JPH03109762A - Gate protective circuit device for field-effect transistor - Google Patents

Gate protective circuit device for field-effect transistor

Info

Publication number
JPH03109762A
JPH03109762A JP1247585A JP24758589A JPH03109762A JP H03109762 A JPH03109762 A JP H03109762A JP 1247585 A JP1247585 A JP 1247585A JP 24758589 A JP24758589 A JP 24758589A JP H03109762 A JPH03109762 A JP H03109762A
Authority
JP
Japan
Prior art keywords
protection
effect transistor
gate
protective
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1247585A
Other languages
Japanese (ja)
Inventor
Yukiaki Komatsu
幸哲 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1247585A priority Critical patent/JPH03109762A/en
Publication of JPH03109762A publication Critical patent/JPH03109762A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance protection effect for a gate of a field effect transistor by inserting a protection resistor between the gate of the field effect transistor and the input terminal. CONSTITUTION:Protective resistors R1 and R2 are inserted in series between a gate 4 of a field effect transistor and the input terminal Ti. Thus, by providing a plurality of protective resistors and enabling impurity concentrations of resistance layers for them differ mutually, a current-limiting function is given to the protective resistor consisting of a resistance layer with the lower impurity concentration and a current shunting function is given to a protective diode which is available with the protective resistor consisting of a resistance layer with a higher impurity concentration, thus enhancing protection effect while maintaining the current limiting performance and current shunting performance to be given to the protective circuit device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタのゲートをその入力端子
から侵入する静電気等に基づく過電圧から保護するため
、電界効果トランジスタとともに集積回路装置内に組み
込むに適するそのゲート保護回路装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for incorporating a field-effect transistor into an integrated circuit device together with a field-effect transistor in order to protect the gate of the field-effect transistor from overvoltage caused by static electricity or the like that enters from its input terminal. The present invention relates to a suitable gate protection circuit device.

〔従来の技術〕[Conventional technology]

周知のように、電界効果トランジスタないしはMOS)
ランジスタでは、その動作しきい値を極力低める上でゲ
ート下の酸化膜の厚みを薄くふつう1000Å以下にす
る必要があるためゲートが過電圧により破壊されやすい
問題がある。と(に集積回路装置内に組み込まれその入
力端子から信号を直接に受ける入力回路用の電界効果ト
ランジスタでは、静電的に帯電した人体の放電による鋭
いパルス状の過電圧が入力端子から侵入するとゲート破
壊を生じやすいので、入力端子とそのゲート間には過電
圧保護回路を挿入するのが通例である。
As is well known, field effect transistor or MOS)
In transistors, in order to lower the operating threshold as much as possible, the thickness of the oxide film under the gate needs to be thin, usually less than 1000 Å, which causes the problem that the gate is easily destroyed by overvoltage. In a field effect transistor for an input circuit that is built into an integrated circuit device and receives a signal directly from its input terminal, if a sharp pulse-like overvoltage due to the discharge of an electrostatically charged human body enters from the input terminal, the gate will close. Since damage is likely to occur, it is customary to insert an overvoltage protection circuit between the input terminal and its gate.

以下、この従来技術の概要を第3図および第4図を参照
して説明する。
An overview of this prior art will be explained below with reference to FIGS. 3 and 4.

第3図の入力回路はよく知られているCMO3構成のイ
ンバータ回路で、1対の電源電位点VdとVsの間に直
列接続されたpチャネル電界効果トランジスタtpとn
チャネル電界効果トランジスタTr+で構成され、両ト
ランジスタの相互接続点から出力端子Toが導出される
The input circuit in FIG. 3 is a well-known CMO3 inverter circuit, in which p-channel field effect transistors tp and n are connected in series between a pair of power supply potential points Vd and Vs.
It is composed of a channel field effect transistor Tr+, and an output terminal To is led out from the interconnection point of both transistors.

両トランジスタrpとTnの共通[1ゲートと入力端子
tiとの間に抵抗Rと1対のダイオードDdとDsから
なる保護回路が挿入される。保護抵抗Rは多結晶シリコ
ン膜等からなる高抵抗で、過電圧パルスの侵入時にゲー
トに流入する電流を制限する。
A protection circuit consisting of a resistor R and a pair of diodes Dd and Ds is inserted between the common gate of both transistors rp and Tn and the input terminal ti. The protection resistor R is a high resistance made of a polycrystalline silicon film or the like, and limits the current flowing into the gate when an overvoltage pulse enters.

