JPH0276841A - Production of aminolevulinic acids - Google Patents

Production of aminolevulinic acids

Info

Publication number
JPH0276841A
JPH0276841A JP22721488A JP22721488A JPH0276841A JP H0276841 A JPH0276841 A JP H0276841A JP 22721488 A JP22721488 A JP 22721488A JP 22721488 A JP22721488 A JP 22721488A JP H0276841 A JPH0276841 A JP H0276841A
Authority
JP
Japan
Prior art keywords
acid
methanol
ala
solution
acylaminolevulinic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22721488A
Other languages
Japanese (ja)
Inventor
Koujirou Suzuki
鈴木 洸次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemical Industry Co Ltd
Original Assignee
Osaka Organic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemical Industry Co Ltd filed Critical Osaka Organic Chemical Industry Co Ltd
Priority to JP22721488A priority Critical patent/JPH0276841A/en
Publication of JPH0276841A publication Critical patent/JPH0276841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To readily obtain the subject compounds in high yield by electrolytically oxidizing a readily available inexpensive N-acylfurfurylamine as a raw material in a solution thereof in methanol, reducing the resultant compound, opening the ring with dilute sulfuric acid and simultaneously oxidizing the reduction product with KMnO4. CONSTITUTION:An N-acylfurfurylamine, such as N-acetylfurfurylamine or N- benzoylfurfurylamine, expressed by the formula (R1 is acyl) is electrolytically oxidized in a solution thereof in methanol or oxidized in a bromine-methanol solution, then reduced with Raney nickel catalyst, etc., subjected to simultaneous ring opening with dilute sulfuric acid in 1-10% concentration and oxidation using KMnO4 to afford a delta-acylaminolevulinic acid useful as a raw material for delta-aminolevulinic acid having selective herbicidal action, vitamin B12, porphyrin derivatives, such as coproporphyrin, specifically acting on cancerous cells in simple operation with hardly any formation of toxic wastes. The resultant delta-acylaminolevulinic acid is then hydrolyzed to afford the delta-aminolevulinic acid.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアミルプリン酸類の製造法に関する。さらに詳
しくは、選択的除草作用のあるδ−アミノレブリン酸の
みならず、ビタミンB12やガン細胞に特異的に作用す
るコブロボルフィリンなどのポルフィリン誘導体の原料
として好適に使用しうるδ−アシルアミノレブリン酸の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing amylpuric acids. More specifically, we will discuss not only δ-aminolevulinic acid, which has a selective herbicidal effect, but also δ-acylaminolevulinic acid, which can be suitably used as a raw material for vitamin B12 and porphyrin derivatives such as cobrovorphyrin, which specifically acts on cancer cells. Regarding manufacturing methods.

〔従来の技術] 従来より、δ −アミノレブリン酸(以下、ALAとい
う)は、動物の生体内でテトラピロール生合成の中間体
であることが知られている。
[Prior Art] It has been known that δ-aminolevulinic acid (hereinafter referred to as ALA) is an intermediate for tetrapyrrole biosynthesis in living animals.

また、ALAは雑草には作用するが穀類には作用せず、
人畜に対しても無害であることから、選択的除草剤とし
て使用しうろことがレバイツらによって報告されている
(エンザイム・ミクロバイオロジカル・テクノロジー(
Enzy+*。
In addition, ALA acts on weeds but not on grains.
Since it is harmless to humans and livestock, Levites et al. have reported that it can be used as a selective herbicide (Enzyme Microbiological Technology).
Enzy+*.

旧crob、 Technol、) 、6巻、390頁
(1984年)参照)。
(Former Crob, Technol), Vol. 6, p. 390 (1984)).

かかるALAの製造法としては、従来より幾つかの方法
が報告されており、たとえばビシャ(Plchat)ら
は、δ −クロロまたはδ −ブロモ−レブリン酸エス
テルをδ−フタルイミド誘導体にかえてアミノ基をレブ
リン酸に誘導する方法を報告しくビルタン・デ・う・ソ
シエテ・シミク・デ・フランス(Bull、Soc、C
hlm、 、 Fr、)、1750頁(1956年)参
照)、またビー1(Beale)らはδ −ブロモ−レ
ブリン酸からえられる4、5−ジオキソバレイン酸(D
OVA)を用い、非酵素的トランスアミノ化によってA
LAを合成する興味深い方法を報告している(フィトケ
ミストリー(Phytochemtstry)、18巻
、441頁(1979年)参照)、ブファルツ(Pf’
altz)らはケトニトリル化合物を亜鉛と酢酸で還元
してALAを合成する方法を報告している(テトラヘド
ロン・レターズ(Tetrahedron Lett、
) 、1984.25I:B、 2977参照)。
Several methods have been reported for the production of ALA. For example, Plchat et al. replaced δ-chloro or δ-bromo-levulinic acid ester with a δ-phthalimide derivative to add an amino group. To report on the method of inducing levulinic acid, the Société Simique de France (Bull, Soc., C.
hlm, Fr., p. 1750 (1956)) and Beale et al.
A by non-enzymatic transamination using OVA)
reported an interesting method for synthesizing LA (see Phytochemistry, vol. 18, p. 441 (1979)), Buffalz (Pf'
reported a method for synthesizing ALA by reducing a ketonitrile compound with zinc and acetic acid (Tetrahedron Lett, et al.
), 1984.25I:B, 2977).

