JPH03115830A - Method for measuring earthquake intensity - Google Patents

Method for measuring earthquake intensity

Info

Publication number
JPH03115830A
JPH03115830A JP1252291A JP25229189A JPH03115830A JP H03115830 A JPH03115830 A JP H03115830A JP 1252291 A JP1252291 A JP 1252291A JP 25229189 A JP25229189 A JP 25229189A JP H03115830 A JPH03115830 A JP H03115830A
Authority
JP
Japan
Prior art keywords
earthquake
period
seismic
periods
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1252291A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oshima
大島 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAAKURANDO KK
Original Assignee
MAAKURANDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAAKURANDO KK filed Critical MAAKURANDO KK
Priority to JP1252291A priority Critical patent/JPH03115830A/en
Publication of JPH03115830A publication Critical patent/JPH03115830A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically obtain measured earthquake intensity in terms of periods by a method wherein an earthquake wave is detected as an electric signal, the signal is filtered with respect to a specific period or a period range and the earthquake intensity is calculated with respect to the specific period or the period range. CONSTITUTION:An earthquake wave is detected as an analog electric signal according to a size of acceleration by an acceleration type earthquake sensor 1, converted into a digital signal by an A/D converter 2, and then stored in a memory 3. Then earthquake data stored in the memory 3 are subjected to a filter 4 classified by periods to make earthquake data classified by periods among which the maximum amplitude is detected. Then earthquake intensity classified by periods is calculated by an earthquake intensity calculating unit 5 from the maximum amplitude and the period and output from an output 6 of earthquake intensity for each period. Thus distribution by periods peculiar to a structure or the like is inspected and data is collected in advance, and by comparing it with the earthquake intensity by periods measured at the time of an earthquake, a type, size, etc. of earthquake disasters expected to occur in an area can be estimated so that appropriate and concrete countermeasures can be taken.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は地震の震度を測定する方法に関する。 The present invention relates to a method for measuring the seismic intensity of an earthquake.

【従来の技術】[Conventional technology]

従来、震度は、ある場所での地震動の強さを、人体感覚
、周囲の物体、構造物または自然界に対する影響の大小
などにより、人為的に判断して階級づけている。わが国
では、一般に7段階の「気象庁震度階級」に基づき、気
象庁で決めた特定の観測点で観測員が判断して決定し、
当該地区の震度として公表している。 しかし、現行のこのような震度観測は、簡便ではあるが
、観測員の主観的判断によるため、個人差があるばかり
でなく、観測地の地盤や周辺の環境等により大きな差が
生じ、気象庁が発表する当該地区の震度と住民が実際に
感じた震度とが隔たるような事態も間々生じ、地震対策
上大きな問題となっている。 そこで、最近、震度を体感や周囲の被害状況などから人
為的に判断するのではなく、機械計測により自動的に震
度測定する震度計、または地震警報器が、主として地震
防災の目的をもって提案されている。 しかし、従来の震度計は、加速度地震計のデータを、例
えば河角(1943)による震度と加速度との次のよう
な関係式に基づいて演算し、「計測震度」として表示す
るだけのものである。 1 = 2 LottA+0.1   =−・(1)た
だし、■は計測震度、Aは最大加速度(gal雷cta
/secジである。 次の表はこの式から得られる計測震度と最大加速度との
関係を示す。
Conventionally, seismic intensity is an artificial classification of the strength of earthquake motion at a certain location, based on human sensations, the magnitude of the impact on surrounding objects, structures, or the natural world. In Japan, the seismic intensity scale is generally determined by observers at specific observation points determined by the Japan Meteorological Agency based on the seven-level Japan Meteorological Agency seismic intensity scale.
It is published as the seismic intensity for the area concerned. However, although the current seismic intensity observation is simple, it is based on the subjective judgment of the observer, so there are not only individual differences, but also large differences depending on the ground at the observation site and the surrounding environment. Occasionally, situations occur where the announced seismic intensity for the area concerned differs from the seismic intensity actually felt by residents, posing a major problem in terms of earthquake countermeasures. Therefore, recently, seismic intensity meters or earthquake warning devices that automatically measure seismic intensity by mechanical measurement, rather than artificially determining seismic intensity from physical sensation or surrounding damage conditions, have been proposed primarily for the purpose of earthquake disaster prevention. There is. However, conventional seismic intensity meters simply calculate the data from the acceleration seismometer based on the following relational expression between seismic intensity and acceleration according to Kawazu (1943) and display it as a "measured seismic intensity." . 1 = 2 LottA+0.1 =-・(1) However, ■ is the measured seismic intensity, and A is the maximum acceleration (gal lightning cta
/sec. The following table shows the relationship between measured seismic intensity and maximum acceleration obtained from this formula.