保護ダイオードDdとO3はトランジスタrpとTnが
組み込まれている半導体領域内に作り込まれ、正の過電
圧の侵入時にはダイオードDdが導通かつダイオードD
sが降伏し、負の過電圧の侵入時にはダイオードDdが
降伏かつダイオードD3が導通して、電流を電a電位点
VdとVsの方にそれぞれ分流することによりゲート破
壊を防止する。
The protection diodes Dd and O3 are built in the semiconductor region in which the transistors rp and Tn are incorporated, and when a positive overvoltage enters, the diode Dd becomes conductive and the diode D
When s breaks down and a negative overvoltage enters, diode Dd breaks down and diode D3 conducts to prevent gate breakdown by shunting current to potential points Vd and Vs of voltage a, respectively.

第4図の従来例では保護ダイオードO3は上と同じであ
るが、保護抵抗Rは半導体領域内に作り込まれた抵抗層
で構成され、保護ダイオードDdとしてはこの抵抗層と
半導体領域の間のpn接合が利用されるので、前の従来
例よりも小さなチップ面積内に保護回路をより簡単に作
り込める。本発明もかかる抵抗層からなる保護抵抗とそ
れに付随する保護ダイオードを用いるものに関する。
In the conventional example of FIG. 4, the protection diode O3 is the same as above, but the protection resistor R is composed of a resistance layer built in the semiconductor region, and the protection diode Dd is formed between this resistance layer and the semiconductor region. Since a pn junction is utilized, the protection circuit can be more easily built into a smaller chip area than in the previous prior art. The present invention also relates to a protection resistor made of such a resistance layer and a protection diode attached thereto.

なお、抵抗層に付随するダイオードは、抵抗層ど半導体
領域間のpn接合によるものであるから、第4図でこの
保護ダイオードDdと保護抵抗Rとの接続個所が横線で
示されたように、保護抵抗Rの一端から他端にかけてい
わば分布接続されたダイオードであり、従って過電圧の
侵入時にゲートに流れ込む電流を分流する効果が第3図
の保護ダイオードDdよりも高い利点がある。
Note that since the diode attached to the resistive layer is formed by a pn junction between the resistive layer and the semiconductor region, the connection point between the protective diode Dd and the protective resistor R is shown by the horizontal line in FIG. It is a diode that is so to speak distributed-connected from one end of the protection resistor R to the other end, and therefore has the advantage that it is more effective in shunting the current flowing into the gate when an overvoltage enters than the protection diode Dd shown in FIG. 3.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように保護抵抗をいわゆる拡散抵抗にすれば、そ
れ用の抵抗層と半導体領域間のρn接合を保護ダイオー
ドに利用できるが、抵抗層の面抵抗を上げて電流制限性
能を高めると保護ダイオードの方の分流性能が落ちて来
る問題がある。
As mentioned above, if the protective resistor is a so-called diffused resistor, the ρn junction between the resistive layer and the semiconductor region can be used as a protective diode, but if the sheet resistance of the resistive layer is increased to improve current limiting performance, the protective diode becomes There is a problem that the shunt performance of the 2nd side decreases.

これは、保護抵抗用の抵抗層の面抵抗を上げるために不
純物濃度を下げると、保護ダイオード用のpn接合の電
圧電流特性が平坦化して分流可能な電流容量が低下する
ためである。もちろん、不純物濃度を下げずに抵抗層を
大形化すればよいが、当然大きなチップ面積を割かねば
ならない。
This is because when the impurity concentration is lowered to increase the sheet resistance of the resistance layer for the protection resistor, the voltage-current characteristics of the pn junction for the protection diode become flat, and the current capacity that can be shunted decreases. Of course, it is possible to increase the size of the resistance layer without lowering the impurity concentration, but this naturally requires a large chip area.

本発明はかかる矛盾を解決して、電界効果トランジスタ
のゲートを過電圧から保護する性能を改善することを目
的とする。
The present invention aims to resolve this contradiction and improve the performance of protecting the gate of a field effect transistor from overvoltage.

〔課題を解決するための手段〕[Means to solve the problem]

この目的は本発明によれば、電界効果トランジスタ用ゲ
ート保護回路装置として、電界効果トランジスタに対す
る電源電位が与えられる一方の導電形の半導体領域内に
互いに異なる不純物濃度で拡散された他方の導電形の抵
抗層からそれぞれなる?!@個の保護抵抗と、各抵抗層
と半導体領域との間のpn接合によりそれぞれ形成され
る複数個の保護ダイオードを設け、かかる複数個の保護
抵抗をゲートとそれに対する入力端子の間に直列に挿入
することによって達成される。
This purpose, according to the present invention, is a gate protection circuit device for a field effect transistor, in which a semiconductor region of one conductivity type to which a power supply potential is applied to the field effect transistor is diffused with different impurity concentrations. Each consists of a resistance layer? ! A plurality of protection resistors and a plurality of protection diodes each formed by a pn junction between each resistance layer and a semiconductor region are provided, and the plurality of protection resistances are connected in series between a gate and an input terminal thereof. This is accomplished by inserting.

