JPH03113011A - Synthetic yarn and production thereof - Google Patents

Synthetic yarn and production thereof

Info

Publication number
JPH03113011A
JPH03113011A JP25145889A JP25145889A JPH03113011A JP H03113011 A JPH03113011 A JP H03113011A JP 25145889 A JP25145889 A JP 25145889A JP 25145889 A JP25145889 A JP 25145889A JP H03113011 A JPH03113011 A JP H03113011A
Authority
JP
Japan
Prior art keywords
compound
polymer
copper
germanium
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25145889A
Other languages
Japanese (ja)
Inventor
Kikutomo Sato
菊智 佐藤
Hisashi Nagi
比佐志 凪
Izumi Yuasa
湯淺 泉
Satoshi Akita
秋田 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP25145889A priority Critical patent/JPH03113011A/en
Publication of JPH03113011A publication Critical patent/JPH03113011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain synthetic yarn suitable for underwears, etc., having antimicrobial properties and healthy action by adding a copper compound) and a germanium (compound) to a polymer in a period from immediate after polymerization completion of polymer to just before spinning, kneading and spinning. CONSTITUTION:In a period from immediate after polymerization completion of polymer (e.g. polyethylene terephthalate or nylon 6) to just before spinning, the polymer is kneaded with copper (compound) (preferably metal copper or inorganic compound thereof) having <=10mum average particle diameter and germanium (compound) having <=10mum average particle diameter in the weight ratio of (1/99)-(50/50) dispersed into a dispersion medium (e.g. ester-based plasticizer or hydroxylamide) having compatibility with the polymer and then spun to give the objective yarn.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、銅化合物(本発明においては銅も含めて銅化
合物と称することがある)およびゲルマニウム化合物(
本発明においてはゲルマニウムも含めてゲルマニウム化
合物と称することがある)を含有する抗菌性及び保健作
用を有する合成繊維に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to copper compounds (in the present invention, copper may also be referred to as copper compounds) and germanium compounds (
The present invention relates to a synthetic fiber having antibacterial and health effects containing germanium (also referred to as a germanium compound).

〈従来技術〉 疾病に対して、速効性のある合成医薬品が数多く提供さ
れているが、このような医薬品の薬害もまた大きな問題
になっている。
<Prior Art> Many rapidly-acting synthetic drugs have been provided for treating diseases, but the toxicity of these drugs has also become a major problem.

そこで近年このような問題に対して遅効性ではあるが安
全な天然化合物を用いた和漢方薬や微量の稀元素を含有
する温泉療法が見直されてブームになっている。
Therefore, in recent years, Japanese and Chinese herbal medicine that uses slow-acting but safe natural compounds and hot spring therapy that contains trace amounts of rare elements have been reconsidered and are becoming popular in response to such problems.

特に、近年ゲルマニウムの保健作用についての認識がな
されており、例えば、浅井−彦著「ゲルマニウム賛歌」
や「ゲルマニウムと私」などの刊行物にゲルマニウムの
保健作用が具体的に述べられているほか、特公昭61−
13684号公報、同63−28070号公報、同63
−32358号公報、同63−32359号公報、同6
3−62492号公報、同63−62493号公報など
に有機ゲルマニウムの薬理作用の活用に関する提案がな
されている。
In particular, the health effects of germanium have been recognized in recent years; for example, "Germanium Hymn" by Hiko Asai
Publications such as ``Germanium and I'' specifically describe the health effects of germanium, as well as publications such as
No. 13684, No. 63-28070, No. 63
-32358 publication, 63-32359 publication, 63-32359 publication
Proposals regarding the utilization of the pharmacological action of organic germanium have been made in JP-A No. 3-62492 and JP-A No. 63-62493.

また無機ゲルマニウムについては特公昭63−2561
8号′公報で提案されている。
Regarding inorganic germanium, Special Publication No. 63-2561
This is proposed in Publication No. 8'.

これ等の提案によるとゲルマニウムの有する保健作用乃
至は薬理作用として皮膚病、がん、内臓病、眼病のばか
美容効果などが具体例として挙げられている。
According to these proposals, specific examples of the health or pharmacological effects of germanium include cosmetic effects on skin diseases, cancer, internal organs diseases, and eye diseases.

また一方、金属イオン等の抗菌作用を利用するために、
例えば、銀、銅、亜鉛等の金属化合物を重合体中に混合
し繊維とする方法が特開昭54−147220号に提案
されている。よた、銀イオン、銅イオン交換したゼオラ
イト系固体粒子を有機高分子体に添加混合する方法が特
開昭59−133235号に提案されいる。しかしなが
ら、これらの方法では金属化合物が高分子へ及ばす影響
が大きくて利用できる範囲が著しく限定されたり、繊維
化工程での工程性特に紡糸時の単糸切れ、バックフィル
ター詰りによるパック寿命が短くなったり、あるいは延
伸時の毛羽頻発などのトラブルが多くなる問題が発生す
る。
On the other hand, in order to utilize the antibacterial effects of metal ions,
For example, Japanese Patent Laid-Open No. 147220/1983 proposes a method of mixing metal compounds such as silver, copper, zinc, etc. into a polymer to form fibers. Furthermore, a method of adding and mixing zeolite solid particles exchanged with silver ions and copper ions to an organic polymer is proposed in JP-A-59-133235. However, with these methods, the metal compound has a large effect on the polymer, severely limiting the usable range, and the life of the pack is short due to processability in the fiberization process, especially single fiber breakage during spinning, and back filter clogging. Otherwise, problems such as frequent fluffing during stretching may occur.

又、銅、銀又は亜鉛の化合物とカゼインとの複合物を水
不溶化の状態で繊維表面に付着させる方法が特開昭56
−123474号に提案されている。この繊維は複合物
を水不溶化させることにより、水洗等による複合物の脱
落を防ぐことができるが、カゼインを不溶化するために
はホルマリンを用いなければならず、織編物とした後、
使用中にホルマリンの遊離を生じることが危惧される。
In addition, a method for attaching a composite of a copper, silver or zinc compound and casein to the fiber surface in a water-insolubilized state is disclosed in JP-A-56
-123474. By making the composite insoluble in water, this fiber can prevent the composite from falling off when washed with water, etc. However, in order to insolubilize the casein, formalin must be used, and after making it into a woven or knitted fabric,
There is a concern that formalin may be liberated during use.

