JPH03116817A - Charged particle beam lithography device - Google Patents

Charged particle beam lithography device

Info

Publication number
JPH03116817A
JPH03116817A JP25387689A JP25387689A JPH03116817A JP H03116817 A JPH03116817 A JP H03116817A JP 25387689 A JP25387689 A JP 25387689A JP 25387689 A JP25387689 A JP 25387689A JP H03116817 A JPH03116817 A JP H03116817A
Authority
JP
Japan
Prior art keywords
data
deflection
circuit
converter
distortion correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25387689A
Other languages
Japanese (ja)
Inventor
Hitoshi Sato
仁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP25387689A priority Critical patent/JPH03116817A/en
Publication of JPH03116817A publication Critical patent/JPH03116817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To contrive improvement in accuracy of lithography position by a method wherein, among the data for main deflection, the date less than the minimum decomposition value of a main deflection DA converter is added to auxiliary deflection data, and the added value is rounded off on the side of the auxiliary deflection. CONSTITUTION:The data for main deflection, which is distortion-corrected by a main deflection distortion correcting arithmetic circuit 6, is sent to a data isolation circuit 16. The distortion- corrected main deflection data are separated by the minimum decomposition value of a main deflection DA converter 9 as the boundary, the data higher than the minimum decomposition data is sent to the main deflection DA converter 9, and the data on the terminal of the minimum decomposition value is sent to an adding circuit 17. Subsequently, the data for auxiliary deflection, the deflection of which is corrected by an auxiliary deflection distortion correcting arithmetic circuit 11, are sent to an adding circuit 17. At this point, the data less than the minimum decomposition value and the distortion-corrected auxiliary deflection data are added, and they are sent to a round-off processing circuit 13. The data less than the minimum decomposition value of an auxiliary deflection DA converter 14 are rounded to the nearest whole number by the round-off processing circuit 13, and they are sent to an adding circuit 10. Consequently, as final pattern position data supplied to a positional deflector 3 becomes the data containing only the error generated by one round-off processing, the accuracy of data patterning position can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はマルメ処理誤差を小さくした荷電ビーム描画装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a charged beam lithography apparatus that reduces malmo processing errors.

[従来の技術] 最近、LSI素子や超LSI素子の製作手段として荷電
ビーム描画装置が脚光を浴びている。
[Prior Art] Charged beam lithography systems have recently been in the spotlight as a means of manufacturing LSI devices and VLSI devices.

第2図は荷電ビーム描画装置の一例として示した電子ビ
ーム描画装置の概略図で、図中1は電子銃、2は集束レ
ンズ、3は位置決め用偏向器(実際はX、 Y方向の偏
向器が設けられているが、便宜上1つで表わした)、4
はステージ(図示せず)上に設けられた材料である。
Figure 2 is a schematic diagram of an electron beam lithography system shown as an example of a charged beam lithography system. However, for convenience, it is expressed as one), 4
is a material placed on a stage (not shown).

斯くの如き装置により、例えば、第3図に示す、フィー
ルドF内の各サブフィールドSF+、SF2、SF、内
における各パターンP−,,P、、P3 +  P4 
* P5を描く場合(実際には、通常、各サブフィール
ド内には多数のパターンが描かれる)、以下の様にして
描画する。尚、フィールドFの大きさはビームの走査丈
でパターンが描ける大きさ(例えば、2.5mmX2.
5mm)の領域であり、サブフィールドは例えば100
μm×100μm程度の大きさの領域である。
With such a device, for example, each pattern P-, , P, , P3 + P4 in each sub-field SF+, SF2, SF, within field F as shown in FIG.
* When drawing P5 (in reality, usually many patterns are drawn in each subfield), draw as follows. The field F is large enough to draw a pattern with the scanning length of the beam (for example, 2.5 mm x 2.5 mm).
5mm), and the subfield is, for example, 100
The area has a size of approximately μm×100 μm.