なお、上記の不純物濃度が互いに異なる抵抗層によりも
ちろん種々の抵抗値をもつ保護抵抗を形成できるが、当
然ながら不純物濃度の高い方の抵抗層で高抵抗値の保護
抵抗を、不純物濃度の低い方の抵抗層で低抵抗値の保護
抵抗をそれぞれ形成するのが量も合理的である。
It should be noted that, of course, protective resistors with various resistance values can be formed by using the above-mentioned resistive layers with different impurity concentrations, but of course, the resistive layer with higher impurity concentration can form a protective resistor with a high resistance value, and the resistive layer with lower impurity concentration can form a protective resistor with a higher resistance value. It is reasonable in terms of quantity to form a protective resistor with a low resistance value using each resistor layer.

この際、高い不純物濃度の抵抗層と半導体領域の間のp
n接合を利用する保護ダイオードの方が高い電流分流性
能を有し、高抵抗の保護抵抗と低抵抗の保護抵抗のいず
れを入力端子側に接続するかは、ゲート保護のため電流
制限性能と電流分流性能のいずれを優先させかによって
決められるが、ふつうは前者を優先させて高抵抗の保護
抵抗を入力端子側に接続するのが有利である。
At this time, p between the resistive layer with high impurity concentration and the semiconductor region
A protection diode that uses an n-junction has higher current shunting performance, and whether to connect a high-resistance protection resistor or a low-resistance protection resistor to the input terminal side depends on the current limiting performance and current for gate protection. The decision depends on which of the shunting performance is given priority, but it is usually advantageous to give priority to the former and connect a high-resistance protection resistor to the input terminal side.

集積回路装置の場合、入力端子は接続パッドやバンブ電
極等の接続端子構造とされ、チップ面積中のかなりの部
分がこれに割り当てられるので、それ用のスペースを有
効利用してその下側の半導体領域内に保護抵抗や保護ダ
イオード用の抵抗層を作り込むのが本発明の実施上有利
である。
In the case of integrated circuit devices, input terminals have a connection terminal structure such as connection pads or bump electrodes, and a considerable portion of the chip area is allocated to these, so the space for them can be used effectively to connect the semiconductor underneath. It is advantageous for implementing the invention to build a resistive layer for a protective resistor or a protective diode in the region.

なお、保護抵抗用の抵抗層に付随する保護ダイオードは
電界効果トランジスタへの1対の電源電位点中の一方側
に設けるのが最も簡単であるが、もちろん他方側にも設
けることができ、この場合の抵抗層はゲート側に接続さ
れる低抵抗の保護抵抗用とするのが望ましい。
It should be noted that it is easiest to provide the protection diode attached to the resistance layer for the protection resistor on one side of the pair of power supply potential points to the field effect transistor, but it can of course be provided on the other side as well. In this case, it is desirable that the resistance layer be used as a low-resistance protection resistor connected to the gate side.

本発明の実施上は、保護抵抗用の抵抗層を作化込む工程
を電界効果トランジスタ用の工程と共鋪化するのが望ま
しく、不純物濃度の低い方の抵打層は電界効果トランジ
スタのウェルの拡散と同酊に、不純物濃度の高い方の抵
抗層はそのソース・ドレイン層の拡散と同時にそれぞれ
作り込むの力実用上と(に有利である。
In implementing the present invention, it is desirable to integrate the process of forming the resistance layer for the protective resistor with the process for forming the field effect transistor, and the resistance layer with a lower impurity concentration is formed in the well of the field effect transistor. At the same time as diffusion, it is advantageous in practical terms to create a resistance layer with a higher impurity concentration at the same time as the diffusion of its source and drain layers.

〔作用〕[Effect]

本発明は、保護抵抗用の抵抗層の不純?!l濃度力保護
回路装置の電流制限性能と電流分流性能にえして相反的
な影響を与える点に着目し、保護抵打を複数個設けてそ
れら用の抵抗層の不純物濃度を互いに異ならせることに
より、低い方の不純物濃度をもつ抵抗層からなる保護抵
抗には電流制限性能を、高い方の不純物濃度をもつ抵抗
層からなお保護抵抗にはそれに付随する保護ダイオード
に1流分流機能をそれぞれ主に分担させ、これにより保
護回路装置に賦与すべき電流11J限性能と電流分流性
能とを両立させながらその保護効果を高めて課題の解決
に成功したものである。
The present invention solves the problem of impurities in the resistance layer for protective resistance. ! l Focusing on the fact that they have contradictory effects on the current limiting performance and current shunting performance of the concentration force protection circuit device, providing a plurality of protective resistors and making the impurity concentrations of their resistance layers different from each other. Therefore, the protective resistor consisting of the resistive layer with the lower impurity concentration has current limiting performance, and the protective resistor consisting of the resistive layer with the higher impurity concentration has the primary current shunting function to the accompanying protective diode. In this way, we succeeded in solving the problem by increasing the protection effect while achieving both the 11 J current limit performance and current shunting performance that should be given to the protection circuit device.