〈発明が解決しようとする課題〉 本発明は、ゲルマニウム化合物と銅化合物を併用し、繊
維中に含有させることによって、ゲルマニウム化合物の
有する保健作用と抗菌性を一層向上させ、かつ、上記の
問題点の解消された合成繊維を提供することを目的とす
るものである。
<Problems to be Solved by the Invention> The present invention further improves the health effects and antibacterial properties of germanium compounds by using a germanium compound and a copper compound together and incorporating them into fibers, and also solves the above problems. The purpose of this invention is to provide synthetic fibers that are free from the above problems.

く課題を解決するための手段〉 即ち、本発明は、平均粒子径が10μm以下の銅又はそ
の化合物(Alと平均粒子径が10μm以下のゲルマニ
ウム又はその化合物fBlとを合計で0.1重量%以上
10重量%以下含有することを特徴とする合成繊維であ
り、特に好ましくは、(A)と(B)との重量割合+A
+ / (Blが1/99〜50150となるような合
成繊維である。そして、かかる合成繊維は、例えば。
Means for Solving the Problems> That is, the present invention provides copper or its compound having an average particle size of 10 μm or less (aluminum and germanium or its compound fBl having an average particle size of 10 μm or less in a total of 0.1% by weight). It is a synthetic fiber characterized by containing 10% by weight or less, particularly preferably the weight ratio of (A) and (B) + A
+ / (It is a synthetic fiber whose Bl is 1/99 to 50150. Such a synthetic fiber is, for example.

繊維形成性ポリマーの重合が完了した直後から紡糸直前
の期間に、該ポリマーと相溶性のある分散媒体中に分散
された平均粒子径が10μm以下の銅またはその化合物
(Nと平均粒子径が10μm以下のゲルマニウム又はそ
の化合物(Blとを該ポリマーに添加し混練した後紡糸
を行うことによって製造することが可能である。
Immediately after the polymerization of the fiber-forming polymer is completed and immediately before spinning, copper or its compound (N and its average particle size of 10 μm or less) having an average particle size of 10 μm or less dispersed in a dispersion medium that is compatible with the polymer is added. It can be produced by adding the following germanium or its compound (Bl) to the polymer, kneading it, and then spinning.

本発明は、銅又はその化合物(A)およびゲルマニウム
又は・その化合物(Blがポリマー中に微粒子状で分散
配合されているので繊維表面へのコーティング等と異な
り、高度の耐久性が得られ、かつ。
In the present invention, copper or its compound (A) and germanium or its compound (Bl) are dispersed in the polymer in the form of fine particles, so unlike coating on the fiber surface, a high degree of durability can be obtained. .

両孔合物の相乗作用により抗菌性や保健作用に優れ、さ
らにこれらの効果が長期間に亘って持続されるという点
に特徴を有するものである。
It has excellent antibacterial and health effects due to the synergistic action of the amphoteric compound, and is further characterized in that these effects are sustained over a long period of time.

また、繊維自体の肌ざわりや風合を損なうことがなく、
最終繊維製品への紡績、編織、染色、縫製などの加工性
を損うこともない。
In addition, it does not impair the feel or texture of the fiber itself.
It does not impair the processability of spinning, knitting, weaving, dyeing, sewing, etc. into final fiber products.

本発明において使用される繊維形成性ポリマーは、従来
公知の紡糸方法によって紡糸可能なポリマーであれば特
に限定されず、例えば、ポリエチL/7fL/フタレー
ト、ホリブチレンテレフタレートおよびこれ等を主成分
とするポリエステル系ポリマー、ナイロン6、ナイロン
66等のポリアミド糸ポリマー、ポリエチレンやポリプ
ロピレン等のポリオレフィン糸ポリマーなどが挙げられ
る。
The fiber-forming polymer used in the present invention is not particularly limited as long as it can be spun by a conventionally known spinning method, and examples thereof include polyethylene L/7fL/phthalate, polybutylene terephthalate, and the like as main components. Examples include polyester polymers, polyamide thread polymers such as nylon 6 and nylon 66, and polyolefin thread polymers such as polyethylene and polypropylene.

そして、これらのポリマーにより構成される本発明の繊
維は、仮撚捲縮加工等の高次加工により。
The fibers of the present invention made of these polymers can be processed by high-order processing such as false twisting and crimp processing.

5角、6角に類似した形状になったり、紡糸時の異形断
面ノズルにより、3葉形、T形、4葉形、5葉形、6葉
形、7葉形、8葉形等多葉形や各種の断面形状をとるこ
とができ、その効果は十分に発現される。またざらに、
いわゆる芯鞘構造や、背腹構造の複合繊維とすることも
でき、この場合でも、銅化合物とゲルマニウム化合物の
混合物が添加されているポリマ一部分が繊維断面占有面
積で20%以上であり、なおかつ望ましくは、該ボリマ
一部分が少なくとも一部繊維表面に存在していることが
望ましい。
Shapes similar to pentagons and hexagons can be formed, and multi-lobed shapes such as trilobal, T-shaped, quadrilobal, pentagonal, hexalobular, heptalobal, and octalobular shapes can be formed due to the irregular cross-section nozzle used during spinning. It can take various shapes and cross-sectional shapes, and its effects are fully expressed. Also Zara,
It is also possible to use composite fibers with a so-called core-sheath structure or dorsal-ventral structure, and even in this case, the part of the polymer to which the mixture of a copper compound and a germanium compound is added accounts for 20% or more of the cross-sectional area of the fiber, and is desirable. It is desirable that a portion of the polymer be present at least partially on the surface of the fiber.

本発明において使用される銅化合物(A)およびゲルマ
ニウム化合物(Blはいずれも、平均粒子径が10μm
以下であることが必要である。粒子径は小ざ(1方が少
ない配合量で抗菌性や保健作用を発揮することができ、
また、その効果も安定している。
The copper compound (A) and germanium compound (Bl) used in the present invention both have an average particle size of 10 μm.
It is necessary that the following is true. The particle size is small (on the other hand, it can exhibit antibacterial and health effects with a smaller amount,
Moreover, the effect is also stable.