【発明が解決しようする課題] ところで、地盤には地震動を増幅する作用かある。すな
わち、軟弱な地盤はど、またその軟弱地盤が厚いほどこ
の増幅作用は大きくなる。さらにこの増幅作用は、特定
の周期(地盤の固を周期)のところで顕著に現れる大き
な増幅特性(共振)をもつ。第4図はある軟弱地盤にお
ける周期と増幅率の関係の一例を示す。 また、構造物は同一の地盤上にあっても、その構造によ
り揺れ方が異なる。構造物もそれぞれ固有周期をもって
おり、この固有周期と地震動の周期とが一敗すると、共
振現象により構造物は大きく揺れる(構造物の共振特性
)。すなわち、同じ地震でも、ある地盤の増幅特性とそ
こに構築されている構造物の固有周期との相互作用で、
構造物は大きく揺れたり)ヱれなかったりする。第5図
はその関係を示す図で、短い固有周期の建物Sと中程度
の固有周期の建物Mと長い固「周期の建物Hとが同じ表
層地盤G上に建てられており、同図(a)、[有])、
(C)いずれの場合も基盤から表層地盤Gへ同じ地震が
入力されたとする。(a)の場合は建物1]の揺れは大
、建物Mの揺れは中、建物Sの揺れは小となる。O))
の場合は建物HのIこれは中、建物Mの揺れは大、建物
Sの揺れは中となる。(C)の場合は建物Hの揺れは小
、建物Mのtiれは中、建物Sの揺れは大となる。 要するに、構造物の1これの大きさは、正確には、基盤
から表層地盤に入ってくる地震そのものの特性E(ω)
と、地盤の増幅特性G(ω)と、構造物の共振特性B(
ω)の三つの特性の積、すなわち、E(ω) ・G(ω
)・B(ω)で決まる。なお、ωは角周波数(2πf)
である。 最近の大型構造物の固有周期は1秒から数秒ないし数十
秒である。ところが、通常の家屋の固イ1周期は0.1
秒ないし0.6秒程度であり、気象庁ではこのような標
準的な周期帯の地震動を想定して上記のような震度階を
設定している。このため、0.1秒以下の短周期の急激
な地震動や1秒以上の長周期の緩慢な地震動には、気象
庁の公表震度と構造物に対する地震の程度とにズレが生
ずることになる。 最近提案された上記の如き震度81でも、地震動の周期
については何等考慮されておらず、地震動を単に気象庁
で定めた震度階に従って計測しているに過ぎない、従っ
て、その計測震度から、地盤や構造物のそれぞれの特性
に合った地震対策を講じることはできない。 地表面で地震動を計測し、これから周期別の計測震度を
求めることは、結果的に、入力地震そのものの特性E(
ω)と、地盤の増幅特性G(ω)との4nE(ω)・G
(ω)を求めることに相当する。 従って、例えばある地域の構造物について、その固有周
期側分布(これはその構造物の共振特性B(ω)に相当
する)等を事前に調べてデータ収集しておき、地震発生
時にその地域の周期別震度を計測し、これと収集したデ
ータとを比較すれば、その地域で発生ずるであろう地震
災害の種L1や規模等を迅速かつ精密に推定でき、そし
て適切かつ具体的な対策を迅速に講じることができるよ
うになる。 また、震度計算としては上記(1)式でもよいが、(1
)式にさらに周期に関する補正項を第3項として加えた
次の(2)式によると、より正確になる。 ! = 2  (ogA +0.7 +log K −
T  =−(2)ただし、Kは係数(例えばに=3) 
、Tは最大加速度の波の周期である。第3項のLog 
K−Tは長周期で震度が大きく計算され、短周期で小さ
く計算されるため、長周期と短周期の震度差が歴然とす
る。 そこで、本発明は、周期側の計測震度を自動的に1辱ら
れるようにすることを目的とする。 【課題を解決するための手段】 本発明の方法は、地震波を地震動センサで電気信号とし
て検出した後、その電気信号を所定の周期または周期帯
についてフィルタをかけ、そのフィルタをかけた地震デ
ータから上記所定の周期または周期帯についての震度を
演算することを特徴とする。 地震動センサからの電気信号を、複数の段階をもった周
期側または周期帯別にフィルタをかけ、そのフィルタを
かけた各周期または各周期帯の地震データから各周期ま
たは各周期帯の震度をそれぞれ演算することもできる。
[Problems to be Solved by the Invention] By the way, the ground has the effect of amplifying seismic motion. In other words, the softer the ground and the thicker the soft ground, the greater this amplification effect. Furthermore, this amplification effect has a large amplification characteristic (resonance) that becomes noticeable at a specific period (period of the solidity of the ground). FIG. 4 shows an example of the relationship between the period and the amplification factor in a certain soft ground. Furthermore, even if structures are on the same ground, they shake differently depending on their structure. Each structure also has a natural period, and if this natural period and the period of seismic motion conflict, the structure will shake significantly due to a resonance phenomenon (resonance characteristics of structures). In other words, even in the same earthquake, due to the interaction between the amplification characteristics of a certain ground and the natural period of the structure built there,
Structures may sway significantly or may not collapse. Figure 5 shows this relationship. A building S with a short natural period, a building M with a medium natural period, and a building H with a long natural period are built on the same surface ground G. a), [Yes]),
(C) In both cases, assume that the same earthquake is input from the foundation to the surface ground G. In case (a), the shaking of Building 1 is large, the shaking of Building M is moderate, and the shaking of Building S is small. O))
In this case, the shaking of building H is medium, the shaking of building M is large, and the shaking of building S is medium. In case (C), the shaking of building H is small, the shaking of building M is moderate, and the shaking of building S is large. In short, the size of a structure is precisely the characteristic of the earthquake itself entering the surface ground from the foundation E(ω)