〔実施例〕〔Example〕

以下、図を参照しながら本発明の詳細な説明する。第1
図は本発明によるゲート保護回路装置の実施例を保護対
象の電界効果トランジスタとともに示す断面図と等価回
路図と上面図、第2図は異なる実施例の上面図であり、
これらの図中の前に説明した第3図および第4図に対応
する部分には同じ符号が付されている。
Hereinafter, the present invention will be described in detail with reference to the drawings. 1st
The figures are a sectional view, an equivalent circuit diagram, and a top view showing an embodiment of the gate protection circuit device according to the present invention together with a field effect transistor to be protected, and FIG. 2 is a top view of a different embodiment.
Portions in these figures corresponding to those in FIGS. 3 and 4 described above are given the same reference numerals.

第1図(a)は、1対の相補電界効果トランジスタ”9
* Tnとともに、保護抵抗R1,[2と保護ダイオー
ドDi、 02とからなる保護回路装置を組み込んだ集
積回路装置用チップの断面を模式的に示す、半導体領域
lはこの例ではn形の半導体基板ないしエピタキシャル
層で、例えば2〜10ΩCMの比抵抗とされる。この半
導体$I域1の表面からnチャネル電界効果トランジス
タTnのウェル2をp形でまず作り込むが、この実施例
ではこれと同時に保護抵抗R1用に抵抗層3を同じp形
で作り込む、これらの不純物濃度は比較的低い101一
原子/ cd程度1拡散深さは例えば5−とされる。
FIG. 1(a) shows a pair of complementary field effect transistors "9"
*Semiconductor region l is an n-type semiconductor substrate in this example. or an epitaxial layer, and has a specific resistance of, for example, 2 to 10 ΩCM. From the surface of this semiconductor $I region 1, a well 2 for an n-channel field effect transistor Tn is first made of p-type, and in this embodiment, at the same time, a resistance layer 3 for protection resistor R1 is made of the same p-type. The concentration of these impurities is relatively low, about 101 atoms/cd, and the diffusion depth is, for example, 5-.

次に、電界効果トランジスタ↑pとTn用に多結晶シリ
コン等のゲート4を半導体領域lとウェル2の表面上に
それぞれ0.1−以下の薄いゲート酸化膜を介して設け
る。このゲート4を通例のようにマスクの一部に利用し
なからpチャネル電界効果トランジスタT9のソース・
ドレイン層5とnチャネル電界効果トランジスタTnの
サブストレート接続層6とがp形で作り込まれるが、こ
の実施例ではこの工程を利用して保護抵抗R2用の抵抗
層7と保護抵抗R1用の抵抗接続層8が同じp形で作り
込まれる。これらはすべて例えば101原子/d程度の
不純物濃度で0.5−程度の深さに拡散される。
Next, gates 4 made of polycrystalline silicon or the like for field effect transistors ↑p and Tn are provided on the surfaces of the semiconductor region 1 and the well 2 through thin gate oxide films of 0.1- or less thickness, respectively. This gate 4 is not used as a part of the mask as usual, but is used as the source of the p-channel field effect transistor T9.
The drain layer 5 and the substrate connection layer 6 of the n-channel field effect transistor Tn are made of p-type, and in this embodiment, this process is used to form the resistor layer 7 for the protective resistor R2 and the resistive layer 7 for the protective resistor R1. The resistive connection layer 8 is made of the same p-type. All of these are diffused to a depth of about 0.5 mm with an impurity concentration of, for example, about 101 atoms/d.

なおこの例では、抵抗層7を図のようにその一部が抵抗
N3と重なり合うように作り込むことにより保護抵抗$
11.!:I?2を相互に接続する。
In this example, the protective resistance $
11. ! :I? 2 to each other.

さらに、nチャネル電界効果トランジスタTnのソース
・ドレイン層駆動とpチャネル電界効果トランジスタT
pのサブストレート接1110とがいずれもn形で上と
同程度の不純物濃度と拡散深さで同時に作り込まれる。
Furthermore, the source/drain layer drive of the n-channel field effect transistor Tn and the p-channel field effect transistor T
P substrate contacts 1110 are both n-type and made at the same time with the same impurity concentration and diffusion depth as above.

第1図(a)ではアルミ等の配線膜が接続線により簡略
に示されており、両電界効果トランジスタTpとTnの
ゲート4は共通接続されて配線膜13を介して保護抵抗
R2用の抵抗層7の一端と接続される。
In FIG. 1(a), a wiring film made of aluminum or the like is simply shown by a connecting line, and the gates 4 of both field effect transistors Tp and Tn are commonly connected and connected via a wiring film 13 to a resistor for the protective resistor R2. It is connected to one end of layer 7.