方、粒子径が大きくなると断糸等が起こりやすく紡糸性
を悪化させる場合がある。従って、好ましくは5μm以
下、特に好ましくは1μm以下の平均粒子径を有するも
のを使用することが望まれる。粒子の粉砕方法について
は従来公知の湿式又は乾式粉砕機によって行うことがで
きる。
On the other hand, if the particle size becomes large, yarn breakage is likely to occur, which may deteriorate spinnability. Therefore, it is desirable to use particles having an average particle diameter of preferably 5 μm or less, particularly preferably 1 μm or less. The particles can be pulverized using a conventionally known wet or dry pulverizer.

尚1本発明における平均粒子径とはメジアン径(積算分
布曲線の5096に相当する粒子径〕であり、粉砕され
た微粒子の分散希釈液について光の透過率を測定して求
められる光透過法によるものであり、例えは、(株)セ
イシン企業製、ミクロン・フォトサイザー3KC−20
0O3を用いて測定することが可能である。
Note that the average particle diameter in the present invention is the median diameter (particle diameter corresponding to 5096 on the integrated distribution curve), and is determined by the light transmission method, which is determined by measuring the light transmittance of a diluted dispersion of pulverized fine particles. For example, Micron Photosizer 3KC-20 manufactured by Seishin Enterprise Co., Ltd.
It is possible to measure using 0O3.

本発明の合成繊維においては、上記のような平均粒子径
が10μm以下の銅化合物(Alとゲルマニウム化合物
(B)とが合計で帆1重量%以上10重量%以下含有さ
れていなければならず、特に、銅化合物fAlとゲルマ
ニウム化合物fB)の重量割合fA) / fB)は1
/99〜50150であることが望ましい。合計重量が
少な過ぎると抗菌性や保健作用が十分に発現せず、逆に
多過ぎても、却って繊維化が困難になったり。
The synthetic fiber of the present invention must contain a total of 1% by weight or more and 10% by weight or less of a copper compound (Al and germanium compound (B)) having an average particle diameter of 10 μm or less as described above, In particular, the weight ratio fA)/fB) of the copper compound fAl and the germanium compound fB) is 1
/99 to 50150 is desirable. If the total weight is too low, the antibacterial and health effects will not be fully expressed, and if the total weight is too high, it will actually become difficult to form fibers.

繊維物性が低下したり、尚フストになる等好ましくない
ものとなる。従って、好ましくは、0.2重量%以上7
.0重量%以下の合計重量であることが望まれる。また
、銅化合物(Alとゲルマニウム化合物(Blとの重量
割合は、保健作用を強く出したい場合は、ゲルマニウム
化合物の量を多くとる等、自由に所望の性能にコントロ
ールできるものではあるが、前記したように、 +Al
/(BIがl/99〜50150であることが望まれる
This results in undesirable results such as deterioration of fiber physical properties and formation of stiffness. Therefore, preferably 0.2% by weight or more
.. A total weight of 0% by weight or less is desired. In addition, the weight ratio of copper compounds (Al) and germanium compounds (Bl) can be freely controlled to the desired performance, such as by increasing the amount of germanium compounds if you want to have strong health effects. As in, +Al
/(BI is desired to be l/99 to 50150.

また、抗菌作用や保健作用の発現においては種々の銅化
合物(Alやゲルマニウム化合物(Blにおける銅元素
およびゲルマニウム元素の部分が例えば、イオン化する
ことにより、重要な役割を果すものと考えられるので、
繊維中における各化合物の含有量も元素で換算した含有
量でとらえる方が打圧しい。このように考える場合1本
発明の合成繊維中には、銅及びゲルマニウムが元素換算
で合計して0.03重量%以上10重量%以下好ましく
は0.2重量%以上10重量%以下になるように平均粒
子径10μm以ドの銅化合物tAl及びゲルマニウム化
合物fB)を特定量配合することが望まれる。
In addition, in the expression of antibacterial and health effects, various copper compounds (Al and germanium compounds (Bl) are thought to play an important role, for example, by ionizing the copper and germanium elements,
It is more convenient to understand the content of each compound in the fiber as the content converted to the element. When considered in this way, 1. The synthetic fiber of the present invention contains copper and germanium in a total amount of 0.03% by weight or more and 10% by weight or less, preferably 0.2% by weight or more and 10% by weight or less in terms of elements. It is desirable to blend a specific amount of a copper compound (tAl) and a germanium compound (fB) with an average particle diameter of 10 μm or less into the powder.

個々について見れば、銅については元素換算で0.00
01重量%以上、好ましくは0.05重i%以上、特に
好ましくは0.1重量%以上5重量%以下の含有量であ
ることが望まれる。一方、ゲルマニウムについては、元
素換算で0.03重量%以上、好ましくは0.1重量%
以上5重量%以下であることが望まれる。
Looking at each individual item, copper has an elemental conversion of 0.00
It is desired that the content be 0.01% by weight or more, preferably 0.05% by weight or more, particularly preferably 0.1% by weight or more and 5% by weight or less. On the other hand, germanium is 0.03% by weight or more, preferably 0.1% by weight in terms of element.
It is desirable that the content be 5% by weight or less.

次に、使用される銅化合物fAlの種類については特に
限定はないが金属銅の外に沃化銅、酸化第1銅、酸化第
2銅、亜酸化銅、チオシアン化銅、硝酸銅、シアン化銅
、亜ヒ酸銅、硫酸銅、硼酸銅等の銅無機化合物、有機銅
化合物等を少なくとも1種以上使用することが可能であ
る。これらの銅化合物は必ずしもその分子構造を維持し
たままで繊維に配合されている必要はな(、配合中に熱
分解しても大きな問題とはならない。好ましくは金属銅
又はその無機化合物が使用される。
Next, the type of copper compound fAl to be used is not particularly limited, but in addition to metallic copper, copper iodide, cuprous oxide, cupric oxide, cuprous oxide, copper thiocyanide, copper nitrate, cyanide, etc. It is possible to use at least one kind of copper, copper inorganic compounds such as copper arsenite, copper sulfate, copper borate, organic copper compounds, and the like. These copper compounds do not necessarily have to be blended into the fibers while maintaining their molecular structure (and thermal decomposition during blending does not pose a major problem. Preferably, metallic copper or its inorganic compound is used. Ru.

