JPH03108657A - Apparatus for detecting heterogeneous layer in metal - Google Patents

Apparatus for detecting heterogeneous layer in metal

Info

Publication number
JPH03108657A
JPH03108657A JP24532289A JP24532289A JPH03108657A JP H03108657 A JPH03108657 A JP H03108657A JP 24532289 A JP24532289 A JP 24532289A JP 24532289 A JP24532289 A JP 24532289A JP H03108657 A JPH03108657 A JP H03108657A
Authority
JP
Japan
Prior art keywords
coil
frequency
heterogeneous layer
detecting
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24532289A
Other languages
Japanese (ja)
Other versions
JP2523379B2 (en
Inventor
Seiji Asano
浅野 省二
Akira Mori
彰 森
Taku Murakami
卓 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1245322A priority Critical patent/JP2523379B2/en
Publication of JPH03108657A publication Critical patent/JPH03108657A/en
Application granted granted Critical
Publication of JP2523379B2 publication Critical patent/JP2523379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect a shape of a heterogeneous layer with high accuracy by detecting an infiltration depth based on difference between an output of a reference coil and an output of a detecting coil facing the heterogeneous layer. CONSTITUTION:A reference coil 4 and a detecting coil 5 are placed on a body 3 facing a work receiving base 2 on a base 1 along an X direction at a distance where the work receiving base 2 is reciprocally moved in the X direction by a motor 6. An output of the reference coil 4 and an output of the detecting coil 5 are transferred to a phase detecting circuit 14, which detects a shift in phases as voltage. Then the detected voltage is amplified by a differential amplifier 15 to be sent to a peak value holding circuit 16 where the peak voltage value is held. Then a data memory circuit 17 stores a frequency when the voltage exhibits the peak value. In a control and arithmetic circuit 10, a depth of a welded part A is calculated by the frequency sent from the circuit 17, and the depth and a relative position are combined to have a shape and a size of a heterogeneous layer in metal, in this case the welded part A, displayed 18 to permit determination of quality of the welding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼入層・浸炭層・合金化処理層などの熱処理
部や溶接部等の母材とは異なった組織、硬化、その他物
性を持つ金属的異質層の形状、大きさなどを非破壊、非
接触によって検出する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the structure, hardening, and other physical properties of heat-treated parts such as quenched layers, carburized layers, and alloyed layers and welded parts that are different from those of the base material. This invention relates to a device that non-destructively and non-contact detects the shape, size, etc. of a metallic heterogeneous layer.

〔従来の技術〕[Conventional technology]

金属を非破壊で検査する装置としては種々の装置が知ら
れている。
Various devices are known as devices for nondestructively inspecting metals.

例えば、金属表面に向けて超音波を発振し、その反射し
た超音波を受信することで金属内部の亀裂等の欠陥を検
出する超音波探傷装置。
For example, an ultrasonic flaw detector detects defects such as cracks inside metal by emitting ultrasonic waves toward the metal surface and receiving the reflected ultrasonic waves.

ソレノイドコイル、周波数可変発振器、演算部を備え、
ソレノイドコイルに同一周波数の電流を流して金属表面
との間に生じる渦電流の大きさによって浸炭層、焼入れ
層の深さを検出する渦流探傷装置。
Equipped with a solenoid coil, variable frequency oscillator, and calculation section.
An eddy current flaw detection device that detects the depth of carburized and hardened layers by passing a current of the same frequency through a solenoid coil and measuring the magnitude of the eddy current generated between the solenoid coil and the metal surface.

等が知られている。etc. are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前者の装置であると、金属内部の亀裂等の欠陥の検査に
は好適であるか金庫内異質層の形状、大きさを検査でき
ないばかりか、センザー自体を金属表面に水、浦等の媒
体を介して接触させる必要があり、金属表面に媒体を供
給しながら検査せねばならず面倒であると共に、溶接部
などの高温部分を検査すると熱影響を受けてセンサーが
損傷することがある。
The former device is not only suitable for inspecting defects such as cracks inside the metal, but also unable to inspect the shape and size of foreign layers inside the safe. The sensor must be brought into contact with the sensor through the metal surface, and inspection must be performed while supplying a medium to the metal surface, which is cumbersome. In addition, when inspecting a high-temperature part such as a weld, the sensor may be damaged due to thermal effects.