この例での入力端子TIは配線膜用の金属により酸化膜
ll上に形成された接続パッド12であって、その延長
部12aを介して保護抵抗$II用の抵抗層3の端部の
抵抗接続層8と接続される。
In this example, the input terminal TI is a connection pad 12 formed on the oxide film ll using a metal for wiring film, and the resistance at the end of the resistance layer 3 for the protection resistor $II is connected to the connection pad 12 through its extension 12a. It is connected to the connection layer 8.

通例のようにnチャネル電界効果トランジスタ1口の一
方のソース・ドレイン層9とサブストレート接続層6に
は電源電位Vsが与えられ、従ってウェル2が電源電位
Vsに置かれる。同様にpチャネルtN効果)ランジス
タTpの一方のソース・ドレイン層5とサブストレート
接11110に゛電源電位Vdが与えられ、従って半導
体911域lが電源電位Vdに置かれる6本発明におけ
る保護ダイオードD1およびD2は、図示のようにこの
電源電位Vdに置かれたこの例ではn形の半導体領域1
と保護抵抗R1およびR2用のp形の抵抗層3および7
との間のpn接合によりそれぞれ形成される。
As usual, a power supply potential Vs is applied to one source/drain layer 9 and the substrate connection layer 6 of one n-channel field effect transistor, and therefore the well 2 is placed at the power supply potential Vs. Similarly, the p-channel tN effect) A power supply potential Vd is applied to one source/drain layer 5 of the transistor Tp and the substrate contact 11110, and therefore the semiconductor region 1 is placed at the power supply potential Vd.6 Protection diode D1 in the present invention and D2 are n-type semiconductor regions 1 in this example placed at this power supply potential Vd as shown.
and p-type resistance layers 3 and 7 for protection resistors R1 and R2.
are formed by pn junctions between them.

第1図(b)は、かかる保護抵抗R1およびR2と保護
ダイオードDIおよびD2が組み込まれた同図(a)の
集積回路装置チップに対応する等価回路図である。
FIG. 1(b) is an equivalent circuit diagram corresponding to the integrated circuit device chip of FIG. 1(a) in which such protective resistors R1 and R2 and protective diodes DI and D2 are incorporated.

本発明によるゲート保護回路装置は、入力端子Tiと相
補電界効果トランジスタ対rpおよびTnの共通接続ゲ
ート間に直列に挿入された保護抵抗R1およびR2と、
これら保護抵抗に付随して電源電位点Vdとの間に等価
的に接続された保護ダイオードD1および02とからな
る。
The gate protection circuit device according to the present invention includes protection resistors R1 and R2 inserted in series between the input terminal Ti and the common connection gate of the complementary field effect transistor pair rp and Tn;
It consists of protection diodes D1 and 02 connected equivalently to the power supply potential point Vd along with these protection resistors.

この実施例では、保護抵抗R1用の抵抗層3の方が保護
抵抗R2用の抵抗層7より不純物濃度が低(従って面抵
抗が高いので、保護抵抗R1が高抵抗とされて過電圧パ
ルスによりゲートに流入する電流の制限機能を主に分担
する。低抵抗側の保護抵抗R2が分担する電流制限機能
は副次的であるが、対応する抵抗Ji7の不純物濃度が
高いので、それに付随する保護ダイオードD2の方が保
護抵抗R1に付随する保護ダイオードD1より順方向電
流を大きく取ることができ、従って電流を電源電位点V
dに向けて分流する機能を主に分担する。
In this embodiment, the resistor layer 3 for the protective resistor R1 has a lower impurity concentration than the resistive layer 7 for the protective resistor R2 (therefore, the sheet resistance is high), so the protective resistor R1 is made to have a high resistance and is gated by an overvoltage pulse. The protection resistor R2 on the low resistance side mainly shares the current limiting function.However, since the impurity concentration of the corresponding resistor Ji7 is high, the accompanying protection diode D2 can take a larger forward current than the protection diode D1 attached to the protection resistor R1, so the current can be lowered to the power supply potential point V.
It mainly shares the function of dividing the flow toward d.