ゲルマニウム化合物(Blとしては、ゲルマニウム単体
、亜リン酸ゲルマニウム、二酸化ゲルマニウム等の無機
ゲルマニウム化合物、 (GeCH2CHtCOOH)
、Osや特公昭53−7960号公報の実施例2に記載
されているポリ(カルボキシルエチルゲルマニウムセス
キオキサイド)等の有機ゲルマニウム化合物を少なくと
も1種以上使用することができる。
Germanium compounds (Bl includes germanium alone, germanium phosphite, inorganic germanium compounds such as germanium dioxide, (GeCH2CHtCOOH)
, Os, and at least one organic germanium compound such as poly(carboxylethylgermanium sesquioxide) described in Example 2 of Japanese Patent Publication No. 53-7960.

尚、ゲルマニウム化合物(B)についても銅化合物(A
)と同様、配合の前後で化合物分子が熱分解等によって
異っていても、ある程度は抗菌性、保健作用を保持され
ているので差し支えはないが、特に有機ゲルマニウム化
合物は、熱分解しやすいが上記で例示したような化合物
は270℃程度まで耐熱性を有し、優れた抗菌性を有す
る化合物であり。
Note that the germanium compound (B) is also the same as the copper compound (A
), even if the compound molecules differ due to thermal decomposition before and after blending, there is no problem as the antibacterial and health effects are maintained to some extent, but organic germanium compounds in particular are easily thermally decomposed. The compounds exemplified above have heat resistance up to about 270°C and have excellent antibacterial properties.

このまうな化合物はポリエステル繊維のように融点の比
較的高い繊維に対しても十分に適用可能となる。
This suitable compound can be sufficiently applied to fibers having a relatively high melting point such as polyester fibers.

本発明の合成繊維は上記の如き銅化合物fA)およびゲ
ルマニウム化合物(B)を繊維形成性ポリマーに配合し
て紡糸して得られるものであり、これらの化合物の配合
方法は特別に制限はない。しかしながら、例えば1合成
繊維を形成し得る熱可塑性ポリマー(以下単にポリマー
と称する)は通常粘度が高くこれらの化合物を容易に分
散配合することは困難である。甲だ、例えは、ポリエス
テルの場合は、ゲルマニウム化合物を重縮合剤の触媒と
して用いる場合があるが1本発明におけるゲルマニウム
化合物の添加量は、触媒量をはるかに超える鼠であるの
で重合反応中に添加することは不都合である。よた、後
述するような、分散媒体と銅化合物(A+#よびゲルマ
ニウム化合物iB)とからなる添加組成nt kポリエ
ステル、ポリアミド、ポリオレフィンなどのポリマーの
重合工程において添加する場合、熱履歴を伴ない、得ら
れるポリマーの着色や分散媒体の分解、揮散が生じやす
く好ましくない。そこで、かかるポリマーを使用する場
合は、重合が完了した時点から紡糸直前の段階で添加す
るのが好ましく、具体的には、重合が完了した直後に溶
解状態にある重合槽内へ添加して混合分散配合する方法
、ポリマーのペレットを製造する際に添加して混合分散
する方法、溶解ポリマーを紡糸ノズルへ送液する配管中
に添加して動的或は静的混合によって分散配合する方法
、ベレットを溶解押出しする押出機に添加して混合分散
する方法などが挙げられる。
The synthetic fiber of the present invention is obtained by blending the above-mentioned copper compound fA) and germanium compound (B) with a fiber-forming polymer and spinning it, and there is no particular restriction on the method of blending these compounds. However, thermoplastic polymers (hereinafter simply referred to as polymers) that can form one synthetic fiber, for example, usually have a high viscosity, and it is difficult to easily disperse and blend these compounds. For example, in the case of polyester, a germanium compound is sometimes used as a catalyst for the polycondensation agent, but the amount of germanium compound added in the present invention far exceeds the catalyst amount, so it is not added during the polymerization reaction. It is inconvenient to add. Additionally, as will be described later, an additive composition consisting of a dispersion medium and a copper compound (A + # and germanium compound iB) is added in the polymerization process of polymers such as polyester, polyamide, polyolefin, etc., accompanied by thermal history, This is not preferable because it tends to cause coloring of the resulting polymer and decomposition and volatilization of the dispersion medium. Therefore, when using such a polymer, it is preferable to add it at the stage immediately before spinning after polymerization is completed. Specifically, immediately after polymerization is completed, it is added to the polymerization tank in a dissolved state and mixed. A method of dispersing and blending, a method of adding and mixing and dispersing when manufacturing polymer pellets, a method of adding dissolved polymer to the pipe that sends the liquid to the spinning nozzle and dispersing and blending by dynamic or static mixing, pellets Examples include a method of adding the compound to an extruder for melting and extruding and mixing and dispersing it.

本発明においては、銅化合物(A)およびゲルマニウム
化合物fBlをポリマー中へ容易に分散配合すると同時
に、該ポリマーの繊維化の際にポリマー分子の配向結晶
化を起こし、配合した化合物の溶出を安定して接続させ
るという目的で分散媒体を用いることが好ましい。
In the present invention, the copper compound (A) and the germanium compound fBl are easily dispersed and blended into the polymer, and at the same time, when the polymer is made into fibers, the polymer molecules are oriented and crystallized to stabilize the elution of the blended compounds. It is preferable to use a dispersion medium for the purpose of making the connection.

分散媒体としては、使用する繊維形成性ポリマーと相溶
性があり、常温で液状の物質が好ましい。
The dispersion medium is preferably a substance that is compatible with the fiber-forming polymer used and is liquid at room temperature.

