts the outflow amount of the internal liquid 10 to a constant level and a hollow plug 8b that holds this is attached to the support tube 9, and the internal liquid (saturated chloride) flowing out from the porous substance 8a is attached to the support tube 9. The structure is such that the potassium solution (10) directly contacts the liquid to be measured. For this reason, the ion concentration near the porous material 8a is disturbed by the flow of the liquid to be measured, resulting in a drawback that the measured value becomes unstable. An inner electrode (silver-silver chloride electrode) 11 is immersed in the internal liquid 10 to generate a certain amount of superpower. 12 is a supply port for the internal liquid 10;
3 is a cap, and 14 is a lead wire.

本考案は従来の技術に内在する上記欠点を解消
する為になされたものであり、従つて本考案の目
的は、液絡部が常にイオン濃度の高い溶液に接触
し、流量変化の影響も少なく、かつ測定系のイン
ピーダンスを高めることなく、安定な液間電位差
を得ることができる新規な比較電極を提供するこ
とにある。
The present invention was devised to eliminate the above-mentioned drawbacks inherent in the conventional technology. Therefore, the purpose of the present invention is to ensure that the liquid junction is always in contact with a solution with a high ion concentration, and that there is little influence from changes in flow rate. The object of the present invention is to provide a novel comparison electrode that can obtain a stable liquid junction potential difference without increasing the impedance of the measurement system.

本考案の上記目的は、PHあるいは各種イオン濃
度測定に使用される比較電極において、その液絡
部が、内部液の流出量を一定に調節する多孔質物
質と、親水性で保水能力を有する連続気孔の海綿
状物質とにより構成され、かつ内部液の流出する
方向に対して、多孔質物質、次いで海綿状物質の
順序で配置されたことを特徴とする比較電極、に
よつて達成される。
The above object of the present invention is to provide a reference electrode used for measuring pH or various ion concentrations, in which the liquid junction is composed of a porous material that regulates the flow rate of the internal liquid to a constant level, and a continuous electrode that is hydrophilic and has a water retention capacity. This is achieved by a reference electrode which is composed of a spongy material with pores and is characterized in that the porous material and then the spongy material are arranged in this order in the direction in which the internal liquid flows out.

次に本考案をその良好な各実施例について図面
を参照しながら詳細に説明しよう。
Next, preferred embodiments of the present invention will be explained in detail with reference to the drawings.

第4図は本考案の一実施例を示す要部断面図で
ある。図において、第3図と同じ参照番号は第3
図と同じ要素を示している。液絡部8は内部液1
0の流出量を一定に調節する多孔質物質8aと親
水性で保水能力を有する連続気孔の海綿状物質8
cおよびこれらを保持し、支持管9と脱着可能な
プラグ8bより構成される。
FIG. 4 is a sectional view of essential parts showing an embodiment of the present invention. In the figures, the same reference numbers as in Figure 3 refer to
Shows the same elements as in the figure. Liquid junction 8 is internal liquid 1
A porous material 8a that adjusts the outflow amount of water to a constant level, and a spongy material 8 with continuous pores that is hydrophilic and has a water retention capacity.
c and a support tube 9 and a removable plug 8b.

多孔質物質8aは例えば、多孔質セラミツクあ
るいは特殊加工された四フツ化樹脂が用いられ、
連続気孔の海綿状物質8cには気孔率70〜90%の
PVF(ポリビニールホルマール)樹脂が用いられ
るが、親水性で保水能力のある連続気孔の海綿状
物質ならば、他の発泡フオームあるいはスポンジ
類、綿でもかまわない。プラグ8bには、例え
ば、中空のテーパ状弾性体が使用されるが、第5
図の他の実施例において参照符号8dに示す側面
にテーパ状雄ねじを有する中空のプラスチツクも
また同様に用いられ、支持管9と気密に接続さ
れ、また取りはずし可能な構造である。
For example, porous ceramic or specially processed tetrafluoride resin is used as the porous material 8a.
Spongy material 8c with continuous pores has a porosity of 70 to 90%.
PVF (polyvinyl formal) resin is used, but other foams, sponges, or cotton may also be used as long as they are hydrophilic, open-pore, and spongy materials with water-holding capacity. For example, a hollow tapered elastic body is used for the plug 8b.
In the other embodiment of the figures, a hollow plastic with a tapered external thread on the side, indicated by reference numeral 8d, is likewise used, which is connected in a gas-tight manner to the support tube 9 and is also of removable construction.

多孔質物質8aと海綿状物質8cの結合状態は
下記の通りである。
The bonding state between the porous material 8a and the spongy material 8c is as follows.