先ず、パターンデータ発生装置5からフィールドFの位
置(原点)に対するサブフィールドSF1の特定位置デ
ータ(Xo+、 You)が主偏向歪補正演算回路6と
主偏向歪補正値デープル7に供給される。該テーブルに
は、予め、種々の主偏向歪値に対応した歪補正値が記憶
されており、前記特定位置データ(Xo+、 You)
をアドレスとして適宜歪補正値が前記主偏向歪補正演算
回路6に送られる。該回路の出力、即ち、歪補正が施さ
れた主偏向位置データはマルメ処理回路8で、主偏向用
DA変換器9の最小分解値未満を四捨五入して加算回路
10へ供給する。続いて、同様に、前記パターンデータ
発生装置5からサブフィールドSFlの特定位置(X 
o I、  Y o + )に対するパターンP、を描
画する為のビームの位置を示すデータ(X+1+YIυ
 (パターンP1の特定の位置を示すデータとビームの
走査幅データから成り、以後、パターン描画位置データ
と称す)が副偏向歪補正演算回路11と副偏向歪補正値
デープル12に供給される。該テーブルには、予め、種
々の副偏向歪値に対応した歪補正値が記憶されており、
前記パターン描画位置データ(X++、Yz)をアドレ
スとして適宜歪補正値が前記副偏向歪補正演算回路11
に送られる。該回路の出力、即ち、歪補正が施された副
偏向位置データはマルメ処理回路13で、副偏向用DA
変換器14の最小分解値未満を四捨五入して加算回路1
0へ供給する。該加算回路10で加算されたデータは、
アンプ15を介して前記位置決め用偏向器3に送られる
。而して、ビームはパタン領域内の特定位置から該パタ
ン領域内を走査するので、パターンP1が描画される。
First, specific position data (Xo+, You) of subfield SF1 with respect to the position (origin) of field F is supplied from pattern data generator 5 to main deflection distortion correction calculation circuit 6 and main deflection distortion correction value table 7. The table stores in advance distortion correction values corresponding to various main deflection distortion values, and the specific position data (Xo+, You)
An appropriate distortion correction value is sent to the main deflection distortion correction calculation circuit 6 using as an address. The output of the circuit, that is, the main deflection position data subjected to distortion correction is rounded off to the nearest whole number by the Marmö processing circuit 8, and is supplied to the addition circuit 10. Subsequently, similarly, the pattern data generating device 5 generates a specific position (X
Data (X+1+YIυ
(consisting of data indicating a specific position of the pattern P1 and beam scanning width data, hereinafter referred to as pattern drawing position data) is supplied to the sub-deflection distortion correction calculation circuit 11 and the sub-deflection distortion correction value table 12. The table stores in advance distortion correction values corresponding to various sub-deflection distortion values,
Using the pattern drawing position data (X++, Yz) as an address, an appropriate distortion correction value is determined by the sub-deflection distortion correction calculation circuit 11.
sent to. The output of the circuit, that is, the sub-deflection position data subjected to distortion correction, is sent to the Marumo processing circuit 13 and sent to the sub-deflection DA.
Addition circuit 1 rounds off values less than the minimum resolution value of converter 14
Supply to 0. The data added by the adding circuit 10 is
The signal is sent to the positioning deflector 3 via the amplifier 15. Since the beam scans the pattern area from a specific position within the pattern area, the pattern P1 is drawn.

尚、前記例においてはマルメ処理回路はDA変換器の最
小分解値未満を四捨五入する様に動作しているが、切上
げ若しくは切下げの動作をさせる様にしても良い。この
様な、データの四捨五入、切上げ若しくは切下げの処理
をマルメ処理と称している。
In the above example, the Marmo processing circuit operates to round off values less than the minimum decomposition value of the DA converter, but it may also be configured to round up or down. This kind of rounding, rounding up, or rounding down of data is called round processing.

以下、同様にして、パターンデータ発生装置らから各サ
ブフィールドの特定位置データが主偏向歪補正演算回路
6と主偏向歪補正値デープル7に、各サブフィールドの
特定位置に対する各パターンを描画する為のビームの位
置を示すパターン描画位置データが副偏向歪補正演算回
路11と副偏向歪補正値デープル12に供給され、全て
のパターンが描画される。
Thereafter, in the same manner, the specific position data of each subfield is sent from the pattern data generator to the main deflection distortion correction calculation circuit 6 and the main deflection distortion correction value table 7 in order to draw each pattern for the specific position of each subfield. Pattern drawing position data indicating the position of the beam is supplied to the sub-deflection distortion correction calculation circuit 11 and the sub-deflection distortion correction value table 12, and all patterns are drawn.