そして、このような分散媒体に銅化合物(Nおよびゲル
マニウム化合物(B)を予め分散させておくことによっ
て、これらの化合物を効率よく湿式粉砕でさ、又、ポリ
マーへ添加する場合も非常例安定した供給が可能である
。また、繊維形成後1分散媒体が緻密なポリマー組織内
部から繊維表面へ極めて僅かずつ移行し、それによって
水分の繊維内部への浸入を促し、銅化合物fA)および
ゲルマニウム化合物fB)の溶出をも促すものと考えら
れる。
By dispersing the copper compound (N) and germanium compound (B) in advance in such a dispersion medium, these compounds can be efficiently wet-pulverized, and even when added to a polymer, they can be extremely stable. In addition, after fiber formation, the dispersion medium transfers very little from the inside of the dense polymer structure to the fiber surface, thereby promoting the infiltration of water into the fibers, and dispersing the copper compound fA) and germanium compound fB. ) is thought to also promote the elution of

本発明に用いられる分散媒体としては、例えば、ポリマ
ーがポリエステルの場合、エステル糸、リン丞およびポ
リエステル糸の可塑剤やポリエステルポリオールなどが
使用でき、ポリマーがポリアミドの場合、ヒドロキシア
ミドやスルフォンアミド、オキシペンゾールエステルな
どが使用でさ。
As the dispersion medium used in the present invention, for example, when the polymer is polyester, ester yarn, phosphorus, a plasticizer for polyester yarn, polyester polyol, etc. can be used, and when the polymer is polyamide, hydroxyamide, sulfonamide, oxyamide, etc. can be used. Penzole ester etc. are used.

ポリマーがポリオレフィンである場合、シクロパラフィ
ン、ナフテン糸オイルなどを使用することが可能で、何
れもポリマーに類似した構造を持つものが、或は、溶解
度パラメーターが近似しているもの、すなわち、極性が
類似しているものが好工しい。
When the polymer is a polyolefin, it is possible to use cycloparaffin, naphthene thread oil, etc., which have a similar structure to the polymer, or have similar solubility parameters, i.e. polarity Things that are similar are better.

また1分散媒体の粘度は25℃において10ボイズ以上
であることが望ましい。10ボイズ未満になってくる七
、温水洗濯後の抗菌性レベルがやや低下する場合もある
Further, it is desirable that the viscosity of one dispersion medium be 10 voids or more at 25°C. 7. The antibacterial level after hot water washing may decrease slightly.

本発明においては、微粒子状の銅化合物+A+およびゲ
ルマニウム化合物(Blと上記の分散媒体との混合物か
らなる添加組成物をポリマーに対して定量比で正確に、
しかも安定して添加し分散配合するために、定量ポンプ
による添加方法を採用することが好ましい。そのために
は、工程の配管中での良好な流動性が不可欠であって、
添加組成物中のゲルマニウム化合物の濃度は必要最少限
となるように分散媒体の整調をすることが望甲れる。
In the present invention, an additive composition consisting of a mixture of a fine particulate copper compound + A + and a germanium compound (Bl and the above-mentioned dispersion medium) is added to the polymer in an accurate quantitative ratio.
Moreover, in order to stably add and disperse the ingredients, it is preferable to use an addition method using a metering pump. For this purpose, good fluidity in the process piping is essential.
It is desirable to adjust the dispersion medium so that the concentration of the germanium compound in the additive composition is kept to the minimum necessary.

この際、添加組成物中の銅化合物(Alおよびゲルマニ
ウム化合物(B)の合計の濃度は、所望とする繊維中の
微粒子含有量や添加組成物の添加速度によって適宜調整
されればよいが、好ましくは10〜70重潰%、より好
ましくは30〜60重社%である。
At this time, the total concentration of the copper compound (Al and germanium compound (B)) in the additive composition may be adjusted as appropriate depending on the desired content of fine particles in the fiber and the addition rate of the additive composition, but is preferably is 10 to 70%, more preferably 30 to 60%.

このようにして、銅化合物(Alおよびゲルマニウム化
合物(B)の添加された繊維形成性ポリマーは、従来公
知の紡糸・延伸方法によって繊維化され。
In this way, the fiber-forming polymer to which the copper compound (Al) and germanium compound (B) have been added is made into fibers by a conventionally known spinning and drawing method.

分散配合された銅化合物(A)およびゲルマニウム化合
物fBlは、緻密な構造を有するポリマー組織内部に配
置されており、併用された分散媒体がこれらの化合物と
ポリマー鉛量を若干押し広げて水分の侵入をある程度許
しており、侵入した水分によって化合物が溶けて滲み出
すことによって抗菌作用や保健作用を発揮するものと思
われる。
The dispersed copper compound (A) and germanium compound fBl are placed inside the polymer structure with a dense structure, and the dispersion medium used in combination slightly spreads these compounds and the amount of polymer lead, preventing moisture from entering. It is thought that the compound dissolves and oozes out due to the moisture that enters, exerting antibacterial and health effects.

このようにして得られる本発明の合成繊維は、肌に直接
触nるような下着、靴下、ストッキング。
The synthetic fibers of the present invention thus obtained can be used in underwear, socks, and stockings that come into direct contact with the skin.

手袋等の衣類や浴用タオル、寝具等に使用すると、美容
効果や血液をアルカリ性にするなどの保健作用を有効に
活用でさ、また、各種治療用の布や基布等にも適用可能
である。
When used for clothing such as gloves, bath towels, bedding, etc., it can effectively utilize its beauty effects and health effects such as making the blood alkaline. It can also be applied to cloths and base fabrics for various treatments. .

〈実施例〉 以下、実施例によって本発明全具体的に説明するが、本
発明は何らこれらに限定されるものではない (添加組成物の製造法1) 金属銅(三井金属鉱業(株)社製: MFPパウダー)
3Kgと触媒用の二酸化ゲルマニウム(日本電子金属社
製) 500 gとポリエステル系可塑剤(7デ力アー
ガス社製:商品名PN−35034Kgを粗混合して振
動ミル(中央化工機社製MB−1型振動ミル)によって
湿式粉砕して平均粒子径1.2μmとなし、120℃で
絶乾したのち冷却して仕込槽に移して真空脱泡を行ない
添加組成物となした(添加組成物1)。
<Examples> Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto (Production method 1 of additive composition) Metallic copper (Mitsui Kinzoku Mining Co., Ltd.) Manufacturer: MFP powder)
3 kg of germanium dioxide for catalyst (manufactured by Japan Electronics Metals Co., Ltd.) and 500 g of polyester plasticizer (manufactured by Argus Co., Ltd.: trade name PN-35034 kg) were roughly mixed and mixed in a vibrating mill (MB-1, manufactured by Chuo Kakoki Co., Ltd.). The mixture was wet-pulverized to an average particle size of 1.2 μm using a vibrating mill (type vibrating mill), dried completely at 120°C, cooled, transferred to a preparation tank, and subjected to vacuum defoaming to obtain an additive composition (additional composition 1). .