なお、正負両極性をもち得る過電圧からゲートを完全に
保護するには、第1図(b)に示す保護ダイオードDa
を電源電位点v3とゲート間に接続する必要があるが、
もちろんこれには従来どおり通常のダイオードを用いる
なり、保護抵抗R2と同様な高不純物濃度の抵抗層から
なる低抵抗を保護抵抗R2とゲートの間に挿入してそれ
に付随する保護ダイオードを利用することができる。こ
のためには、第1図(a)のnチャネル電界効果トラン
ジスタ対nのp形のウェル2を広めに拡散して置き、ソ
ース・ドレイン層9の拡散と同時にn形の高不純IFI
濃度で抵抗層を作り込むのが有利である。
In addition, in order to completely protect the gate from overvoltage that can have both positive and negative polarities, a protection diode Da shown in FIG.
It is necessary to connect between the power supply potential point v3 and the gate,
Of course, instead of using a normal diode as before, it is also possible to insert a low resistance made of a resistive layer with a high impurity concentration similar to the protective resistor R2 between the protective resistor R2 and the gate and use the accompanying protective diode. I can do it. For this purpose, the p-type well 2 of the n-channel field effect transistor pair n shown in FIG.
It is advantageous to build in the resistive layer with a high concentration.

第1図(C)は抵抗層3と7の拡散゛パターン例を示す
、この実施例では抵抗層3と7の面抵抗がそれぞれ、数
にΩ/口と数十Ω/口程度であり、抵抗層3は広幅の短
珊状に、抵抗層7は細長な折り畳み形状にそれぞれ形成
される0両抵抗層は重なり合い部で相互接続され、抵抗
層3の端部は接続パッド12の延長部12aに、抵抗層
7の端1部はゲート用の配線膜13にそれぞれ接続され
る。
FIG. 1(C) shows an example of the diffusion pattern of the resistive layers 3 and 7. In this example, the sheet resistances of the resistive layers 3 and 7 are on the order of a few Ω/min and several tens of Ω/min, respectively. The resistance layer 3 is formed in a wide short coral shape, and the resistance layer 7 is formed in an elongated folded shape.The two resistance layers are interconnected at the overlapping part, and the end of the resistance layer 3 is formed in the extension part 12a of the connection pad 12. Parts of the ends of the resistance layer 7 are respectively connected to the wiring film 13 for the gate.

第2図は接続バッド12の下側に保護抵抗R1とR2を
作り込む実施例を示す、保護抵抗R1用の短冊状パター
ンの低不純物濃度の抵抗層3は接続パッド12の下側に
作り込まれ、一端が抵抗接続層8を介して接続バッド1
2の隅部と接続される。保護抵抗R2用の細長な折り畳
まれたパターンの高不純物濃度の抵抗層7は、一端が抵
抗N3の他端と重ね合わされ、ゲート配線膜13と接続
される他端を除いて接続バッド12の下側に作り込まれ
る。接続パッドがとくに小形の場合を除き、このように
保護抵抗R1とR2およびそれらに付随する保護ダイオ
ードをその下側に作り込んでしまうことができ、本発明
によるゲート保護回路装置の組み込みに要するチップ面
積を最小にできる。
FIG. 2 shows an embodiment in which protective resistors R1 and R2 are formed under the connection pad 12. A resistive layer 3 with a low impurity concentration in a strip-like pattern for the protective resistor R1 is formed under the connection pad 12. one end is connected to the connection pad 1 through the resistance connection layer 8.
It is connected to the corner of 2. One end of the highly impurity-concentrated resistance layer 7 with an elongated folded pattern for the protection resistor R2 is overlapped with the other end of the resistor N3, and is located under the connection pad 12 except for the other end connected to the gate wiring film 13. Built into the side. Unless the connection pad is particularly small, the protection resistors R1 and R2 and their associated protection diodes can thus be fabricated on the underside, reducing the chip requirement for incorporating the gate protection circuit arrangement according to the invention. The area can be minimized.

以上のいずれの実施例においても、保護抵抗R1の方を
数にΩ程度の高抵抗にし、保護抵抗R2の方を数百Ω程
度の比較的低抵抗として、過電圧侵入時の電流制限機能
は保護抵抗R1に、電流分流機能は保護抵抗R2に付随
する保護ダイオードD2にそれぞれ主に分担させるのが
望ましい。
In any of the above embodiments, the protective resistor R1 has a high resistance of several ohms, and the protective resistor R2 has a relatively low resistance of several hundred ohms, so that the current limiting function in the event of an overvoltage is protected. It is desirable that the current shunting function is mainly shared by the resistor R1 and the protective diode D2 attached to the protective resistor R2.