内部液の流出方向に対して多孔質物質8a、
海綿状物質8cの順序で配置されること。
Porous material 8a in the direction of outflow of the internal liquid;
be arranged in the order of spongy material 8c;

多孔質物質8aと海綿状物質8cとは物理的
に接触していればよく、接着その他で一体化す
る必要はない。
The porous material 8a and the spongy material 8c only need to be in physical contact with each other, and do not need to be integrated by adhesive or other means.

製作時には、第4図および第5図においてプ
ラグ8b(または8d)が支持管9と接する側
の端面から多孔質物質8aを圧入し、次に反対
側の端面から海綿状物質8cを圧入し、次に反
対側の端面から海綿状物質8cを圧入してい
る。
During manufacturing, the porous material 8a is press-fitted from the end surface of the plug 8b (or 8d) in contact with the support tube 9 in FIGS. 4 and 5, and then the spongy material 8c is press-fitted from the opposite end surface, Next, a spongy substance 8c is press-fitted from the opposite end face.

内部液は重力により多孔質8aより流出し、
海綿状物質8cにしみ込んでいく。また、海綿
状物質8cは被検液に接するとそれを吸収する
ので、海綿状物質8cの内部では塩化カリウム
溶液のゆるやかな濃度傾斜が生じる。
The internal liquid flows out from the porous 8a due to gravity,
It soaks into the spongy substance 8c. Moreover, since the spongy substance 8c absorbs the test liquid when it comes into contact with it, a gradual concentration gradient of the potassium chloride solution occurs inside the spongy substance 8c.

上記のように構成することによつて、多孔質物
質8aより流出する内部液(飽和塩化カリウム溶
液)10は、連続気孔の海綿状物質8c内部で低
イオン濃度溶液と接触混合され、ゆるやかな濃度
傾斜となり、高濃度の内部液が直接低イオン濃度
溶液に接触することはない。
By configuring as described above, the internal liquid (saturated potassium chloride solution) 10 flowing out from the porous material 8a is mixed in contact with the low ionic concentration solution inside the spongy material 8c having continuous pores, resulting in a gradual concentration. The high concentration internal solution does not come into direct contact with the low ion concentration solution.

以上説明したように、本考案によれば、液絡部
は常に高イオン濃度溶液に接触しているために、
安定した液間電位差を維持することができ、液絡
部自体が底部が開口したカバーを取付けた構造で
あるので、流量変化による影響も受けにくく、か
つ測定系のインピーダンスも高くならないので、
外部からの誘導にも強いという利点がある。
As explained above, according to the present invention, since the liquid junction is always in contact with the high ion concentration solution,
A stable liquid junction potential difference can be maintained, and since the liquid junction itself has a structure with a cover that is open at the bottom, it is less susceptible to changes in flow rate, and the impedance of the measurement system does not increase.
It has the advantage of being resistant to external guidance.