後者の装置であると、1つのソレノイドコイルを金属表
面に沿って移動してソレノイドコイルと対向する部分の
透磁率などの変化によって浸炭深さを検出するので、そ
の検出精度はあまり良くないばかりか、浸炭層の形状・
大きさを判断できない。
With the latter device, the carburization depth is detected by moving one solenoid coil along the metal surface and detecting changes in magnetic permeability, etc. of the part facing the solenoid coil, so the detection accuracy is not only not very good. , shape of carburized layer・
I can't judge the size.

そこで、本発明は前述の課題を解決できるようにした金
庫内異質層の検出装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a detection device for a foreign layer inside a safe, which can solve the above-mentioned problems.

〔課題を解決するための手段及び作用〕被検出物の母材
と対向した参照用コイルと、異質層と相対的に移動する
検出用コイル、各コイルに与えられる交番電流の周波数
を可変とする機構と、各コイルの出力差を検出し、その
出力差が最大の時の周波数を検出する手段と、その周波
数と前記相対位置によって異質層の形状を出力する手段
とを備えた金属内界質層検出装置であり、これによって
、被検出物の異質層の形状を精度良く検出てきる。
[Means and effects for solving the problem] A reference coil facing the base material of the object to be detected, a detection coil that moves relative to the heterogeneous layer, and the frequency of the alternating current given to each coil is made variable. a mechanism, a means for detecting the output difference of each coil and a frequency at which the output difference is maximum, and a means for outputting the shape of the heterogeneous layer based on the frequency and the relative position. This is a layer detection device, which allows the shape of a heterogeneous layer of an object to be detected to be detected with high accuracy.

〔実 施 例〕〔Example〕

第1図は装置の説明図であり、基台1にはワーク受台2
がX方向に往復動自在に設けられ、このワーク受台2と
対向した本体3には参照用コイル4と検出用コイル5が
X方向に間隔を置いて配設してあり、前記ワーク受台2
はモータ6によりX方向に往復移動される。
FIG. 1 is an explanatory diagram of the device, in which a base 1 has a workpiece holder 2.
is provided to be able to freely reciprocate in the X direction, and a reference coil 4 and a detection coil 5 are arranged at intervals in the X direction on the main body 3 facing the workpiece pedestal 2. 2
is reciprocated in the X direction by the motor 6.

例えば、モータ6により送りネジ杆を回転し、その送り
杆をワーク受台2に設けたナツト部材に螺合しである。
For example, a feed screw rod is rotated by the motor 6, and the feed rod is screwed into a nut member provided on the workpiece pedestal 2.

前記ワーク受台2には異質層を有する被検出体であるワ
ーク7がセットされ、このワーク7は例えば2枚の板7
a、7aをレーザ光によりスポット溶接したものであり
、その溶接部Aの形状・大きさを検出するようにしであ
る。
A workpiece 7, which is an object to be detected having a heterogeneous layer, is set on the workpiece pedestal 2, and this workpiece 7 is mounted on two plates 7, for example.
A and 7a are spot welded using a laser beam, and the shape and size of the welded portion A is detected.

制御・演算回路10はモータドライブ11に駆動信号を
送り、それによりモータ6が回転駆動され、制御・演算
回路10によってワーク受台2の移動ストロークか感知
できるようにしである。
The control/arithmetic circuit 10 sends a drive signal to the motor drive 11, which causes the motor 6 to rotate, so that the control/arithmetic circuit 10 can sense the movement stroke of the workpiece pedestal 2.

例えば、モータ6の回転をエン、コーダ、ポテンション
メータなどで検出して制御・演算回路10に送ったり、
モータ6をステップモータとしてそのステップモータに
送るパルス数をカラトンするようにしても良い。、 この様にすることで、参照様コイル4、検出用コイル5
がワーク7の異質層に対して移動したストローク、つま
り相対位置を制御・演算回路10で検知できるようにし
である。
For example, the rotation of the motor 6 is detected by an encoder, a coder, a potentiometer, etc. and sent to the control/arithmetic circuit 10,
The motor 6 may be a step motor and the number of pulses sent to the step motor may be adjusted. , By doing this, the reference coil 4 and the detection coil 5
This allows the control/arithmetic circuit 10 to detect the stroke of movement of the workpiece 7 with respect to the different layer of the workpiece 7, that is, the relative position.

なお、本体3をモータ6でX方向に往復動してワーク受
台2を静止するようにしても良い。
Note that the main body 3 may be reciprocated in the X direction by the motor 6, and the workpiece pedestal 2 may be kept stationary.