第1図(ハ)の等価回路において、入力端子Tiに電源
電位Vdよりも高い正の過電圧パルスが掛かったとき保
護ダイオードDIとD2が順方向に導通し、電界効果ト
ランジスタ↑pとTnのゲートに流入する電流を主に保
護抵抗R1により制限し、かつ主に保護ダイオードD2
を介して分流しながらゲートの破壊を防止する。この際
、保護ダイオードDsも降伏して電流を分流する役目を
果たす、入力端子↑lに電源電位Vaよりも低い負の過
電圧パルスが掛かったときは保護ダイオードDsが導通
し、電流を両保護抵抗R1およびR2で制限し、かつ保
護ダイオードD3で分流しながらゲーL破壊を防止する
。この際の保護ダイオード01とD2はそれらに対応す
る抵抗層の不純物濃度の差に基づき例えば前者が十数V
In the equivalent circuit of Fig. 1 (c), when a positive overvoltage pulse higher than the power supply potential Vd is applied to the input terminal Ti, the protection diodes DI and D2 conduct in the forward direction, and the gates of the field effect transistors ↑p and Tn The current flowing into the circuit is mainly limited by the protective resistor R1, and mainly by the protective diode D2.
This prevents the gate from being destroyed while diverting the flow through the gate. At this time, the protection diode Ds also breaks down and plays the role of shunting the current. When a negative overvoltage pulse lower than the power supply potential Va is applied to the input terminal ↑l, the protection diode Ds becomes conductive and the current is transferred to both protection resistances. The current is limited by R1 and R2, and the current is shunted by the protection diode D3 to prevent damage to the gate L. At this time, the protection diodes 01 and D2 are set to have a voltage of about 10 or more V, for example, based on the difference in impurity concentration of their corresponding resistance layers.
.

後者がその約半分の降伏電圧を有するが、高抵抗の保護
抵抗R1が入力端子TI側に挿入されているので、両保
護ダイオードD1とD2がほぼ同時に降伏して電流を分
流する役目を果たす、ゲート耐圧はふつう十数V程度で
あるが、本発明によりその過電圧耐量を少な(とも20
0 Vに向上できる。
The latter has a breakdown voltage about half that, but since a high-resistance protection resistor R1 is inserted on the input terminal TI side, both protection diodes D1 and D2 break down almost simultaneously and serve to shunt the current. The gate withstand voltage is normally about 10-odd V, but with the present invention, the overvoltage withstand voltage has been reduced (total of 20 V).
It can be improved to 0V.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり本発明では電界効果トランジスタの
ゲート保護のために、電界効果トランジスタ用電源電位
が与えられる一方の導電形の半導体6N域内に互いに異
なる不純物濃度で拡散された他方の導電形の抵抗層から
それぞれなる複数個C保護抵抗と、各抵抗層と半導体顛
域との間のput+J合によりそれぞれ形成される複数
個の保護ダイオードとを設け、これら複数個の保護抵抗
を電界辺果トランジスタのゲートとその入力端子の間に
泊列に挿入することにより、高い方の不純物濃度をもつ
抵抗層に付随して形成される保護グイオートの導通時の
電流容量を増大させ、この保護ダイオードには過電圧侵
入時にゲートに流入する電流C対する分流機能を、低い
方の不純物濃度をもつ和抗層からなる保護抵抗にはこの
流入電流の制限桃能をそれぞれ主に分担させながら、電
流分流性能と電流分流性能とを両立させて電界効果トラ
ンジスタのゲートに対する保護効果を従来より格段g高
めることができる。
As explained above, in the present invention, in order to protect the gate of the field effect transistor, the resistance layer of the other conductivity type is diffused with different impurity concentrations in the semiconductor 6N region of one conductivity type to which the power supply potential for the field effect transistor is applied. and a plurality of protection diodes each formed by a put+J combination between each resistance layer and a semiconductor area, and these protection resistances are connected to the gate of the field edge transistor. By inserting the protective diode between the resistor layer and its input terminal in a row, the current capacity of the protective diode formed along with the resistive layer with the higher impurity concentration during conduction is increased, and this protective diode is protected against overvoltage intrusion. The current shunting performance and the current shunting performance are mainly assigned to the protection resistor, which is composed of a resistance layer with a lower impurity concentration, and the current shunting function for the current C that flows into the gate. By achieving both of these, the protection effect for the gate of the field effect transistor can be significantly increased compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図が本発明に関し、第1図は本発明に
よるゲート保護回路装置の実施例を保護対象としての電
界効果トランジスタとともに示す断面図2等価回路図お
よび上面図、第2図は本発明の異なる実施例の上面図で
ある。第3図および第4図はそれぞれ異なる従来のゲー
ト保護回路の等価回路図である。これらの図において、
1:半導体領域、2:電界効果トランジスタ用ウェル、
3;抵抗層、4:ゲート、5:電界効果トランジスタの
ソース・ドレイン層、szi界効果トランジスタのサブ
ストレート接続層、7:抵抗層、8:抵抗接続層、9:
電界効果トランジスタのソース・ドレイン層、10:電
界効果トランジスタのサブストレート接続層、ll:酸
化膜、12:入力端子用接続パッド、12a:接続パッ
ドの延長部、13+抵抗配線膜、Dp、Ds:従来の保
護ダイオード、Dl、D2 +本発明による保護ダイオ
ード、R:従来の保護抵抗、R1,R2:保護抵抗、T
it入力端子、To+出力端子、Tn:nチャネル電界
効果トランジスタ、 Tp: pチャネル電界効果トランジスタ、 第1図
1 and 2 relate to the present invention; FIG. 1 is a cross-sectional view showing an embodiment of a gate protection circuit device according to the present invention together with a field effect transistor as a protection target; FIG. 2 is an equivalent circuit diagram and a top view; FIG. 4 is a top view of a different embodiment of the invention. 3 and 4 are equivalent circuit diagrams of different conventional gate protection circuits, respectively. In these figures,
1: Semiconductor region, 2: Well for field effect transistor,
3: resistance layer, 4: gate, 5: source/drain layer of field effect transistor, substrate connection layer of SZI field effect transistor, 7: resistance layer, 8: resistance connection layer, 9:
Source/drain layer of field effect transistor, 10: Substrate connection layer of field effect transistor, ll: Oxide film, 12: Connection pad for input terminal, 12a: Extension of connection pad, 13+resistance wiring film, Dp, Ds: Conventional protection diode, Dl, D2 + protection diode according to the present invention, R: conventional protection resistor, R1, R2: protection resistor, T
it input terminal, To+ output terminal, Tn: n-channel field effect transistor, Tp: p-channel field effect transistor, Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタに対する電源電位が与えられる一
方の導電形の半導体領域内に互いに異なる不純物濃度で
拡散された他方の導電形の抵抗層からそれぞれなる複数
個の保護抵抗と、各抵抗層と半導体領域との間のpn接
合によりそれぞれ形成される複数個の保護ダイオードと
を備え、電界効果トランジスタのゲートとその入力端子
の間に複数個の保護抵抗を直列に挿入してなる電界効果
トランジスタ用ゲート保護回路装置。
A plurality of protective resistors each consisting of a resistor layer of the other conductivity type diffused with different impurity concentrations in a semiconductor region of one conductivity type to which a power supply potential is applied to the field effect transistor; A gate protection circuit for a field effect transistor, comprising a plurality of protection diodes each formed by a pn junction between the two, and a plurality of protection resistors inserted in series between the gate of the field effect transistor and its input terminal. Device.
JP1247585A 1989-09-22 1989-09-22 Gate protective circuit device for field-effect transistor Pending JPH03109762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247585A JPH03109762A (en) 1989-09-22 1989-09-22 Gate protective circuit device for field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247585A JPH03109762A (en) 1989-09-22 1989-09-22 Gate protective circuit device for field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03109762A true JPH03109762A (en) 1991-05-09