(添加組成物の製造法2) i1Jン酸ゲルマニウム(Ge HPOs )試薬1級
品80 yを濃塩酸試薬1級品600 mgに溶解した
液にアクリル酸試薬1級品100yytlを撹拌しつつ
30分間かけて常温で滴下し2更に3時間撹拌したのち
アセトン試薬1級品800m1と蒸留水200献の混合
液を加えて24時間撹拌して微細な結晶を析出させた。
(Production method of additive composition 2) 100 yytl of first grade acrylic acid reagent was dissolved in a solution of 80 y of first grade germanium phosphate (Ge HPOs) reagent dissolved in 600 mg of first grade concentrated hydrochloric acid reagent for 30 minutes while stirring. After stirring for 2 and 3 hours at room temperature, a mixture of 800 ml of first grade acetone reagent and 200 ml of distilled water was added and stirred for 24 hours to precipitate fine crystals.

生成した結晶を戸別しアセトン溶媒で洗滌して。The formed crystals were separated from each other and washed with acetone solvent.

遊離の0gイオンがな(なるまで洗滌して精製したのち
真空乾燥を行なって759の結晶を得た。得られた結晶
は常温の水に溶解し、そのGe分の含有量は425%で
あった。
After washing and purifying until there were no free 0g ions, 759 crystals were obtained by vacuum drying. The obtained crystals were dissolved in water at room temperature, and the Ge content was 425%. Ta.

また示差熱分析値は吸熱ピークが2個所あり第1はピー
ク開始148℃、ピーク頂点173℃、ピーク終了点2
08℃、第2はピーク開始236℃、ピーク頂点280
℃、ピーク終了点307℃であり325℃以下では分解
しない、耐熱性にすぐれたゲルマニウム化合物が得られ
た。
In addition, the differential thermal analysis value has two endothermic peaks, the first being 148°C at the beginning of the peak, 173°C at the peak peak, and 2nd at the end of the peak.
08℃, second peak start 236℃, peak apex 280℃
A germanium compound with excellent heat resistance, which had a peak end point of 307°C and did not decompose below 325°C, was obtained.

このようにして得られた有機ゲルマニウム化合物500
gと沃化第1銅(日本化学産業社製)50(1gとポリ
エステル系可塑剤(7デ力アーガス社製:商品名PN−
350 ) 1.5Kgとを粗混合して振動ミル(中央
化工機社製MB−1型振動ミル)によって湿式粉砕して
平均粒子径0.7μmとなし120℃で絶乾したのち冷
却して仕込槽に移して裏窓脱泡を行ない添加組成物とな
した(添加組成物2]。
Organic germanium compound 500 thus obtained
g and cuprous iodide (manufactured by Nippon Kagaku Sangyo Co., Ltd.) 50 (1 g and polyester plasticizer (manufactured by Argus Co., Ltd.: product name PN-)
350) 1.5Kg was roughly mixed and wet-pulverized using a vibration mill (MB-1 type vibration mill manufactured by Chuo Kakoki Co., Ltd.) to obtain an average particle size of 0.7μm.After drying at 120℃, it was cooled and prepared. The mixture was transferred to a tank and degassed through the back window to obtain an additive composition (Additional Composition 2).

実施例−1 〔ηJ = 0.6 s dtl/g (フェノールと
テトラクロルエタンの等全混合溶媒を用い30℃の恒温
槽中で測定した極限粘度)で、TiOxを0.4重jt
96含有したポリエチレンテレフタレート(以ドPET
と略称する)のペレットを50φ押出機で溶解押出しを
行ない、該溶融PET配管中に設けたスタティックミキ
サーの入口部へ上記の添加組成物1をPET中のゲルマ
ニウム化合物が0,5重1t96(Ge元素換算0.3
5重量%)、銅が3.0重量%になるように連続して注
入して混練し分散配合したのち、公知の方法で孔数31
0の丸断面のノズルを用いて紡糸、延伸を行なって繊度
3デニール繊維長38閣のポリエステルステーブル繊維
を得た。
Example-1 [ηJ = 0.6 s dtl/g (intrinsic viscosity measured in a constant temperature bath at 30°C using an equal mixed solvent of phenol and tetrachloroethane), TiOx was 0.4 times dtl/g.
96-containing polyethylene terephthalate (PET)
(hereinafter referred to as Ge) was melted and extruded using a 50φ extruder, and the above additive composition 1 was added to the inlet of a static mixer installed in the molten PET pipe so that the germanium compound in PET was 0.5 times 1t96 (Ge). Element conversion 0.3
After continuously injecting, kneading and dispersing copper so that the copper content is 3.0% by weight, the number of holes is 31 using a known method.
Spinning and drawing were performed using a nozzle with a round cross section of 0.0 mm to obtain a polyester stable fiber having a fineness of 3 denier and a fiber length of 38 mm.

実施例−2 添加組成物の製造法2で製造した添加組成物2をPET
中のゲルマニウム化合物が1.0重量%(Ge元素換算
0.43重11kg6) 、銅化合物が1.0重量%(
Cu元素換算0.33重量%λとなるように度えたほか
は実施例−1と同様な条件で繊度3デニール、繊維長3
8mmのポリエステルステーブル繊維ヲ得た。
Example-2 Additive composition 2 manufactured by additive composition manufacturing method 2 was used as PET
The germanium compound in it is 1.0% by weight (Ge element equivalent: 0.43 weight 11kg6), the copper compound is 1.0% by weight (
The fineness was 3 denier and the fiber length was 3 under the same conditions as in Example-1 except that the λ was 0.33% by weight in terms of Cu element.
An 8 mm polyester stable fiber was obtained.