しかしながら、これらの製造法によってはALAを工業
的に効率よく生産することはできず、また原料が高価で
あったり製造工程が煩雑であったり、また有害廃棄物を
生じるなどの理由により、えられるALAが高価なもの
となってしまうなどの問題がある。またALAそのもの
は不安定で、通常塩酸塩として冷暗所に保存する必要が
あることも問題である。
However, depending on these manufacturing methods, it is not possible to industrially produce ALA efficiently, and the raw materials are expensive, the manufacturing process is complicated, and hazardous waste is generated. There are problems such as ALA becoming expensive. Another problem is that ALA itself is unstable and usually needs to be stored as a hydrochloride in a cool, dark place.

[発明が解決しようとする課題] そこで本発明者らは、δ −アシルアミノレブリン酸(
以下、δ−アシルALAという)は安定で、室温におけ
る長期保存が可能なうえ、必要に応じて容易に^LA塩
酸塩に変換しうろことに着目し、前記従来技術に鑑みて
、入手しやすくかつ安価な原料を用いて収率よく工業的
にδ −アシルALAおよびALAをうる方法を見出す
べく鋭意研究を重ねた結果、かかる諸要件をすべて満足
するδ −アシルALAおよびALAの製造法を初めて
見出し、本発明を完成するにいたった。
[Problems to be Solved by the Invention] Therefore, the present inventors solved the problem by solving δ-acylaminolevulinic acid (
Focusing on the fact that δ-acyl-ALA (hereinafter referred to as δ-acyl-ALA) is stable and can be stored for a long time at room temperature, and can be easily converted to ^LA hydrochloride if necessary, and in view of the above-mentioned conventional technology, we developed a method that is easy to obtain. As a result of intensive research to find a method for industrially producing δ-acyl ALA and ALA with high yield using inexpensive raw materials, we have discovered, for the first time, a method for producing δ-acyl ALA and ALA that satisfies all of these requirements. This finding led to the completion of the present invention.

[課題を解決するための手段] すなわち、本発明はN−アシルフルフリルアミンをその
メタノール溶液中で電解酸化し、ついで還元したのち、
希硫酸を用いて開環と同時にKMnO4で酸化すること
を特徴とするδ −アシルALAの製造法およびN−ア
シルフルフリルアミンを臭素−メタノール液中で酸化し
、ついで還元したのち、希硫酸を用いて開環と同時にK
MnOaで酸化することを特徴とするδ −アシルAL
Aの製造法ならびに前記δ −アシルALAを加水分解
することを特徴とするALAの製造法に関する。
[Means for Solving the Problems] That is, the present invention electrolytically oxidizes N-acylfurfurylamine in its methanol solution, then reduces it, and then
A method for producing δ-acyl ALA characterized by ring opening using dilute sulfuric acid and simultaneous oxidation with KMnO4, and a method for oxidizing N-acylfurfurylamine in a bromine-methanol solution, followed by reduction, and then using dilute sulfuric acid. K at the same time as ring opening
δ-acyl AL characterized by oxidation with MnOa
The present invention relates to a method for producing ALA and a method for producing ALA, which is characterized by hydrolyzing the δ-acyl ALA.

[作用および実施例] 本発明の製造法によれば、δ −アシルALAはN−ア
シルフルフリルアミンをそのメタノール中で電解酸化し
、ついで還元したのち、希硫酸を用いて開環と同時にK
MnO4で酸化することによりえられる。
[Operations and Examples] According to the production method of the present invention, δ-acylALA is produced by electrolytically oxidizing N-acylfurfurylamine in methanol, followed by reduction, and then ring-opening using dilute sulfuric acid.
Obtained by oxidation with MnO4.

本発明に用いられる出発原料は一般式(I):(式中、
R+はアシル基を示す)で表わされるN−アシルフルフ
リルアミンであり、入手しやすくしかも安価なものであ
る。一般式(1)において、アシル基の具体例としては
、たとえばアセチル基、ベンゾイル基などがあげられる
The starting materials used in the present invention have the general formula (I): (wherein,
R+ represents an acyl group), which is easily available and inexpensive. In general formula (1), specific examples of the acyl group include an acetyl group and a benzoyl group.