さて、この様な描画装置においてパターンを描画する場
合、前記した様に、パターンの位置をサブイールドの特
定位置と、該特定位置に対する相対的位置で表し、各々
専用の主偏向用DA変換器9、副偏向用DA変換器14
に人力している。この場合、主偏向用DA変換器として
は高ビット(例えば14〜16ビツト)の高精度DA変
換器を使用し、副偏向用DA変換器としては該主偏向用
DA変換器より低ビット(例えば9〜12ビツト)の高
速DA変換器を使用する事により、高速且つ高精度パタ
ーン描画を行なっている(特公昭53−11830号、
特公昭53−24792号参照)。そして、前記した様
に、サブフィールドの特定位置データ、即ち、主偏向用
データとパターン描画位置データ、即ち、副偏向用デー
タを夫々マルメ処理している。このマルメ処理は各DA
変換器のビット長に制限がある事から、分解出来る最小
値が存在する為に行なうもので、各DA変換器の最小分
解ビット未満をマルメ処理している。
Now, when drawing a pattern in such a drawing apparatus, as described above, the position of the pattern is represented by a specific position of the sub-yield and a relative position to the specific position, and a dedicated main deflection DA converter 9 is used for each. , sub-deflection DA converter 14
is man-powered. In this case, a high-precision DA converter with high bits (for example, 14 to 16 bits) is used as the DA converter for main deflection, and a DA converter with lower bits (for example, By using a high-speed DA converter (9 to 12 bits), high-speed and high-precision pattern drawing is possible (Japanese Patent Publication No. 11830/1983).
(See Special Publication No. 53-24792). As described above, the specific position data of the subfields, that is, the data for main deflection, and the pattern drawing position data, that is, the data for sub-deflection, are each subjected to the Marume processing. This Marume process is carried out by each DA.
This is done because there is a minimum value that can be decomposed since there is a limit to the bit length of the converter, and the bits less than the minimum decomposable bit of each DA converter are processed.

[発明が解決しようとする問題点〕 しかし、この様に、主偏向用データと副偏向用データを
夫々別々にマルメ処理している事から、位置ぎめ用偏向
器3に供給される最終的なパターン位置データは各々の
マルメ処理により発生する誤差(マルメ誤差)が加算さ
れたデータとなる。
[Problem to be solved by the invention] However, since the main deflection data and the sub-deflection data are processed separately in this way, the final data supplied to the positioning deflector 3 is The pattern position data is data obtained by adding errors (Marumé errors) generated by each Marumé process.

その為、描画位置精度の向上に問題となっている。Therefore, there is a problem in improving the drawing position accuracy.

本発明はこの様な問題を解決する事を目的としたもので
ある。
The present invention is aimed at solving such problems.

[問題点を解決するための手段] そこで、本発明の荷電ビーム描画装置は、荷電ビーム発
生手段、該手段からのビームを材料上に集束させる為の
レンズ、サブフィールド特定位置データ及びパターン描
画位置データを発生するパターンデータ発生装置、前記
サブフィールド特定位置データに偏向歪補正を施す主偏
向歪補正演算回路、該主偏向歪補正演算回路の出力デー
タを主偏向用DA変換器の最小分解値を境に分離し、該
最小分解値以上のデータを該主偏向用DA変換器に送る
分離回路、前記パターン描画位置データに偏向歪補正を
施す副偏向歪補正演算回路、該副偏向歪補正演算回路の
出力データと前記分離回路からの最小分解値より小さい
データとを加算する加算回路、該加算回路の出力データ
のマルメ処理を行なうマルメ処理回路、該マルメ処理回
路の出力をアナログ値に変換する為の副偏向用DA変換
器、前記主偏向用DA変換器の出力と副偏向用DA変換
器の出力に基づいて材料上をビームで走査させる偏向器
を備えた。
[Means for Solving the Problems] Therefore, the charged beam writing apparatus of the present invention includes a charged beam generating means, a lens for focusing the beam from the means onto a material, subfield specific position data, and a pattern writing position. A pattern data generator that generates data, a main deflection distortion correction calculation circuit that performs deflection distortion correction on the subfield specific position data, and a minimum resolution value of the main deflection DA converter that converts the output data of the main deflection distortion correction calculation circuit into a separation circuit that separates data at the border and sends data equal to or greater than the minimum resolution value to the main deflection DA converter; a sub-deflection distortion correction calculation circuit that performs deflection distortion correction on the pattern drawing position data; and the sub-deflection distortion correction calculation circuit. an adder circuit for adding the output data of and data smaller than the minimum decomposition value from the separation circuit; a Malmö processing circuit for performing Malmö processing of the output data of the adder circuit; and a Malmö processing circuit for converting the output of the Malmö processing circuit into an analog value. A deflector for scanning a material with a beam based on the output of the main deflection DA converter and the output of the sub deflection DA converter was provided.