, the amplification characteristic of the ground G(ω), and the resonance characteristic of the structure B(
The product of three properties of ω), namely E(ω) ・G(ω
)・B(ω). Note that ω is the angular frequency (2πf)
It is. The natural period of recent large structures is from 1 second to several seconds to several tens of seconds. However, one period of a normal house is 0.1
The duration is about 0.6 seconds to 0.6 seconds, and the Japan Meteorological Agency has set the above seismic intensity scales assuming such standard periodic earthquake motions. Therefore, in the case of short-period rapid earthquake motions of 0.1 seconds or less or long-period slow earthquake motions of 1 second or more, there will be a discrepancy between the seismic intensity announced by the Japan Meteorological Agency and the degree of the earthquake to a structure. Even with the recently proposed seismic intensity 81, no consideration is given to the period of seismic motion, and seismic motion is simply measured according to the seismic intensity scale established by the Japan Meteorological Agency. It is not possible to take earthquake countermeasures that suit the characteristics of each structure. Measuring seismic motion on the ground surface and calculating the measured seismic intensity for each period results in the characteristics of the input earthquake itself E(
ω) and the amplification characteristic G(ω) of the ground, 4nE(ω)・G
This corresponds to finding (ω). Therefore, for example, it is possible to investigate and collect data on the natural period side distribution (this corresponds to the resonance characteristic B(ω) of the structure) of structures in a certain area in advance, and to By measuring the seismic intensity for each period and comparing it with the collected data, it is possible to quickly and accurately estimate the type L1 and scale of earthquake disasters that are likely to occur in the area, and to take appropriate and specific countermeasures. You will be able to take prompt action. In addition, the above formula (1) may be used to calculate the seismic intensity, but (1)
According to the following equation (2), which is obtained by adding a period-related correction term as a third term to equation (2), it becomes more accurate. ! = 2 (ogA +0.7 +log K −
T = - (2) where K is a coefficient (for example = 3)
, T is the period of the wave of maximum acceleration. Log of the third term
For K-T, the seismic intensity is calculated to be large in the long period and small in the short period, so the difference in seismic intensity between the long period and the short period is obvious. Therefore, an object of the present invention is to automatically calculate the measured seismic intensity on the period side. [Means for Solving the Problems] The method of the present invention detects seismic waves as electrical signals using a seismic motion sensor, filters the electrical signals for a predetermined period or periodic band, and extracts the filtered earthquake data from the seismic data. The present invention is characterized in that the seismic intensity is calculated for the predetermined period or period band. The electrical signal from the seismic motion sensor is filtered by period side or period band with multiple stages, and the seismic intensity of each period or period band is calculated from the filtered earthquake data of each period or period band. You can also.