一般式(1)で表わされる出発原料は、まずメタノール
に溶解され、たとえば臭化アンモニウムなどの支持塩を
適宜添加したのち、電解することにより酸化され、一般
式(I): (式中、R1は前記と同じ)で表わされるジメトキシ化
合物かえられ、かかるジメトキシ化合物は、一般式(n
 a> : (式中、R1は前記と同じ)で表わされるシス−ジメト
キシ化合物および一般式(n b) :(式中、R1は
前記と同じ)で表わされるトランス−ジメトキシ化合物
の混合物である。
The starting material represented by the general formula (1) is first dissolved in methanol, a supporting salt such as ammonium bromide is appropriately added, and then oxidized by electrolysis, and the starting material is oxidized by the general formula (I): is the same as above), and such a dimethoxy compound is replaced by a dimethoxy compound represented by the general formula (n
a>: A mixture of a cis-dimethoxy compound represented by the formula (in which R1 is the same as above) and a trans-dimethoxy compound represented by the general formula (n b): (wherein R1 is the same as above).

前記メタノールに溶解される前記出発原料の配合量につ
いてはとくに限定はないが、通常メタノール100m1
に対して前記出発原料5〜30g5なかんづく8〜12
g:とするのが好ましい。
There is no particular limitation on the amount of the starting material dissolved in the methanol, but usually 100 ml of methanol is used.
5 to 30 g of the above starting materials per 5 to 8 to 12 g of
g: Preferably.

前記出発原料を溶解したメタノール溶液を電解する際の
条件は、メタノール溶液の液温0℃以下、なかんづ<−
10−0℃、電圧15〜20V。
The conditions for electrolyzing the methanol solution in which the starting materials are dissolved are as follows: the temperature of the methanol solution is 0°C or less, and the temperature is below -
10-0°C, voltage 15-20V.

なかんづ<16〜18V、また電流0.5〜2.OA。<16~18V, and current 0.5~2. O.A.

なかんづ<0.8〜1.OAである。メタノール溶液の
液温は0℃よりも高いばあい、反応液が赤褐色に着色し
、収率が低下する傾向がある。また電流および電圧はそ
れぞれ前記下限値よりも小さいばあい、反応完結に長時
間を要するか、ジメトキシ化合物の生成効率が低くなり
、また前記上限値よりも大きいばあい、前記出発原料N
−アシルフリルアミンの濃度にもよるが、発熱反応が激
しくなり、反応液の温度管理をするのが困難となる傾向
にある。電解時間は、メタノール溶媒や支持塩の使用量
などによって異なるので一概には決定することができな
いが、通常2〜8時間、なかんづく3〜5時間である。
Nakanzu<0.8~1. It is OA. When the temperature of the methanol solution is higher than 0° C., the reaction solution tends to be colored reddish brown and the yield tends to decrease. Further, if the current and voltage are each smaller than the lower limit, it will take a long time to complete the reaction or the production efficiency of the dimethoxy compound will be low, and if it is larger than the upper limit, the starting material N
-Depending on the concentration of acylfurylamine, the exothermic reaction tends to become intense, making it difficult to control the temperature of the reaction solution. The electrolysis time cannot be determined unconditionally because it varies depending on the amount of methanol solvent and supporting salt used, but it is usually 2 to 8 hours, especially 3 to 5 hours.

なお、電解の際の電極には、通常陽極として白金板、陰
極としてニッケル板が用いられる。
Note that for the electrodes during electrolysis, a platinum plate is usually used as an anode and a nickel plate as a cathode.

電解後、メタノール性水酸化ナトリウム液で中和し、無
機塩を濾過し、濾液を減圧濃縮するとジメトキシ化合物
は粘稠物を伴なう結晶として回収される。これを酢酸エ
チルで熱時抽出するとトランス−ジメトキシ化合物かえ
られ、母液からはシス体の多いジメトキシ化合物が回収
される。ここでいうシス、トランスは、一般式(II)
で表わされる化合物において、メトキシ基に関するシス
、トランスを意味する。
After electrolysis, the solution is neutralized with a methanolic sodium hydroxide solution, the inorganic salt is filtered, and the filtrate is concentrated under reduced pressure to recover the dimethoxy compound as crystals accompanied by a viscous substance. When this is extracted with ethyl acetate while hot, a trans-dimethoxy compound is converted, and a dimethoxy compound with a large cis form is recovered from the mother liquor. Cis and trans here refer to the general formula (II)
In the compound represented by , it means cis or trans regarding the methoxy group.