[実施例] 第1図は本発明の一実施例を示した電子ビーム描画装置
の概略図である。図中前記第2図にて使用した番号の付
されたものは同一構成要素である。
[Embodiment] FIG. 1 is a schematic diagram of an electron beam lithography apparatus showing an embodiment of the present invention. In the figure, the numbers used in FIG. 2 are the same components.

図中16はデータ分離回路、17は加算回路である。In the figure, 16 is a data separation circuit, and 17 is an addition circuit.

斯くの如き装置により、例えば、第 図に示す、フィー
ルドF内の各サブフィールドSF+、SF2、SF、内
における各パターンp、、p2.p3 +  P4 +
 P 5を描く場合、以下の様にして描画する。
With such a device, for example, each pattern p, p2 . p3 + P4 +
When drawing P5, draw it as follows.

先ず、パターンデータ発生装置5からフィールドFの位
置(原点)に対するサブフィールドSF1の特定位置デ
ータ(X o I、 Y o 1)が主偏向歪補正演算
回路6と主偏向歪補正値デープル7に供給される。該テ
ーブルは、前記特定位置データ(X。In Yot)に
対する適宜歪補正値を主偏向歪補正演算回路6に送る。
First, specific position data (X o I, Y o 1) of subfield SF1 with respect to the position (origin) of field F is supplied from pattern data generator 5 to main deflection distortion correction calculation circuit 6 and main deflection distortion correction value table 7. be done. The table sends appropriate distortion correction values for the specific position data (X.In Yot) to the main deflection distortion correction calculation circuit 6.

該主偏向歪補正演算回路6の出力、即ち、歪補正が施さ
れた主偏向用データはデータ分離回路16に送られる。
The output of the main deflection distortion correction calculation circuit 6, that is, the main deflection data subjected to distortion correction, is sent to the data separation circuit 16.

該データ分離回路は、該歪補正が施された主偏向用デー
タを主偏向用DA変換器9の最小分解値を境に分離し、
該最小分解値以上のデータを主偏向用DA変換器9に送
り、該最少分解値未満のデータを加算回路17に送る。
The data separation circuit separates the main deflection data subjected to the distortion correction using the minimum resolution value of the main deflection DA converter 9 as a boundary,
Data greater than or equal to the minimum decomposition value is sent to the main deflection DA converter 9, and data less than the minimum decomposition value is sent to the addition circuit 17.

続いて、同様に、前記パターンデータ発生装置5からサ
ブフィールドSF、の特定位置(X o r 、 Y 
o 1)に対するパターンP1を描画する為のビームの
位置を示すデータ(X++、Y++)が副偏向歪補正演
算回路11と副偏向歪補正値デープル12に供給される
。該テーブルは、該副偏向歪値に対応した歪補正値を前
記副偏向歪補正演算回路11に送る。該回路の出力、即
ち、歪補正が施された副偏向用データは前記加算回路1
7に送られる。該加算回路は、該最小分解値未満のデー
タと前記歪補正が施された副偏向用データを加算し、マ
ルメ処理回路13に送る。該マルメ処理回路13は、副
偏向用DA変換器14の最小分解値未満のデータを四捨
五入して加算回路10へ供給する。該加算回路10は該
マルメ処理回路13の出力と前記主偏向用DA変換器9
の出力を加算し、アンプ15を介して位置決め用偏向器
3に送る。
Subsequently, in the same way, the specific position (X or , Y
Data (X++, Y++) indicating the position of the beam for drawing the pattern P1 with respect to o1) is supplied to the sub-deflection distortion correction calculation circuit 11 and the sub-deflection distortion correction value table 12. The table sends a distortion correction value corresponding to the sub-deflection distortion value to the sub-deflection distortion correction calculation circuit 11. The output of the circuit, that is, the distortion-corrected sub-deflection data is sent to the adder circuit 1.
Sent to 7. The adding circuit adds the data less than the minimum resolution value and the distortion-corrected sub-deflection data, and sends the result to the Marmö processing circuit 13. The Marumo processing circuit 13 rounds off data less than the minimum decomposition value of the sub-deflection DA converter 14 and supplies the rounded data to the addition circuit 10 . The adder circuit 10 connects the output of the Malmö processing circuit 13 and the main deflection DA converter 9.
The outputs of are added and sent to the positioning deflector 3 via the amplifier 15.