実施例−3 添加組成物の製造法1のポリエステル系可塑剤(アデカ
アーガス社製: PN−350)に変えてヒド−キシア
ミドを用い、実施例−1のポリマーをポリエチレンテレ
フタレートからナイロン6(宇部興産製)K代えた他は
、実施例−1と同様にして、水可溶性の二酸化ゲルマニ
ウムが0.5重量%、金属銅が3重量%含有する繊度3
dのナイロン6フィラメント繊維を得た。
Example 3 Additive composition manufacturing method Using hydroxyamide instead of the polyester plasticizer (PN-350, manufactured by Adeka Argus) in 1, the polymer of Example 1 was changed from polyethylene terephthalate to nylon 6 (manufactured by Ube Industries, Ltd.). A fineness 3 material containing 0.5% by weight of water-soluble germanium dioxide and 3% by weight of metallic copper was prepared in the same manner as in Example-1, except that K was changed.
A nylon 6 filament fiber of d was obtained.

比較例−1 実施例−1および2で用いた添加組成物を製造する際に
使用した分散媒体であるポリエステル系可塑剤(アデカ
アーガス社製:商品名PN−35(])L のみを実施例−1および2と同じ含有証である3、0重
i%・ポリエステル系重合体に添加して分散配合したの
ち繊維化して、繊度3デニール、繊維長38mmの銅化
合物tA)およびゲルマニウム化合物tBjを全く含有
しないポリエステルステープル繊維を得た。
Comparative Example-1 Only the polyester plasticizer (manufactured by Adeka Argus Co., Ltd., trade name PN-35(]) L, which was the dispersion medium used in producing the additive compositions used in Examples-1 and 2, was used as an example. - Added to 3.0% by weight/i% polyester polymer, which has the same content as 1 and 2, was dispersed and blended, and then made into fibers to form a copper compound tA) and a germanium compound tBj with a fineness of 3 denier and a fiber length of 38 mm. A polyester staple fiber containing no polyester staple fiber was obtained.

以上の実施例−1〜3及び比較例−1で得られた各種合
成繊維について以上のように抗菌性および牛乳の保存性
について評価した。
The various synthetic fibers obtained in Examples 1 to 3 and Comparative Example 1 were evaluated for antibacterial properties and milk preservability as described above.

■ 抗菌性の評価(滅菌率の測定) 滅菌した液体ブイヨンに下記の菌を懸濁させ、この液を
0.2gの試料繊維上に0.2 mal接種しく黄色ぶ
どう状球菌は菌数約34万個、肺炎桿菌は約30万個)
、温度37℃で18時間培養した後、取り出す。
■ Evaluation of antibacterial properties (measurement of sterilization rate) Suspend the following bacteria in sterilized liquid broth and inoculate 0.2 ml of this liquid onto 0.2 g of sample fiber.The number of Staphylococcus aureus bacteria is approximately 34. (about 300,000 Klebsiella pneumoniae)
After culturing at a temperature of 37° C. for 18 hours, the cells were taken out.

培養前後の試料上の生菌数を測定し、下記の計算式によ
り菌数の増減比、増減値及び増減値差を算出した。黄色
ぶどう状球菌に対する抗菌性について第1表に、また、
肺炎桿菌に対する抗菌性を第2表に示す。
The number of viable bacteria on the sample before and after culturing was measured, and the ratio of increase/decrease in the number of bacteria, the value of increase/decrease, and the difference in the value of increase/decrease were calculated using the following formula. Table 1 shows the antibacterial properties against Staphylococcus aureus.
Table 2 shows the antibacterial properties against Klebsiella pneumoniae.

試  験  菌=(a)黄色ぶどう状球菌(Staph
ylococcusaureusATCC6538P 
  (IFO12732ン〕fbl肺炎桿菌(Kleb
siella pneumoniaeATCC4352
LIFO13277))試料貞j:i:0.2Q 培養温度・時間=37℃×】8h 菌数増減値差=空試験での菌数増減値−加工試料の菌数
増減値第 表 (a) 黄色ぶどう状球菌 第 表 (bl 肺炎桿菌 第1表および第2表から明らかなとおり、本発明の合成
繊維を使用した場合は、菌の繁殖が著しく抑制されてい
た。
Test bacteria = (a) Staphylococcus aureus (Staph
ylococcusaureus ATCC6538P
(IFO12732) fbl Klebsiella pneumoniae (Kleb
siella pneumoniae ATCC4352
LIFO13277)) Sample size: i: 0.2Q Culture temperature/time = 37°C x] 8h Difference in bacterial count increase/decrease = Bacterial count increase/decrease value in blank test - Bacterial count increase/decrease value in processed sample Table (a) Yellow Staphylococcus Table 1 (bl) Klebsiella pneumoniae As is clear from Tables 1 and 2, when the synthetic fiber of the present invention was used, the proliferation of bacteria was significantly suppressed.

■ 牛乳の保存性の評価 ステーブル繊維5gをハンドカードで引き揃えて重ね、
内径10口のシャーレ−に敷きつめたのら、市販のバッ
ク入り牛乳50m1を注ぎ、30工2℃の恒温状態に保
ち腐敗状況を観察した。結果を第3表に示した。
■ Evaluating the shelf life of milk: 5g of stable fibers are aligned using a hand card and stacked on top of each other.
After placing the dish in a petri dish with an inner diameter of 10 holes, 50 ml of commercially available milk in a bag was poured into the dish, and the dish was kept at a constant temperature of 2°C for 30 hours to observe the state of decomposition. The results are shown in Table 3.

以下令白 第3表から明らかなように、本発明の合成繊維を浸漬し
た牛乳は非常に優れた保存性を有するものであった。
As is clear from Table 3 below, the milk soaked with the synthetic fibers of the present invention had an extremely excellent preservability.

〈発明の効果〉 本発明の合成繊維は配合された銅化合物とゲIレマニウ
ム化合物の相乗作用により優れた抗菌性。
<Effects of the Invention> The synthetic fiber of the present invention has excellent antibacterial properties due to the synergistic effect of the copper compound and the GeI lemanium compound.

保健作用を示すものであり、本発明の合成繊維から構成
された下着等は1着用しているだけで健康増進に繋がる
ものであり有効である。
It exhibits health effects, and underwear made of the synthetic fiber of the present invention is effective because it leads to health improvement just by wearing it once.