なお、一般式(1)で表わされるジメトキシ化合物をう
る方法として、前記出発原料を炭酸ナトリウムの存在下
で臭素化−メタノール液で酸化する方法がある。かかる
方法は、前記した電解酸化による方法と比較すると、発
熱が少なく、反応後中和する必要がなく取扱いが容易で
トランス体が多く生成するという特色はあるが、収率が
若干低い。
In addition, as a method for obtaining the dimethoxy compound represented by the general formula (1), there is a method in which the starting material is oxidized with a brominated methanol solution in the presence of sodium carbonate. Compared to the above-mentioned electrolytic oxidation method, this method has the characteristics that it generates less heat, does not require neutralization after the reaction, is easy to handle, and produces a large amount of trans isomer, but the yield is slightly lower.

前記炭酸ナトリウムの配合量は、出発原料に対して0.
5〜2モル当量、なかんづ<0.8〜1.2モル当量と
するのが好ましい。また臭素−メタノール液とは、出発
原料に対し、約5倍量のメタノールに0〜10℃で1モ
ル当量の臭素を滴下したものである。出発原料10gに
対する臭素−メタノール液の配合量は40〜80m1.
なかんづ<50〜55m1であることが好ましい。なお
、添加する際には、反応後の液温は0℃以下、好ましく
は一5〜0℃となるように調整される。かかる液温は0
℃よりも高いばあい、ジメトキシ化合物の収率が低下す
る傾向がある。
The blending amount of the sodium carbonate is 0.0% based on the starting material.
It is preferable to set it as 5-2 molar equivalents, and <0.8-1.2 molar equivalents. The bromine-methanol solution is one in which 1 molar equivalent of bromine is added dropwise to methanol in an amount approximately 5 times that of the starting material at 0 to 10°C. The amount of bromine-methanol liquid to be blended is 40 to 80 ml per 10 g of starting material.
It is preferable that the number of particles <50 to 55 m1. In addition, when adding, the liquid temperature after reaction is adjusted to be 0°C or less, preferably -5 to 0°C. The liquid temperature is 0
If the temperature is higher than ℃, the yield of the dimethoxy compound tends to decrease.

つぎに前記ジメトキシ化合物をメタノールに溶解し、触
媒としてラネーニッケルを用いて常圧で還元し、ついで
生成物を減圧蒸留することにより一般式(II) ? (式中、R1は前記と同じ)で表わされるジメトキシテ
トラヒドロ化合物かえられる。これは、一般式(Ha)
: (式中、R+は前記と同じ)で表わされるシス−化合物
および一般式(I[[b): (式中、R1は前記と同じ)で表わされるトランス−化
合物の混合物である。
Next, the dimethoxy compound is dissolved in methanol, reduced at normal pressure using Raney nickel as a catalyst, and then the product is distilled under reduced pressure to obtain the general formula (II). A dimethoxytetrahydro compound represented by the formula (wherein R1 is the same as above) can be used. This is the general formula (Ha)
: A mixture of a cis-compound represented by the formula (wherein R+ is the same as above) and a trans-compound represented by the general formula (I[[b): (wherein R1 is the same as above).

メタノールに溶解される一般式(It)で表わされるジ
メトキシ化合物の配合量についてはとくに限定はないが
、通常メタノール100m1に対して前記混合物5〜3
0g1なかんづく8〜15iとするのが好ましい。
There is no particular limitation on the amount of the dimethoxy compound represented by the general formula (It) dissolved in methanol, but usually 5 to 3 ml of the above mixture per 100 ml of methanol.
It is preferable to set it as 8-15i in particular 0g1.

前記混合物のメタノール溶液に添加されるラネーニッケ
ルの配合量は、メタノール溶液lo。
The amount of Raney nickel added to the methanol solution of the mixture is 100 methanol solution.

mlに対して0.5〜5.0g、なかんづ<1.0〜2
.0gとするのが好ましい。
0.5 to 5.0 g per ml, nakadzu <1.0 to 2
.. It is preferable to set it to 0g.

かくしてラネーニッケル触媒により還元された生成物は
減圧蒸留されるが、かかる減圧蒸留の際の条件について
はとくに限定はなく、一般式(nDで表わされるジメト
キシテトラヒドロ化合物において、R1がアセチル基の
ばあいは通常の条件、すなわち温度120〜160℃、
圧力1〜10Torrの条件で行なわれ、またR1がベ
ンゾイル基のばあいは温度170〜200℃、圧力0.
1〜5Torrの条件で行なわれる。
The product thus reduced by the Raney nickel catalyst is distilled under reduced pressure, but there are no particular limitations on the conditions for such vacuum distillation. Normal conditions, i.e. temperature 120-160℃,
The pressure is 1 to 10 Torr, and when R1 is a benzoyl group, the temperature is 170 to 200°C and the pressure is 0.
This is carried out under conditions of 1 to 5 Torr.