前記制御・演算回路10よりスィーブ回路12に信号を
送り、スィーブ回路12から周波散発振器13に可変信
号を送って参照用コイル4、検出用コイル5に異なる周
波数の交流電力か送られる。
The control/arithmetic circuit 10 sends a signal to the sweep circuit 12, the sweep circuit 12 sends a variable signal to the frequency scattering oscillator 13, and AC power of different frequencies is sent to the reference coil 4 and detection coil 5.

参照用コイル4と検出用コイル5の出力側は位相検波回
路14に送られて位相のずれを電圧として検出し、その
検出した電圧を差動増幅器15で増幅してピーク値ホー
ルド回路16に送ってピーク電圧値をホールドし、かつ
その電圧がピーク値の時の周波数をデータ記憶回路17
に記憶し、その記憶した周波数を制御・演算回路10に
送って周波数により溶接部Aの深さを求め、その深さと
前記相対位置を組み合せて金庫内異質層、この場合には
溶接部Aの形状・大きさを表示部18に表示する。
The output sides of the reference coil 4 and the detection coil 5 are sent to a phase detection circuit 14 to detect the phase shift as a voltage, and the detected voltage is amplified by a differential amplifier 15 and sent to a peak value hold circuit 16. The data storage circuit 17 holds the peak voltage value and stores the frequency when the voltage is at its peak value.
The stored frequency is sent to the control/arithmetic circuit 10 to determine the depth of the weld A from the frequency, and the depth and the relative position are combined to determine the heterogeneous layer in the safe, in this case the weld A. The shape and size are displayed on the display section 18.

前記周波数から溶接深さを求めるには、周波数と溶接深
さの関係を実験により予じめ求めてデータ化し、そのデ
ータ化した値を制御・演算回路10のメモリ部に記憶す
るか、理論演算により周波数を溶接部深さに換算する計
算手段を設ければ良い。
In order to determine the welding depth from the frequency, the relationship between the frequency and the welding depth can be determined in advance through experiments and converted into data, and the converted value can be stored in the memory section of the control/arithmetic circuit 10, or by theoretical calculation. What is necessary is to provide calculation means for converting the frequency into the weld depth.

次に検出原理を説明する。Next, the detection principle will be explained.

参照用コイル4はワーク7の母材7b部分に常に位置し
、検出用コイル5が母材7bと溶接部Aとに亘って相対
的に移動するように構成しである。
The reference coil 4 is always located at the base material 7b of the workpiece 7, and the detection coil 5 is configured to move relatively over the base material 7b and the welding part A.

参照用コイル4、検出用コイル5に所定の周波数の交流
電流(交番電流)を与えて励磁すると渦電流が生じ、そ
の渦電流がワーク7に浸透する深さに比例した大きさの
磁束が生じ、その渦電流のワーク7への浸透深さはワー
ク7の透磁率、導電率の値及び周波数で決定される。
When the reference coil 4 and the detection coil 5 are excited by applying an alternating current (alternating current) with a predetermined frequency, an eddy current is generated, and a magnetic flux proportional to the depth at which the eddy current penetrates into the workpiece 7 is generated. The depth of penetration of the eddy current into the workpiece 7 is determined by the magnetic permeability and conductivity values of the workpiece 7 and the frequency.

すなわち、渦流探傷原理により δ−1/J−yrx丁7TXσとなる。In other words, based on the eddy current flaw detection principle, δ-1/J-yrx7TXσ.

但し、δ−浸透深さ、f−周波数、μ−透磁率、σ−導
電率である。
However, δ is penetration depth, f is frequency, μ is magnetic permeability, and σ is electrical conductivity.

この様であるから、参照様コイル4、検出用コイル5が
第2図のようにワーク7の母材7bと対向している時に
は浸透深さが同一であるから、参照用コイル4、検出用
コイル5の磁束の大きさは同一となり、両者の出力差は
ゼロである。
Because of this, when the reference coil 4 and the detection coil 5 are facing the base material 7b of the workpiece 7 as shown in FIG. 2, the penetration depth is the same, so the reference coil 4 and the detection coil 5 are The magnitude of the magnetic flux of the coil 5 is the same, and the difference in output between the two is zero.