【作  用】[For production]

地震動センサとして例えば加速度型のものを使用した場
合、それから出力される電気信号は地震動の加速度の大
小に応じたものとなる。これをデジタル処理する場合に
は、A/D変換器でデジタル信号に変換した後、デジタ
ルフィルタをかけて所定の周期または周期帯成分だけを
抽出し、そのなかの最大振幅を検出すれば、結果的に最
大加速度を検出したことになる。この最大加速度から例
えば上記(1)式に従って演算すると、所定の周期側ま
たは周期帯別の計測震度が得られる。
For example, if an acceleration type seismic motion sensor is used, the electrical signal outputted from it will depend on the magnitude of the acceleration of the seismic motion. When digitally processing this, convert it into a digital signal with an A/D converter, apply a digital filter to extract only the predetermined period or period band component, and detect the maximum amplitude among them. This means that the maximum acceleration has been detected. By calculating from this maximum acceleration according to the above equation (1), for example, the measured seismic intensity for each predetermined period or period band can be obtained.

【実 施 例】【Example】

次に本発明の実施例について説明する。 第1図は本発明のシステム構成ブロック図、第2図はそ
のフローチャートである。地震が発生すると、その地震
波は加速度型地震動センサlにより加速度の大小に応じ
たアナログ電気信号として検出される(第2図ステップ
10)。このアナログ電気信号をA/D変換器2により
数値に変換した後(ステップ11)、地震としての条件
を満たしているか否かチエツクしくステップ12)、満
たしていた場合、数値化された地震データEとしてメモ
J3に記1qする(ステップ13)。 次に、メモリ3に記憶された地震データEを、周期側デ
ジタルフィルタ(バンドパスフィルタ)4により、例え
ば10秒、1秒、0.1秒をそれぞれ中心円+1JIと
する3段階の周期側のデジタルフィルタにかけ、その結
果をそれぞれ周期側地震データEgo、E3.E6.1
としてメモリ3に記憶する(ステップ14)、そして、
これら周期側地震データE1゜、E、、E、、、のそれ
ぞれについて、その最大振幅A Io 、AI + A
I−1と、その最大振幅をもつ波の周!’JI T +
。、T、、T、、、とを検出する(ステップ15)。こ
こで、最大振幅A、。、AAo、1は、そもそも地震デ
ータEが上記のように加速度に応じたものであるため、
周期側の最大加速度を表していることになる。 次いで、周期側地震データE、。、  E1+fEa、
1のそれぞれについて、上記のように検出した最大振幅
A+*、A+ 、Ao、+ と周期T+o、 T+ 、
To、+とから、上記(2)式から導かれる次式により
各周期側の震度I Io、  l I、Io、+を震度
演算部5において演算する(ステップ16)。 1 +o−2tag A+* +0.7 +Log 3
 ・T+。 I+  =2tog A、  +0.7 +Log 3
 ・Tl o、 l= 2 lot As、 +  +
0.7 +log 3・To、1なお、震度計算は上記
(1)式によって行っても構わない。 最後に、その周期側震度1+o、I6.to、1を震度
別出力部6からデイスプレィ装置または印字装置等に出
力する。 ステップ16における震度計算は、地震の継続時間をフ
ァクタに入れた次の(3)式によって行ってもよい。 ・・・・・・・・・・・・(3) この(3)式は上記(2)弐にさらに地震の継続時間に
関する第4項を加えたもので、Pは係数(例えばP=0
.2)、Lは第3図に示すように主要動の継続時間(最
大加速度Aの1/2に等しい振幅をもつ最初の時刻と最
後の時刻の時間差)、Nは継続時間り中で0線を横切る
回数である。因みに第3図の場合、N=12である。 さらに、計測震度は例えば打検(1966)による次の
(4)式により最大速度からでも求めることができる。 1−2  LogV +2.8       ・・・・
・・・・・・・・(4)ただし、Iは計測震度、■は最
大速度である。 この場合、地震動センサとしては速度型のものを使用し
、これから得られる速度の地震データを使うか、または
加速度型のものを使用し、これから得られる加速度の地
震データを積分して速度の地震データに変換したものを
使う。 計測震度を求める式として(+)〜(4)の4つの式を
示したが、本発明はこれら以外の式でもよい。 上記実施例では、地震動センサ1からのアナログ信号を
AID変換して数値としてメモリに記憶し、デジタル処
理で計測震度を測定したが、デジタル方式の他にアナロ
グ方式、機械方式、またはこれらの混用で測定してもよ
い。
Next, examples of the present invention will be described. FIG. 1 is a block diagram of the system configuration of the present invention, and FIG. 2 is a flowchart thereof. When an earthquake occurs, the seismic wave is detected by the acceleration type seismic motion sensor l as an analog electrical signal depending on the magnitude of the acceleration (step 10 in FIG. 2). After converting this analog electrical signal into a numerical value by the A/D converter 2 (step 11), it is checked whether the conditions for an earthquake are met (step 12). If the conditions are met, the digitized earthquake data E 1q in memo J3 (step 13). Next, the earthquake data E stored in the memory 3 is filtered by a period side digital filter (bandpass filter) 4 into three stages of period side, with center circle + 1 JI at 10 seconds, 1 second, and 0.1 seconds, respectively. The results are digitally filtered and the periodic earthquake data Ego, E3. E6.1