えられた一般式(110で表わされるジメトキシテトラ
ヒドロ化合物は、たとえば濃度1〜15%程度の希硫酸
に溶解することにより容易に開環され、一般式N: (式中、R1は前記と同じ)で表わされる不安定化合物
を生じ、これをただちに過マンガン酸カリウムで酸化す
ることによりN−アシルALAをうることかできる。前
記一般式圓で表わされるジメトキシテトラヒドロ化合物
1モルに対する硫酸の配合量は0.5〜2.0モル、な
かんづく0.8〜1.2モルとなるように配合するのが
好ましい。かかる硫酸の配合量は0.5モル未満である
ばあい、未反応物が混入し、また2、0モルをこえるば
あい、結晶し難い生成物を生じ、収率が低下する傾向が
ある。
The obtained dimethoxytetrahydro compound represented by the general formula (110) is easily ring-opened by dissolving it in dilute sulfuric acid with a concentration of about 1 to 15%, for example, to form the general formula N: (wherein R1 is the same as above) N-acyl ALA can be obtained by producing an unstable compound represented by and immediately oxidizing it with potassium permanganate.The amount of sulfuric acid blended per 1 mole of the dimethoxytetrahydro compound represented by the general formula It is preferable to blend the sulfuric acid in an amount of .5 to 2.0 mol, especially 0.8 to 1.2 mol.If the amount of sulfuric acid blended is less than 0.5 mol, unreacted substances may be mixed in. Moreover, if it exceeds 2.0 mol, a product that is difficult to crystallize is produced, and the yield tends to decrease.

なお、一般弐fllDで表わされる化合物の希硫酸溶液
に過マンガン酸カリウム水溶液に添加するときには、5
℃以上では粘稠物が生成することがあるので、水冷下で
撹拌することが望ましい。
In addition, when adding a dilute sulfuric acid solution of the compound represented by general 2fl1D to an aqueous potassium permanganate solution, 5
Since a viscous substance may be formed at temperatures above 0.degree. C., it is desirable to stir the mixture under water cooling.

前記過マンガン酸カリウム水溶液の濃度についてはとく
に限定はないが、通常過マンガン酸カリウム濃度が0.
06〜0.38モル/g、なかんづ<0,2〜0.3モ
ル/gであることが好ましい。
There is no particular limitation on the concentration of the potassium permanganate aqueous solution, but the concentration of potassium permanganate is usually 0.
0.6 to 0.38 mol/g, and preferably <0.2 to 0.3 mol/g.

過マンガン酸カリウムの配合量は、一般式(Ill)で
表わされる化合物1モルに対して0.5〜2,0モル、
なかんづ<0.8〜1.2モルとするのが好ましい。か
かる配合量は0.5モル未満のばあい、未反応物が回収
され、また2、0モルをこえるばあい、粘稠な生成物を
生じ、収率が低下する傾向がある。
The blending amount of potassium permanganate is 0.5 to 2.0 mol per mol of the compound represented by the general formula (Ill),
It is preferable that the content is <0.8 to 1.2 mol. If the amount is less than 0.5 mol, unreacted substances will be recovered, and if it exceeds 2.0 mol, a viscous product will be produced and the yield will tend to decrease.

一般式(1N)で表わされる化合物において、R1がア
セチル基であるばあい、過マンガン酸カリウム水溶液を
滴下した後には黒色の沈澱物が生成するが、これを濾別
し、濾液をたとえば水酸化ナトリウム水溶液などを用い
てpHを3.0〜3.5に調°整し、減圧して濃縮し、
残留物を酢酸エチルで抽出すれば、純度の高い一般式(
V):1102cmCII2C)h −COCH2Nl
lRI     (V)(式中、R1は前記と同じ)で
表わされるδ −アシルALAが回収される。
In the compound represented by the general formula (1N), when R1 is an acetyl group, a black precipitate is formed after dropping the potassium permanganate aqueous solution, but this is filtered off and the filtrate is oxidized, for example. Adjust the pH to 3.0 to 3.5 using an aqueous sodium solution, concentrate under reduced pressure,
If the residue is extracted with ethyl acetate, a highly pure general formula (
V):1102cmCII2C)h -COCH2Nl
δ-acyl ALA represented by lRI (V) (wherein R1 is the same as above) is recovered.

かくして回収されたδ−アシルALAは、たとえば希塩
酸などと加熱することにより容易にALA塩酸塩などの
塩にすることができ、またたとえば水酸化ナトリウムな
どのアルカリで中和することによりALAをうることが
でき、これらδ −アシルALAおよびALAは種々な
用途に供することができる。
The δ-acyl ALA thus recovered can be easily converted into a salt such as ALA hydrochloride by heating with dilute hydrochloric acid, and ALA can also be obtained by neutralizing with an alkali such as sodium hydroxide. These δ-acyl ALA and ALA can be used for various purposes.