第3図のように、参照用コイル4がワーク7の母材7b
と対向し、検出用コイル5が溶接部Aと対向している時
には、母材7bと溶接部Aの透磁率、導電率の相違によ
り、浸透深さが異なり、両者の出力に差が生じる。
As shown in FIG. 3, the reference coil 4 is connected to the base material 7b of the workpiece 7.
When the detection coil 5 faces the weld A, the penetration depth differs due to the difference in magnetic permeability and conductivity between the base metal 7b and the weld A, and a difference occurs in the output between the two.

ここで、前記式より周波数を変更すると浸透深さが異な
るので、第3図の状態で参照用コイル4、検出用コイル
5への交番電流の周波数を同一タイミングで異ならせる
と参照用コイル4と検出用コイル5の出力差が異なり、
ある周波数で出力差が最大となる。
Here, according to the above formula, if the frequency is changed, the penetration depth will be different, so if the frequency of the alternating current to the reference coil 4 and the detection coil 5 is changed at the same timing in the state shown in FIG. The output difference of the detection coil 5 is different,
The output difference is maximum at a certain frequency.

よって、出力差が最大の時の周波数を検出し、その周波
数に基づいて前述のように溶接部Aの深さを検出できる
Therefore, the frequency at which the output difference is maximum can be detected, and the depth of the weld A can be detected based on that frequency as described above.

例えば、第4図に示すような溶接部Aの深さと距離を実
測したところ第5図のようになり、この時の参照用コイ
ル4と検出用コイル5との出力差が最大となった時の周
波数と浸透深さは第6図のようになった。
For example, when the depth and distance of the welded part A shown in Fig. 4 were actually measured, the results were as shown in Fig. 5, and the output difference between the reference coil 4 and the detection coil 5 at this time was the maximum. The frequency and penetration depth are as shown in Figure 6.

このことにより、参照用コイル4と検出用コイル5との
出力差が最大となった時の周波数を検出し、その周波数
に基づいて溶接深さを検出できる。
Thereby, the frequency at which the output difference between the reference coil 4 and the detection coil 5 becomes maximum can be detected, and the welding depth can be detected based on that frequency.

次に第1図に示す装置によるワーク7の溶接部Aの形状
、大きさを検出する動作を説明する。
Next, the operation of detecting the shape and size of the welded portion A of the workpiece 7 using the apparatus shown in FIG. 1 will be explained.

モータ6によりワーク受台2をX方向に移動してワーク
7を参照用コイル4、検出用コイル5に対して所定スト
ローク毎に移動し、その都度参照用コイル4と検出用コ
イル5の出力差を検出する。
The motor 6 moves the work pedestal 2 in the X direction and moves the work 7 with respect to the reference coil 4 and the detection coil 5 at every predetermined stroke, and each time the output difference between the reference coil 4 and the detection coil 5 is measured. Detect.

この時、参照用コイル4と検出用コイル5がワーク7の
母材7bと対向している場合には出力差がゼロであり、
検出用コイル5が溶接部Aに対応すると出力差が生じる
At this time, when the reference coil 4 and the detection coil 5 are facing the base material 7b of the workpiece 7, the output difference is zero,
When the detection coil 5 corresponds to the welding part A, a difference in output occurs.

この出力差は第7図のように交電電流の入力周波数と検
出周波数の位相のずれとして表われ、その位相のずれを
位相検波回路14で電圧として検出し、差動増幅器]5
で増幅してピーク値ホールド回路17に送る。
This output difference appears as a phase shift between the input frequency of the alternating current and the detection frequency as shown in FIG.
The signal is amplified and sent to the peak value hold circuit 17.

これと同時に出力差が生じた場合にはワーク受台2を静
止してスィーブ回路12により周波数発振器13に可変
信号を送って周波数を可変とし、前記電圧が最大の時の
周波数をピーク値ホールド回路16にホールドしてデー
タ記憶回路17に記憶する。
At the same time, if an output difference occurs, the work pedestal 2 is held still and the sweep circuit 12 sends a variable signal to the frequency oscillator 13 to make the frequency variable, and the frequency when the voltage is maximum is set to the peak value hold circuit. 16 and stored in the data storage circuit 17.

以上の動作が終了したらワーク受台2を再び所定ストロ
ーク移動して前述のように周波数を可変として検出電圧
が最大の時の周波数を記憶する。
When the above operations are completed, the workpiece pedestal 2 is again moved by a predetermined stroke, and the frequency is made variable as described above, and the frequency at which the detected voltage is maximum is stored.