(step 14), and
For each of these periodic side earthquake data E1゜, E, , E, , the maximum amplitude A Io , AI + A
I-1 and the frequency of the wave with its maximum amplitude! 'JIT +
. , T, , T, , are detected (step 15). Here, the maximum amplitude A,. , AAo, 1, since the earthquake data E is based on acceleration as described above,
This represents the maximum acceleration on the period side. Next, periodic earthquake data E. , E1+fEa,
1, the maximum amplitudes A++, A+, Ao, + detected as above and the periods T+o, T+,
From To, +, the seismic intensity calculation unit 5 calculates the seismic intensity I Io, l I, Io, + for each period using the following equation derived from the above equation (2) (step 16). 1 +o-2tag A+* +0.7 +Log 3
・T+. I+ = 2tog A, +0.7 +Log 3
・Tlo, l= 2 lot As, ++
0.7 +log 3・To, 1 Note that the seismic intensity may be calculated using the above formula (1). Finally, the periodic side seismic intensity 1+o, I6. to, 1 is output from the seismic intensity output unit 6 to a display device, a printing device, or the like. The seismic intensity calculation in step 16 may be performed using the following equation (3) in which the duration of the earthquake is factored.・・・・・・・・・・・・(3) Equation (3) is obtained by adding the fourth term related to the earthquake duration to (2) 2 above, where P is a coefficient (for example, P=0
.. 2), L is the duration of the main motion (the time difference between the first and last time with an amplitude equal to 1/2 of the maximum acceleration A), and N is the 0 line during the duration, as shown in Figure 3. is the number of times it crosses. Incidentally, in the case of FIG. 3, N=12. Furthermore, the measured seismic intensity can also be determined from the maximum velocity using the following equation (4) according to Uchiken (1966). 1-2 LogV +2.8...
・・・・・・・・・(4) However, I is the measured seismic intensity, and ■ is the maximum speed. In this case, either use a velocity-type seismic motion sensor and use the velocity seismic data obtained from it, or use an acceleration-type seismic sensor and integrate the acceleration seismic data obtained from it to obtain velocity seismic data. Use the converted one. Although four formulas (+) to (4) are shown as formulas for determining the measured seismic intensity, the present invention may use formulas other than these. In the above embodiment, the analog signal from the seismic motion sensor 1 is AID-converted and stored as a numerical value in the memory, and the measured seismic intensity is measured by digital processing. May be measured.