而して、ビームはパターン領域内の特定位置から該パタ
ーン領域内を走査するので、パターンP1が描画される
Since the beam scans the pattern area from a specific position within the pattern area, the pattern P1 is drawn.

以下、同じ様な一連の動作を繰返す事により全てのパタ
ーンが描画される。
Thereafter, all patterns are drawn by repeating the same series of operations.

尚、前記実施例では、主偏向側のマルメ処理を無くし、
副偏向例文でマルメ処理する様にしている。逆に、副偏
向側のマルメ処理を無くし、主偏向例文でマルメ処理す
る様にも出来るが、主偏向が1回動作すると、副偏向は
通常多数回動作するので、後者のマルメ処理を行なうの
は動作上得策ではない。
Incidentally, in the above embodiment, the mulme treatment on the main deflection side is eliminated,
I'm trying to process it in a sub-biased example sentence. Conversely, it is possible to eliminate the Malmö processing on the sub-deflection side and use the main deflection example sentence, but when the main deflection operates once, the sub-deflection usually operates many times, so it is better to perform the latter Malmö processing. is not a good idea in terms of operation.

又、本発明はイオンビーム描画装置の如き描画装置にも
応用可能である。
Further, the present invention can also be applied to a lithography apparatus such as an ion beam lithography apparatus.

[発明の効果コ 本発明では、主偏向用データの内、主偏向DA変換器の
最小分解値未満のデータを副偏向用データに加算し、該
加算したものを副偏向側でマルメ処理している事から、
位置ぎめ用偏向器に供給される最終的なパターン位置デ
ータは1つのマルメ処理により発生する誤差(マルメ誤
差)丈含むデ−夕となる。その為、主偏向側のマルメ処
理による誤差と副偏向側のマルメ処理による誤差を含む
従来の最終的パターン位置データに比べ、マルメ処理に
よる誤差が少ない。その為、データ描画位置精度がより
向上した。
[Effects of the Invention] In the present invention, among the main deflection data, data that is less than the minimum resolution value of the main deflection DA converter is added to the sub deflection data, and the added data is processed by the sub deflection side. Because there is
The final pattern position data supplied to the positioning deflector includes the error (Malmö error) generated by one Malmö process. Therefore, compared to conventional final pattern position data that includes errors due to the Marumé processing on the main deflection side and errors due to the Marumé processing on the sub-deflection side, the error due to the Marumé processing is smaller. Therefore, data drawing position accuracy has been further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例として示した電子ビーム描画
装置の概略図、第2図は従来例として示した電子ビーム
描画装置の概略図、第3図はフィルドF内におけるサブ
フィールドと、各サブフィールド内の各パターンの位置
関係を表わしたものである。 1:電子銃  2:集束レンズ  3:位置決め用偏向
器  4:材料  5:パターンデータ発生装置  6
:主偏向歪補正演算回路  7主偏向歪補正値デープル
  8:マルタ処理回路9:主偏向用DA変換器  1
0加算回路11:副偏向歪補正演算回路  12:副偏
向歪補正値デープル  13:マルメ処理回路14:副
偏向用DA変換器  15:アンプ16:データ分離回
路 17:加算回路
FIG. 1 is a schematic diagram of an electron beam lithography system shown as an embodiment of the present invention, FIG. 2 is a schematic diagram of an electron beam lithography system shown as a conventional example, and FIG. 3 shows subfields in field F. This represents the positional relationship of each pattern within each subfield. 1: Electron gun 2: Focusing lens 3: Deflector for positioning 4: Material 5: Pattern data generator 6
: Main deflection distortion correction calculation circuit 7 Main deflection distortion correction value table 8: Malta processing circuit 9: Main deflection DA converter 1
0 addition circuit 11: Sub-deflection distortion correction calculation circuit 12: Sub-deflection distortion correction value dople 13: Malmo processing circuit 14: Sub-deflection DA converter 15: Amplifier 16: Data separation circuit 17: Addition circuit

Claims (1)