つぎに本発明のδ −アシル^LAおよびALAの製造
法を実施例に基づいて説明するが、本発明にかかる実施
例のみに限定されるものではない。
Next, the method for producing δ-acyl^LA and ALA of the present invention will be explained based on Examples, but the present invention is not limited to the Examples.

製造例1 陽極、!−して白金板(2C1lX 5c+aXt  
O,2+a+s)、陰極として−1−7ケル板(2CI
IX 5cmXt  O,2mm)が備えられた円筒型
の容器に、メタノール75m1を入れ、これにN−アセ
チルフルフリルアミン10gを添加して溶解し、ついで
臭化アンモニウム1g−を添加し、電圧13〜18V、
電流0.87Aをかけて液温が一1O〜0℃となるよう
に保ちながら4.8時間電気分解を行なった。
Production example 1 Anode! - and platinum plate (2C1lX 5c+aXt
O, 2+a+s), -1-7 Kel plate (2CI
Pour 75 ml of methanol into a cylindrical container equipped with a cylindrical container (IX 5 cm ,
Electrolysis was carried out for 4.8 hours while applying a current of 0.87 A and maintaining the liquid temperature at 110 to 0°C.

反応液を水酸化ナトリウム1gを含むメタノール溶液で
中和し、析出する無機物を分離し、減圧濃縮して粘稠物
を伴なった結晶を回収した。
The reaction solution was neutralized with a methanol solution containing 1 g of sodium hydroxide, the precipitated inorganic substances were separated, and the mixture was concentrated under reduced pressure to recover crystals accompanied by a viscous substance.

酢酸エチルで熱時抽出し、えられた結晶をベンゼンで再
結晶したところ、融点が106−107℃の無色結晶(
トランス体)かえられた。また母液よりえられた粘稠物
を減圧下で蒸留すると沸点が128〜135℃、2〜5
 Torrで留出する粘稠物かえられた。元素分析およ
びガスクロマトグラフ(CC)分析で、えられた粘稠物
は一般式(Ila)で表わされる化合物と一般式(II
 b)で表わされる化合物(ただし、式中、R+はアセ
チル基を示す)の混合物であることがわかった。
Hot extraction with ethyl acetate and recrystallization of the obtained crystals from benzene yielded colorless crystals with a melting point of 106-107°C (
trans form) changed. In addition, when the viscous material obtained from the mother liquor is distilled under reduced pressure, the boiling point is 128-135℃, 2-5℃.
The viscous substance distilled at Torr was changed. Elemental analysis and gas chromatography (CC) analysis revealed that the obtained viscous substance was composed of a compound represented by the general formula (Ila) and a general formula (II).
It was found to be a mixture of compounds represented by b) (in the formula, R+ represents an acetyl group).

NMRの測定結果を第1表に示す。The NMR measurement results are shown in Table 1.

なお、シス−ジメトキシ化合物およびトランス−ジメト
キシ化合物の混合物の収率は88.3%であり、ガスク
ロマトグラフィによる分析の結果、シス−ジメトキシ化
合物ニドランス−ジメトキシ化合物(重量比)は88:
34であった。
The yield of the mixture of cis-dimethoxy compound and trans-dimethoxy compound was 88.3%, and as a result of analysis by gas chromatography, the ratio of cis-dimethoxy compound to nidoran-dimethoxy compound (weight ratio) was 88:
It was 34.

製造例2 N−アセチルフルフリルアミンlogをメタノール40
m1に溶かし、炭酸ナトリウム15.5gを加えた混合
物を撹拌し、これに対し、−10〜θ℃で臭素−メタノ
ール液(臭素濃度: 1g、7%、81.5g)を滴下
して酸化し、製造例1でえられたものと同じジメトキシ
化合物をえた。
Production example 2 N-acetylfurfurylamine log to methanol 40
A mixture of 15.5 g of sodium carbonate and 15.5 g of sodium carbonate was stirred, and a bromine-methanol solution (bromine concentration: 1 g, 7%, 81.5 g) was added dropwise at -10 to θ°C to oxidize the mixture. , the same dimethoxy compound as that obtained in Production Example 1 was obtained.

なお、収率は82.3%であり、シス−ジメトキシ化合
物ニドランス−ジメトキシ化合物(重量比)は48:5
4であった。
The yield was 82.3%, and the ratio of cis-dimethoxy compound to nidoran-dimethoxy compound (weight ratio) was 48:5.
It was 4.