【発明の効果】【Effect of the invention】

本発明によれば周!111別の計測震度を自動的に測定
できるので、地震解析やその対策及び防災上非常に有益
である。
According to the invention Zhou! 111 can be automatically measured, which is very useful for earthquake analysis, countermeasures, and disaster prevention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のシステム構成ブロック図、第2図はそ
のフローチャート、第3図は震度計測に当たり主要Il
!!震動の継続時間をファクタに入れる場合の説明図、
第4図は地震動の周期と地盤の増幅率との関係を示すグ
ラフ、第5図(a)〜(C)は地盤の増幅特性と構造物
の固有周期との関係を示す説明図である。 1・・・・・・地震動センサ、2・・・・・・A/D変
換器、3・・・・・・メモリ、4・・・・・・周期別デ
ジタルフィルタ、5・・・・・・震度演算部、6・・・
・・・周期側震度出力部。
Fig. 1 is a block diagram of the system configuration of the present invention, Fig. 2 is its flowchart, and Fig. 3 is a main I/L diagram for seismic intensity measurement.
! ! An explanatory diagram when including the duration of vibration as a factor,
FIG. 4 is a graph showing the relationship between the period of seismic motion and the amplification factor of the ground, and FIGS. 5(a) to (C) are explanatory diagrams showing the relationship between the amplification characteristic of the ground and the natural period of the structure. 1...Earthquake motion sensor, 2...A/D converter, 3...Memory, 4...Digital filter by period, 5...・Seismic intensity calculation section, 6...
... Periodic side seismic intensity output section.

Claims (1)