【特許請求の範囲】[Claims] 荷電ビーム発生手段、該手段からのビームを材料上に集
束させる為のレンズ、サブフィールド特定位置データ及
びパターン描画位置データを発生するパターンデータ発
生装置、前記サブフィールド特定位置データに偏向歪補
正を施す主偏向歪補正演算回路、該主偏向歪補正演算回
路の出力データを主偏向用DA変換器の最小分解値を境
に分離し、該最小分解値以上のデータを該主偏向用DA
変換器に送る分離回路、前記パターン描画位置データに
偏向歪補正を施す副偏向歪補正演算回路、該副偏向歪補
正演算回路の出力データと前記分離回路からの最小分解
値より小さいデータとを加算する加算回路、該加算回路
の出力データのマルメ処理を行なうマルメ処理回路、該
マルメ処理回路の出力をアナログ値に変換する為の副偏
向用DA変換器、前記主偏向用DA変換器の出力と副偏
向用DA変換器の出力に基づいて材料上をビームで走査
させる偏向器を備えた荷電ビーム描画装置。
A charged beam generating means, a lens for focusing the beam from the means onto a material, a pattern data generating device for generating subfield specific position data and pattern drawing position data, and applying deflection distortion correction to the subfield specific position data. The main deflection distortion correction calculation circuit separates the output data of the main deflection distortion correction calculation circuit at the minimum resolution value of the main deflection DA converter, and the data exceeding the minimum resolution value is transferred to the main deflection DA converter.
a separation circuit to be sent to a converter; a sub-deflection distortion correction calculation circuit that performs deflection distortion correction on the pattern drawing position data; and adding the output data of the sub-deflection distortion correction calculation circuit and data smaller than the minimum resolution value from the separation circuit. an adder circuit for processing the output data of the adder circuit, a Malmö processing circuit for performing Malmö processing of the output data of the adder circuit, a sub-deflection DA converter for converting the output of the Malmö processing circuit into an analog value, an output of the main deflection DA converter; A charged beam drawing device equipped with a deflector that scans a beam over a material based on the output of a sub-deflection DA converter.
JP25387689A 1989-09-29 1989-09-29 Charged particle beam lithography device Pending JPH03116817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25387689A JPH03116817A (en) 1989-09-29 1989-09-29 Charged particle beam lithography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25387689A JPH03116817A (en) 1989-09-29 1989-09-29 Charged particle beam lithography device

Publications (1)

Publication Number Publication Date
JPH03116817A true JPH03116817A (en) 1991-05-17

Family

ID=17257362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25387689A Pending JPH03116817A (en) 1989-09-29 1989-09-29 Charged particle beam lithography device

Country Status (1)

Country Link
JP (1) JPH03116817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263055A (en) * 2001-03-12 2002-09-17 Olympus Optical Co Ltd Tip hood for endoscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263055A (en) * 2001-03-12 2002-09-17 Olympus Optical Co Ltd Tip hood for endoscope

Similar Documents

Publication Publication Date Title
JPH08222504A (en) Charged particle beam exposing device
WO2019058782A1 (en) Rendering data generation method, multi-charged particle beam rendering device, pattern inspection device, and computer-readable recording medium
US4728797A (en) Method for drawing a pattern by charged beam and its apparatus
JPH03116817A (en) Charged particle beam lithography device
KR20200010062A (en) Writing data generating method, computer readable recording medium recording program, and multi charged particle beam writing apparatus
US10445450B2 (en) Generating method of drawing data and charged particle beam drawing method
CN108717720B (en) Drawing data producing method
JPH02138723A (en) Electron beam lithography equipment
JP2591548B2 (en) Charged particle beam exposure apparatus and charged particle beam exposure method
JPS636140B2 (en)
JP3169399B2 (en) Charged particle beam exposure apparatus and control method thereof
JPH06267834A (en) Charged beam lithography
JP6039970B2 (en) Settling time setting method, charged particle beam drawing method, and charged particle beam drawing apparatus
JPH02183515A (en) Electron beam exposure device
US5177692A (en) Method and apparatus for processing errors occurring upon division of pattern to be transferred
JPH03179725A (en) Electron beam exposure device
JPS62257724A (en) Electronbeam lithography equipment
JPH02102519A (en) Position correcting device of beam lithography device
Ohyama et al. High speed data control circuit for nanometric electron beam lithography
JPS60244024A (en) Electron beam exposure device
JPH11260692A (en) Electron beam drawer
JPH05144912A (en) Method and equipment for electron beam exposure
JPS61154030A (en) Method and apparatus for electron beam exposure
JPH0328811B2 (en)
JPH05243126A (en) Charged particle beam lithography