実施例1 製造例1でえられたジメトキシ化合物logをメタノー
ル50m1に溶解し、これにラネーニッケル1gを触媒
として添加し、常圧で還元し、生成物を減圧蒸留して粘
稠物をえた。なお、収率は約90%であった。
Example 1 The dimethoxy compound log obtained in Production Example 1 was dissolved in 50 ml of methanol, 1 g of Raney nickel was added thereto as a catalyst, the solution was reduced at normal pressure, and the product was distilled under reduced pressure to obtain a viscous substance. Note that the yield was about 90%.

つぎにえられた粘稠物10g−を10%硫酸100 m
lに溶かし、水冷撹拌下でこれに1モル当量の過マンガ
ン酸カリウム水溶液を滴下して酸化し、黒色沈澱物を濾
別し、濾液を10%水酸化ナトリウム水溶液を用いてp
H3にしてから減圧濃縮し、残留物を酢酸エチルエステ
ルで抽出したところ、融点94〜95℃の6−アセチル
ALAの結晶かえられた。この結晶を、市販のALA塩
酸塩よりえたδ−アセチルALAと混融したが、融点の
低下は見られなかった。収率は、30〜40%であった
Next, 10 g of the viscous material obtained was mixed with 100 m of 10% sulfuric acid.
1 molar equivalent of potassium permanganate aqueous solution was added dropwise to the solution under water cooling and stirring, the black precipitate was filtered off, and the filtrate was diluted with 10% sodium hydroxide aqueous solution.
When the residue was extracted with ethyl acetate, crystals of 6-acetyl ALA with a melting point of 94 to 95°C were obtained. This crystal was mixed with δ-acetyl ALA obtained from commercially available ALA hydrochloride, but no decrease in the melting point was observed. Yield was 30-40%.

δ−アセチルALA 1 gをlO%塩酸10m1中で
2時間加熱還流し、減圧で濃縮し、残留物に約2倍量の
メタノールを加えて加温して溶かし、室温に冷却後、酢
酸エチルを滴下するとALA塩酸塩は結晶として析出し
た。融点は145〜147℃で、収率は濾液を濃縮して
えられたものを合すると約70%であった。
1 g of δ-acetyl ALA was heated under reflux in 10 ml of 1O% hydrochloric acid for 2 hours, concentrated under reduced pressure, and about twice the amount of methanol was added to the residue and dissolved by heating. After cooling to room temperature, ethyl acetate was added. When added dropwise, ALA hydrochloride precipitated as crystals. The melting point was 145-147°C, and the yield was about 70% when the filtrate was concentrated.

また、ALA塩酸塩をアルカリを用いて中和したところ
、ALAかえられた。
Furthermore, when ALA hydrochloride was neutralized using an alkali, ALA was converted.

実施例2 N−ベンゾイルフルフリルアミンlogをメタノール5
0 mlに溶かし、炭酸ナトリウムLQgを加えた混合
液を撹拌し、これに−10〜θ℃で臭素−メタノール液
(臭素8gをメタノール50m1に加えた液)を滴下し
て酸化した。滴下倹約2時間撹拌したのち、沈殿を濾過
し、メタノールで洗い、濾液と洗液を合して還元容器に
移し、ラネーニッケル1gを加えて常圧で還元した。1
モル当量の水素を吸収させた後、触媒を濾過し、濾液を
減圧濃縮した。残留物を約3倍量のアセトンに溶かし、
この溶液を10%硫酸100 ml中に加え、撹拌しな
がら5℃以下で過マンガン酸カリウム水溶液(N−ベン
ゾイルフルフリルアミンから計算し、1モル当量)を滴
下して酸化した。
Example 2 N-benzoylfurfurylamine log methanol 5
0 ml and added LQg of sodium carbonate, the mixture was stirred and oxidized by adding dropwise a bromine-methanol solution (8 g of bromine to 50 ml of methanol) at -10 to θ°C. After stirring for 2 hours, the precipitate was filtered and washed with methanol, and the filtrate and washing liquid were combined and transferred to a reduction vessel, and 1 g of Raney nickel was added thereto and reduced at normal pressure. 1
After absorbing a molar equivalent of hydrogen, the catalyst was filtered and the filtrate was concentrated under reduced pressure. Dissolve the residue in about 3 times the volume of acetone,
This solution was added to 100 ml of 10% sulfuric acid, and an aqueous potassium permanganate solution (calculated from N-benzoylfurfurylamine, 1 molar equivalent) was added dropwise at 5° C. or below while stirring to oxidize.