Family

ID=17165695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247585A Pending JPH03109762A (en) 1989-09-22 1989-09-22 Gate protective circuit device for field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03109762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217893B2 (en) 2005-12-09 2012-07-10 Thomson Licensing Inertial sensor-based pointing device with removable transceiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217893B2 (en) 2005-12-09 2012-07-10 Thomson Licensing Inertial sensor-based pointing device with removable transceiver

Similar Documents

Publication Publication Date Title
US5610426A (en) Semiconductor integrated circuit device having excellent dual polarity overvoltage protection characteristics
US4990802A (en) ESD protection for output buffers
US5717559A (en) Input/output protection device for use in semiconductor device
US4876584A (en) Electrostatic discharge protection circuit
US4811155A (en) Protection circuit for a semiconductor integrated circuit having bipolar transistors
US4994904A (en) MOSFET having drain voltage detection function
JP3009614B2 (en) Electrostatic discharge protection circuit for integrated circuits, electrostatic discharge protection device, and method for protecting against electrostatic discharge
JP3275095B2 (en) Transient protection opening of integrated circuits
US5623156A (en) Electrostatic discharge (ESD) protection circuit and structure for output drivers
KR0164908B1 (en) Semiconductor device having a protective transistor
US5293057A (en) Electrostatic discharge protection circuit for semiconductor device
JPH0558583B2 (en)
JP2906749B2 (en) Gate protection device for semiconductor device
US6433393B1 (en) Semiconductor protective device and method for manufacturing same
JPS6354762A (en) Semiconductor integrated circuit device
JPH03109762A (en) Gate protective circuit device for field-effect transistor
JPH07263633A (en) Static electricity-proof discharge protector of semiconductor device
JP2580571B2 (en) Input protection circuit
EP0083699A2 (en) Protective circuit for semiconductor devices
JP2676899B2 (en) Input circuit protection device for MOS integrated circuit device
JP3288545B2 (en) Semiconductor device
JPH07105495B2 (en) Insulated gate type semiconductor device
JPH02135774A (en) Protective device
JPS6355871B2 (en)
JPH0410228B2 (en)