Claims (3)

【特許請求の範囲】[Claims] (1)平均粒子径が10μm以下の銅又はその化合物(
A)と平均粒子径が10μm以下のゲルマニウム又はそ
の化合物(B)とを合計で0.1重量%以上10重量%
以下含有することを特徴とする合成繊維。
(1) Copper or its compounds with an average particle size of 10 μm or less (
A) and germanium or its compound (B) with an average particle size of 10 μm or less in total of 0.1% by weight or more and 10% by weight
A synthetic fiber characterized by containing the following:
(2)(A)と(B)との重量割合(A)/(B)が1
/99〜50/50である請求項(1)に記載の合成繊
維。
(2) The weight ratio (A)/(B) of (A) and (B) is 1
The synthetic fiber according to claim 1, which has a ratio of /99 to 50/50.
(3)繊維形成性ポリマーの重合が完了した直後から紡
糸直前の期間に、該ポリマーと相溶性のある分散媒体中
に分散された平均粒子径が10μm以下の銅又はその化
合物(A)と平均粒子径が10μm以下のゲルマニウム
又はその化合物(B)とを該ポリマーに添加し混練した
後紡糸を行うことを特徴とする請求項(1)に記載の合
成繊維の製造方法。
(3) Immediately after the polymerization of the fiber-forming polymer is completed and immediately before spinning, copper or its compound (A) having an average particle diameter of 10 μm or less dispersed in a dispersion medium that is compatible with the polymer and the average The method for producing synthetic fibers according to claim 1, wherein germanium or its compound (B) having a particle size of 10 μm or less is added to the polymer, kneaded, and then spun.
JP25145889A 1989-09-26 1989-09-26 Synthetic yarn and production thereof Pending JPH03113011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25145889A JPH03113011A (en) 1989-09-26 1989-09-26 Synthetic yarn and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25145889A JPH03113011A (en) 1989-09-26 1989-09-26 Synthetic yarn and production thereof

Publications (1)

Publication Number Publication Date
JPH03113011A true JPH03113011A (en) 1991-05-14

Family

ID=17223121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25145889A Pending JPH03113011A (en) 1989-09-26 1989-09-26 Synthetic yarn and production thereof

Country Status (1)

Country Link
JP (1) JPH03113011A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074166A1 (en) * 2000-04-05 2001-10-11 The Cupron Corporation Antimicrobial and antiviral polymeric materials
US7296690B2 (en) 2002-04-18 2007-11-20 The Cupron Corporation Method and device for inactivating viruses
US7364756B2 (en) 2003-08-28 2008-04-29 The Cuprin Corporation Anti-virus hydrophilic polymeric material
JP2010018895A (en) * 2008-07-08 2010-01-28 Mitsubishi Rayon Co Ltd Wet spinning method for antimicrobial acrylic fiber
US20150373989A1 (en) * 2011-05-24 2015-12-31 Agienic, Inc. Antimicrobial articles of manufacture
US9403041B2 (en) 2004-11-09 2016-08-02 Cupron Inc. Methods and materials for skin care
US9469923B2 (en) 2013-10-17 2016-10-18 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with copper
US9828701B2 (en) 2013-10-17 2017-11-28 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (PTFE)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074166A1 (en) * 2000-04-05 2001-10-11 The Cupron Corporation Antimicrobial and antiviral polymeric materials
US7169402B2 (en) 2000-04-05 2007-01-30 The Cupron Corporation Antimicrobial and antiviral polymeric materials
KR100851022B1 (en) * 2000-04-05 2008-08-12 더 쿠프론 코포레이션 Antimicrobial and antiviral polymeric materials
US7296690B2 (en) 2002-04-18 2007-11-20 The Cupron Corporation Method and device for inactivating viruses
US7364756B2 (en) 2003-08-28 2008-04-29 The Cuprin Corporation Anti-virus hydrophilic polymeric material
US9403041B2 (en) 2004-11-09 2016-08-02 Cupron Inc. Methods and materials for skin care
US9931283B2 (en) 2004-11-09 2018-04-03 Cupron Inc. Methods and materials for skin care
JP2010018895A (en) * 2008-07-08 2010-01-28 Mitsubishi Rayon Co Ltd Wet spinning method for antimicrobial acrylic fiber
US20150373989A1 (en) * 2011-05-24 2015-12-31 Agienic, Inc. Antimicrobial articles of manufacture
US10034478B2 (en) * 2011-05-24 2018-07-31 Agienic, Inc. Antimicrobial articles of manufacture
US9469923B2 (en) 2013-10-17 2016-10-18 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with copper
US9828701B2 (en) 2013-10-17 2017-11-28 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (PTFE)

Similar Documents

Publication Publication Date Title
US5047448A (en) Antimicrobial-shaped article and a process for producing the same
CN102691129B (en) Antibacterial polyster fiber as well as production method and application thereof
US5985301A (en) Antibacterial cellulose fiber and production process thereof
CN102041562B (en) Preparation method of antibacterial fiber
CN101195930B (en) Antimicrobial polyamide 6 fibre and production method thereof
CN101747624B (en) Hygroscopic fine denier/superfine denier nylon masterbatch, nylon and preparation method thereof
JP5666450B2 (en) Functional cellulosic moldings
JPH03113011A (en) Synthetic yarn and production thereof
WO2008003243A1 (en) Calamine viscose fiber, its process for preparing and application
JP3392554B2 (en) Antibacterial fibrous material
CN115433440B (en) Natural herbal antibacterial master batch for polymeric fibers, preparation method and fabric containing natural grass and wood antibacterial components
JP2945264B2 (en) Antimicrobial fiber and method for producing the same
JP3247293B2 (en) Antibacterial cellulose acetate fiber and antibacterial fiber product
JPH01246204A (en) Antimicrobial formed products and their production
JPH01242665A (en) Antibacterial molding and its production
CN201634798U (en) Sheath core type germproof composite fibre
JP2593890B2 (en) Antibacterial molded article and method for producing the same
WO2007078076A1 (en) Method for preparing splittable compositefibers having antimicrobial and deodorant properties
JPH0299606A (en) Fiber having deodorant and antimicrobial performance and production thereof
JPH11100713A (en) Antimicrobial cellulose acetate fiber containing chitosan and its production
JPH0359108A (en) Synthetic fiber having antimicrobial property and healthy action and production thereof
JPH02269141A (en) Antimicrobial molded product and production thereof
JP2925372B2 (en) Flame-retardant antibacterial fiber and method for producing the same
JPH01250411A (en) Antifungal formed product and production thereof
JP2003171807A (en) Biodegradable antibacterial socks