以上本考案をその良好な実施例について説明し
たが、それは単なる例示的なものであり、ここで
説明された実施例によつてのみ、本願考案が限定
されるものではなく、その範囲から逸脱すること
なく、種々の変形、変更が容易である。例えば、
この比較電極は、純水のPH測定だけでなく、純水
のORP(酸化還元電位)測定や純水の各種イオン
濃度測定にも使用できる。また、当然純水以外の
測定にも使用でき、その場合には流速による動圧
の影響(流動電位の発生)を受けにくく、かつ汚
れによる多孔質物質の目詰りを防ぐフイルタとし
ての効果もある。また、第4図、第5図のよう
に、多孔質物質と海綿状物質を保持するプラグを
使用しないで、直接支持管に多孔質物質と海綿状
物質を取付けることができるのはいうまでもな
い。
Although the present invention has been described above with respect to its preferred embodiments, these are merely illustrative, and the present invention is not limited only by the embodiments described herein, and does not depart from its scope. It is easy to make various modifications and changes without any trouble. for example,
This reference electrode can be used not only to measure the pH of pure water, but also to measure the ORP (oxidation-reduction potential) of pure water and the concentration of various ions in pure water. Naturally, it can also be used to measure things other than pure water, in which case it is less susceptible to the influence of dynamic pressure due to flow velocity (generation of streaming potential), and also has the effect of acting as a filter to prevent clogging of porous materials due to dirt. . Furthermore, as shown in Figures 4 and 5, it goes without saying that the porous material and spongy material can be attached directly to the support tube without using a plug to hold the porous material and spongy material. do not have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は測定チヤンバの構造を示す断面図、第
2図は液絡部にカバーを取付けた構造の測定チヤ
ンバの構造を示す断面図、第3図は従来のダブル
ジヤンクシヨンタイプの比較電極の全体の断面
図、第4図は本考案による比較電極の一実施例を
示す液絡部部分の断面図、第5図は本考案の他の
実施例である液絡部部分の断面図である。 1……測定電極、2……比較電極、3……温度
補償電極、4……被測定液、5……測定チヤン
バ、6……窪み、7……カバー、7a……開口
部、8,8′……液絡部、8a……多孔質物質、
8b……中空のプラグ、8c……海綿状物質、9
……支持管、10……内部液、11……内極、1
2……補給口、13……キヤツプ、14……リー
ド線。
Figure 1 is a sectional view showing the structure of a measurement chamber, Figure 2 is a sectional view showing the structure of a measurement chamber with a cover attached to the liquid junction, and Figure 3 is a cross-sectional view of a conventional double junction type reference electrode. 4 is a cross-sectional view of the liquid junction portion showing one embodiment of the reference electrode according to the present invention; FIG. 5 is a cross-sectional view of the liquid junction portion showing another embodiment of the present invention. . DESCRIPTION OF SYMBOLS 1... Measuring electrode, 2... Comparison electrode, 3... Temperature compensation electrode, 4... Liquid to be measured, 5... Measuring chamber, 6... Recess, 7... Cover, 7a... Opening, 8, 8'...liquid junction, 8a...porous material,
8b... Hollow plug, 8c... Spongy substance, 9
... Support tube, 10 ... Internal liquid, 11 ... Inner pole, 1
2... Supply port, 13... Cap, 14... Lead wire.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] PHあるいは各種イオン濃度測定に使用される比
較電極において、その液絡部が、内部液の流出量
を一定に調節する多孔質物質と、親水性で保水能
力を有する連続気孔の海綿状物質とにより構成さ
れ、かつ内部液の流出する方向に対して、前記多
孔質物質、次いで前記海綿状物質の順序で配置さ
れたことを特徴とする比較電極。
In reference electrodes used for pH or various ion concentration measurements, the liquid junction is made of a porous material that regulates the outflow of internal liquid to a constant level, and a spongy material with continuous pores that is hydrophilic and has a water-retaining ability. 1. A comparison electrode, characterized in that the porous material and then the spongy material are arranged in this order in the direction in which the internal liquid flows out.
JP8585082U 1982-06-09 1982-06-09 Reference electrode Granted JPS58187764U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8585082U JPS58187764U (en) 1982-06-09 1982-06-09 Reference electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8585082U JPS58187764U (en) 1982-06-09 1982-06-09 Reference electrode

Publications (2)

Publication Number Publication Date
JPS58187764U JPS58187764U (en) 1983-12-13
JPH0311733Y2 true JPH0311733Y2 (en) 1991-03-20

Family

ID=30094692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8585082U Granted JPS58187764U (en) 1982-06-09 1982-06-09 Reference electrode

Country Status (1)

Country Link
JP (1) JPS58187764U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048172B2 (en) * 2017-12-20 2022-04-05 ラピスセミコンダクタ株式会社 Reference electrode

Also Published As

Publication number Publication date
JPS58187764U (en) 1983-12-13

Similar Documents

Publication Publication Date Title
US3756923A (en) Method of determining so2 concentration
US3498899A (en) Electrochemical electrode assembly
US20060027453A1 (en) Low resistance reference junction
JPH0311733Y2 (en)
CN203310801U (en) Electro-chemical oxygen sensor
GB1468711A (en) Gas electrode
JP2007240437A (en) Gas sensor
JP3650919B2 (en) Electrochemical sensor
JP2002005873A (en) INTEGRAL pH SENSOR
JP2009156670A (en) Comparison electrode
JPH0233165Y2 (en)
JP3708208B2 (en) pH sensor and ion water generator
JPS6331000Y2 (en)
JPH08211014A (en) Dissolved oxygen measuring device
CN217112155U (en) Structure for liquid detection and detection device
JPS587326Y2 (en) Non-bleeding reference electrode
JPH0131960Y2 (en)
JP2002310974A (en) Acidic air detector
JPH06222038A (en) Dissolved oxygen sensor
JP4234856B2 (en) Electrode body
JPS60111952A (en) Galvanic cell type gas sensor
JPS5824207Y2 (en) Ammonia concentration measurement electrode
JP2755454B2 (en) Oxygen electrode
US20010010289A1 (en) Constant-potential coulometric ammonia gas sensor
JPH0417384B2 (en)