このようにして所定ストローク毎の検出電圧が最大の時
の周波数を検出して記憶し、その検出電圧がゼロとなっ
た時にモータ6を停止しワーク7を停止させる。
In this way, the frequency at which the detected voltage for each predetermined stroke is maximum is detected and stored, and when the detected voltage becomes zero, the motor 6 is stopped and the workpiece 7 is stopped.

この後に、前述した周波数に基づいて溶接深さを求め、
その溶接深さとワーク7のストロークに基づいて溶接部
Aの形状・大きさを例えば第8図のように表示する。
After this, the welding depth is determined based on the frequency mentioned above,
Based on the welding depth and the stroke of the workpiece 7, the shape and size of the welded part A are displayed as shown in FIG. 8, for example.

次に具体例を説明する。Next, a specific example will be explained.

厚さ0.5mmの炭素鋼より成る2枚の阪7 a 。Two plates 7a made of carbon steel with a thickness of 0.5 mm.

7aをレーザ光によりスポット溶接した。7a was spot welded using a laser beam.

この結果、第9図(a)のように良好に溶接されたワー
ク7の場合には表示部18の表示は第10図(a)のよ
うになり、第9図(b)のように不良の場合には第10
図(b)のようになり、これにより表示部18で溶接の
良否が判断できる。
As a result, when the workpiece 7 is well welded as shown in FIG. 9(a), the display on the display section 18 becomes as shown in FIG. 10(a), and when the workpiece 7 is welded successfully as shown in FIG. 9(b), 10th in case of
As shown in Fig. (b), it is possible to judge whether the welding is good or bad on the display section 18.

第11図のようにシリンダーロッド20の表面を環状に
熱処理したワークの熱処理層Bの良否を判断する場合も
、前述と同様にすることで熱処理層の処理深さ、処理幅
を第12図のように表示できるから、その熱処理の良否
判断できる。
When determining the quality of the heat-treated layer B of a workpiece whose surface has been annularly heat-treated on the cylinder rod 20 as shown in FIG. Since it can be displayed as follows, it is possible to judge whether the heat treatment is good or bad.

第13図は第2実施例を示し、参照用コイル4と検出用
コイル5との間に異質層幅検出センサ30を設けである
FIG. 13 shows a second embodiment, in which a different layer width detection sensor 30 is provided between the reference coil 4 and the detection coil 5.

該異質層幅検出センサ30は第14図のように、インジ
ューム、アンチモンなどの磁気抵抗素子31と永久磁石
32とを備え、永久磁石32て作られている磁束33の
差異を磁気抵抗素子31で検出するように構成され、そ
の磁束33がワーク7の母材7bと溶接部Aの透磁率の
差異により変化することを磁気抵抗素子31の電圧変化
として検出し、その電圧変化をアンプ34を経て制御・
演算回路10に入力するようにしである。
The heterogeneous layer width detection sensor 30, as shown in FIG. The change in the magnetic flux 33 due to the difference in magnetic permeability between the base material 7b of the workpiece 7 and the welded part A is detected as a voltage change of the magnetoresistive element 31, and the voltage change is detected by the amplifier 34. control/
It is designed to be input to the arithmetic circuit 10.

このように構成すれば異質層幅検出センサ30でワーク
7の溶接部等の異質層の幅を検出できるので、その異質
層の幅が検出用コイル5の直径より小さく、参照用コイ
ル4と検出用コイル5により前述のようにして異質層の
幅を検出困難な場合でも前記の異質層幅検出センサ30
によって異質層の幅を検出して形状・大きさを検出でき
る。
With this configuration, the width of the foreign layer such as the welded part of the workpiece 7 can be detected by the foreign layer width detection sensor 30, so that the width of the foreign layer is smaller than the diameter of the detection coil 5, and the width of the foreign layer is smaller than the diameter of the detection coil 5. Even when it is difficult to detect the width of a heterogeneous layer using the coil 5 as described above, the heterogeneous layer width detection sensor 30 can be used.
The width of the heterogeneous layer can be detected, and the shape and size can be detected.

また、溶接法、熱処理法が定められている場合に異質層
の形状(深さ、幅の比率)が一定となる場合があり、こ
の場合には前述の異質層幅検出センサ30により異質層
幅を検出することで深さを知ることができる。
In addition, when the welding method and heat treatment method are determined, the shape (depth and width ratio) of the heterogeneous layer may be constant, and in this case, the heterogeneous layer width detection sensor 30 detects the heterogeneous layer width. Depth can be determined by detecting.