【特許請求の範囲】 1、地震波を地震動センサで電気信号として検出した後
、その電気信号を所定の周期または周期帯についてフィ
ルタをかけ、そのフィルタをかけた地震データから上記
所定の周期または周期帯についての震度を演算すること
を特徴とする震度測定方法。 2、地震波を地震動センサで電気信号として検出した後
、その電気信号を複数の段階をもった周期別または周期
帯別にフィルタをかけ、そのフィルタをかけた各周期ま
たは各周期帯の地震データから各周期または各周期帯の
震度をそれぞれ演算することを特徴とする震度測定方法
[Claims] 1. After seismic waves are detected as electrical signals by a seismic motion sensor, the electrical signals are filtered for a predetermined period or period band, and from the filtered seismic data, the predetermined period or period band is detected. A seismic intensity measuring method characterized by calculating the seismic intensity of . 2. After seismic waves are detected as electrical signals by a seismic motion sensor, the electrical signals are filtered by period or period band with multiple stages, and each seismic wave is extracted from the seismic data of each period or period band after applying the filter. A seismic intensity measurement method characterized by calculating the seismic intensity of each period or each periodic band.
JP1252291A 1989-09-29 1989-09-29 Method for measuring earthquake intensity Pending JPH03115830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252291A JPH03115830A (en) 1989-09-29 1989-09-29 Method for measuring earthquake intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252291A JPH03115830A (en) 1989-09-29 1989-09-29 Method for measuring earthquake intensity

Publications (1)

Publication Number Publication Date
JPH03115830A true JPH03115830A (en) 1991-05-16

Family

ID=17235216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252291A Pending JPH03115830A (en) 1989-09-29 1989-09-29 Method for measuring earthquake intensity

Country Status (1)

Country Link
JP (1) JPH03115830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664767A (en) * 2016-07-29 2018-02-06 三美电机株式会社 Detection means and ligthing paraphernalia

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115281A (en) * 1977-03-18 1978-10-07 Oki Electric Ind Co Ltd Earthquake discrimination system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115281A (en) * 1977-03-18 1978-10-07 Oki Electric Ind Co Ltd Earthquake discrimination system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664767A (en) * 2016-07-29 2018-02-06 三美电机株式会社 Detection means and ligthing paraphernalia

Similar Documents

Publication Publication Date Title
Gentile et al. One-year dynamic monitoring of a historic tower: damage detection under changing environment
Saisi et al. Continuous monitoring of a challenging heritage tower in Monza, Italy
JP5514152B2 (en) Structural safety analysis method
JP3952851B2 (en) Seismic performance evaluation method and apparatus for buildings
Lacanna et al. Dynamic response of the Baptistery of San Giovanni in Florence, Italy, based on ambient vibration test
Feldbusch et al. Vibration analysis using mobile devices (smartphones or tablets)
CN108444662B (en) Online bridge damage monitoring method based on daily temperature effect
Tributsch et al. An enhanced energy vibration‐based approach for damage detection and localization
Zonno et al. Automated long-term dynamic monitoring using hierarchical clustering and adaptive modal tracking: validation and applications
Lynch et al. Post-seismic damage assessment of steel structures instrumented with self-interrogating wireless sensors
Azzara et al. Long-term dynamic monitoring of medieval masonry towers
CN110398775B (en) Tunnel water burst disaster micro-seismic event signal fluctuation first arrival pickup method and system
JP2011002371A (en) Seismic intensity estimation method and device
CN104807661B (en) A kind of high-rise and tall and slender structure Dynamic testing evaluation on bearing capacity method
JPH03115830A (en) Method for measuring earthquake intensity
CN110163134B (en) Structural damage region identification method based on sub-band weighted least square
Ribeiro et al. An algorithm to minimize errors in displacement measurements via double integration of noisy acceleration signals
GR20190100049A (en) Acceleration measuring - and -recording instrument practicable for following up the structural integrity of civil engineering buildings
KR101520399B1 (en) System and Method for Reducing of Seismic Noise using Micro Site Stacking
Giannoccaro et al. A digital analysis of the experimental accelerometers data used for buildings dynamical identification
Boroschek Structural health monitoring performance during the 2010 gigantic Chile earthquake
Pavlovic et al. Experimental and Numerical Analysis of a Historic Bell Tower
Perez Velocity response envelope spectrum as a function of time, for the Pacoima Dam, San Fernando earthquake, February 9, 1971
Kolaj et al. Dynamic characteristics of the west wing of East Block of Parliament Hill, Ottawa, Ontario from ambient noise recordings
CN110988130A (en) Test system for rock slope indoor test damage identification