また、ワーク7のゆがみを検出する変位計を設け、変形
針で検出したワーク7のゆがみによって検出した異質層
の形状を修正するようにしても良い。
Alternatively, a displacement meter may be provided to detect the distortion of the workpiece 7, and the shape of the detected heterogeneous layer may be corrected based on the distortion of the workpiece 7 detected by the deformation needle.

このようにすれば、ワーク7が薄肉で溶接や熱処理でゆ
がんだ場合でも異質層の形状を正確に検出できる。
In this way, even if the workpiece 7 is thin and distorted due to welding or heat treatment, the shape of the foreign layer can be detected accurately.

以上の各実施例によれば、ワーク受台2、又は本体3を
X方向に移動させたが、X方向及びY方向に移動しても
良い。
According to each of the above embodiments, the workpiece pedestal 2 or the main body 3 is moved in the X direction, but it may be moved in the X direction and the Y direction.

〔発明の効果〕〔Effect of the invention〕

(1)被検出物の母材と対向した参照用コイル4の出力
と、異質層と対向した検出用コイル5の出力の差に基づ
いて浸透深さを検出し、その浸透深さと異質層の検出用
コイル5の相対位置に基づいて異質層の形状を検出する
ので、精度良く異質層の形状を検出できる。
(1) The penetration depth is detected based on the difference between the output of the reference coil 4 facing the base material of the object to be detected and the output of the detection coil 5 facing the foreign layer. Since the shape of the foreign layer is detected based on the relative position of the detection coil 5, the shape of the foreign layer can be detected with high accuracy.

また、各コイルは被検出物と非接触であるから、熱影響
を受は難い。
Furthermore, since each coil is not in contact with the object to be detected, it is unlikely to be affected by heat.

り2)異質層が検出用コイル5の径より小さくとも異質
幅検出センサ30て異質層の幅を検出できるから、異質
層の形状を正確に検出できる。
2) Even if the diameter of the foreign layer is smaller than the diameter of the detection coil 5, the width of the foreign layer can be detected by the foreign width detection sensor 30, so the shape of the foreign layer can be detected accurately.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は装置全体の説明
図、第2図、第3図は検出動作説明図、第4図は溶接部
の拡大図、第5図は溶接深さを示す図表、第6図は浸透
深さと周波数の関係を示す図表、第7図は出力差検出の
説明図、第8図は表示例の正面図、第9図(a) 、(
b)は溶接状態図、第10図(a) 、 (b)はその
表示状態説明図、第11図はシリンダーロッドの斜視図
、第12図はその検出表示状態の説明図、第13図は第
2実施例の装置全体説明図、第14図は異質層幅検出セ
ンサの説明図である。
The drawings show an embodiment of the present invention; Fig. 1 is an explanatory diagram of the entire device, Figs. 2 and 3 are explanatory diagrams of the detection operation, Fig. 4 is an enlarged view of the welded part, and Fig. 5 is the welding depth. Figure 6 is a diagram showing the relationship between penetration depth and frequency, Figure 7 is an explanatory diagram of output difference detection, Figure 8 is a front view of a display example, Figure 9 (a), (
b) is a welding state diagram, FIGS. 10(a) and (b) are illustrations of the display state, FIG. 11 is a perspective view of the cylinder rod, FIG. 12 is an illustration of the detection display state, and FIG. 13 is an illustration of the display state. FIG. 14 is an explanatory diagram of the entire apparatus of the second embodiment, and FIG. 14 is an explanatory diagram of the heterogeneous layer width detection sensor.

Claims (2)

【特許請求の範囲】[Claims] (1)異質層を有する金属の被検出物の母材と対向する
参照用コイル4及び異質層に対して相対的に移動する検
出用コイル5と、 前記検出用コイル5と異質層を相対的に移動し、かつそ
の相対位置を判断する機構と、 前記参照用コイル4と検出用コイル5に交番電流を与え
、かつ周波数を可変する機構と、前記参照用コイル4と
検出用コイル5の出力差が最大の時の周波数を記憶する
手段と、 該周波数と前記相対位置とにより異質層の形状を演算し
て出力する手段とより構成したことを特徴とする金属内
異質層検出装置。
(1) A reference coil 4 facing a base material of a metal object to be detected having a heterogeneous layer, a detection coil 5 that moves relative to the heterogeneous layer, and a detection coil 5 relative to the heterogeneous layer. a mechanism for applying an alternating current to the reference coil 4 and the detection coil 5 and varying the frequency; and an output of the reference coil 4 and the detection coil 5. An apparatus for detecting a heterogeneous layer in metal, comprising: means for storing a frequency when the difference is maximum; and means for calculating and outputting the shape of the heterogeneous layer based on the frequency and the relative position.
(2)磁気抵抗素子31と永久磁石32を備えた異質層
幅検出センサ30を異質層と相対的に移動自在に設けた
請求項1記載の金属内異質層検出装置。
(2) The apparatus for detecting a heterogeneous layer in a metal according to claim 1, wherein the heterogeneous layer width detection sensor 30 including a magnetoresistive element 31 and a permanent magnet 32 is provided movably relative to the heterogeneous layer.
JP1245322A 1989-09-22 1989-09-22 Metal foreign layer detector Expired - Lifetime JP2523379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245322A JP2523379B2 (en) 1989-09-22 1989-09-22 Metal foreign layer detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245322A JP2523379B2 (en) 1989-09-22 1989-09-22 Metal foreign layer detector

Publications (2)

Publication Number Publication Date
JPH03108657A true JPH03108657A (en) 1991-05-08
JP2523379B2 JP2523379B2 (en) 1996-08-07

Family

ID=17131938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245322A Expired - Lifetime JP2523379B2 (en) 1989-09-22 1989-09-22 Metal foreign layer detector

Country Status (1)

Country Link
JP (1) JP2523379B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
JP2011047736A (en) * 2009-08-26 2011-03-10 Sumitomo Chemical Co Ltd Method of inspecting austenite-based stainless steel welding section
CN113109424A (en) * 2021-04-13 2021-07-13 广州市果欧电子科技有限公司 Steel structure weld joint detection method and detection system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619092B2 (en) * 2004-10-29 2011-01-26 川崎重工業株式会社 Inspection method and inspection apparatus for laser welded joint
JP5263178B2 (en) * 2010-01-12 2013-08-14 新日鐵住金株式会社 Nondestructive inspection method for steel rails for tracks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
JP2011047736A (en) * 2009-08-26 2011-03-10 Sumitomo Chemical Co Ltd Method of inspecting austenite-based stainless steel welding section
CN113109424A (en) * 2021-04-13 2021-07-13 广州市果欧电子科技有限公司 Steel structure weld joint detection method and detection system

Also Published As

Publication number Publication date
JP2523379B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
Edwards et al. Dual EMAT and PEC non-contact probe: applications to defect testing
JPH02147950A (en) Ac leakage magnetic flux detector for plane flaw
Tsukada et al. A magnetic flux leakage method using a magnetoresistive sensor for nondestructive evaluation of spot welds
US4303883A (en) Apparatus for detecting the center of a welded seam in accordance with fundamental harmonic component suppression
EP2583092B1 (en) Eddy current sensor and eddy current measurement method
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
US4477776A (en) Apparatus and process for flux leakage testing using transverse and vectored magnetization
JP5607822B2 (en) Nondestructive inspection equipment
JPH03108657A (en) Apparatus for detecting heterogeneous layer in metal
JP3944068B2 (en) Inspection method for butt welds of steel sheets
KR101339117B1 (en) Apparatus and method for detecting the defects of reverse side using pulsed eddy current
US4287474A (en) Method and apparatus for non-destructive quality testing of spot welds
Pavlyuchenko et al. Testing for defects in pulsed magnetic field transmitted through metal
JPH0560510A (en) Flatness measurement and magnetic particle inspection method for metallic component
JP2004294341A (en) Flaw detection method and flaw detection apparatus by pulsed remote field eddy current
JPH05264508A (en) Method and apparatus for nondestructive measurement of quenched and hardened range
JPH0470561A (en) Method and apparatus for detecting heterogeneous layer in metal
McMaster The present and future of eddy current testing
Hayashi et al. Detection of the weak magnetic properties change of stainless-steel welding parts by low frequency magnetic imaging
JPH0612358B2 (en) Nondestructive measurement method for surface defects
JP2006126085A (en) Method and device for inspecting laser welded joint
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP2010243175A (en) Barkhausen noise inspecting device
JP2011106932A (en) Apparatus and method for detecting process-modified layer