反応液の挑紫色が消えてから濾過すると、白色結晶のま
ざった黒色沈殿かえられた。この黒色沈殿をアセトンで
熱時抽出し、抽出液を濃縮すると融点120〜122℃
を示すδ −ベンゾイルAL^かえられた。黒色沈殿の
濾液を減圧下に濃縮すると、同様の結晶かえられ、収率
はN−ベンゾイルフルフリルアミンから計算して約60
%であった。
When the reaction solution was filtered after its dark purple color disappeared, a black precipitate mixed with white crystals was obtained. This black precipitate was extracted with acetone while hot, and the extract was concentrated, resulting in a melting point of 120-122°C.
δ-benzoyl AL^ was changed. When the filtrate of the black precipitate was concentrated under reduced pressure, similar crystals were obtained, with a yield of about 60% calculated from N-benzoylfurfurylamine.
%Met.

つぎにδ−ベンゾイルALAを加水分解し、さらに中和
したところALAがえられた。
Next, δ-benzoyl ALA was hydrolyzed and further neutralized to obtain ALA.

[発明の効果] 本発明の製造法は、入手しやすくかつ安価なN−アシル
フルフリルアミンを原料とし、有害廃棄物をほとんど生
じない方法でしかも製造工程も煩雑ではなく、高収率で
δ −アシルALAをうることができる。さらにδ −
アシルALAは安定で長期保存に耐え、必要に応じて加
水分解により容易にALAに変換しうるので、本発明は
ALAを安価にかつ工業的に生産しうるすぐれた方法で
もある。
[Effects of the Invention] The production method of the present invention uses readily available and inexpensive N-acylfurfurylamine as a raw material, generates almost no hazardous waste, has a simple production process, and produces δ − in high yield. Acyl ALA can be obtained. Furthermore, δ −
Since acyl-ALA is stable and can withstand long-term storage, and can be easily converted to ALA by hydrolysis if necessary, the present invention is also an excellent method for producing ALA at low cost and industrially.

Claims (1)

【特許請求の範囲】 1 N−アシルフルフリルアミンをそのメタノール溶液
中で電解酸化し、ついで還元したのち、希硫酸を用いて
開環すると同時にKMnO_4で酸化することを特徴と
するδ−アシルアミノレブリン酸の製造法。 2 N−アシルフルフリルアミンを臭素−メタノール液
中で酸化し、ついで還元したのち、希硫酸を用いて開環
すると同時にKMnO_4で酸化することを特徴とする
δ−アシルアミノレブリン酸の製造法。 3 N−アシルフルフリルアミンがN−アセチルフルフ
リルアミンまたはN−ベンゾイルフルフリルアミンであ
る請求項1または2記載のδ−アシルアミノレブリン酸
の製造法。4 請求項1記載の製造法において、δ−ア
シルアミノレブリン酸を加水分解することを特徴とする
δ−アミノレブリン酸の製造法。 5 請求項2記載の製造法において、δ−アシルアミノ
レブリン酸を加水分解することを特徴とするδ−アミノ
レブリン酸の製造法。 6 δ−アシルアミノレブリン酸がδ−アセチルアミノ
レブリン酸またはδ−ベンゾイルアミノレブリン酸であ
る請求項4または記載のδ−アミノレブリン酸の製造法
[Claims] 1 δ-acylaminolevulinic acid, characterized in that N-acylfurfurylamine is electrolytically oxidized in its methanol solution, then reduced, and then ring-opened using dilute sulfuric acid and simultaneously oxidized with KMnO_4. manufacturing method. 2. A method for producing δ-acylaminolevulinic acid, which comprises oxidizing N-acylfurfurylamine in a bromine-methanol solution, then reducing it, ring-opening it using dilute sulfuric acid, and simultaneously oxidizing it with KMnO_4. 3. The method for producing δ-acylaminolevulinic acid according to claim 1 or 2, wherein the N-acylfurfurylamine is N-acetylfurfurylamine or N-benzoylfurfurylamine. 4. The method for producing δ-aminolevulinic acid according to claim 1, which comprises hydrolyzing δ-acylaminolevulinic acid. 5. The method for producing δ-aminolevulinic acid according to claim 2, characterized in that δ-acylaminolevulinic acid is hydrolyzed. 6. The method for producing δ-aminolevulinic acid according to claim 4 or 4, wherein the δ-acylaminolevulinic acid is δ-acetylaminolevulinic acid or δ-benzoylaminolevulinic acid.
JP22721488A 1988-09-09 1988-09-09 Production of aminolevulinic acids Pending JPH0276841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22721488A JPH0276841A (en) 1988-09-09 1988-09-09 Production of aminolevulinic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22721488A JPH0276841A (en) 1988-09-09 1988-09-09 Production of aminolevulinic acids

Publications (1)

Publication Number Publication Date
JPH0276841A true JPH0276841A (en) 1990-03-16

Family

ID=16857283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22721488A Pending JPH0276841A (en) 1988-09-09 1988-09-09 Production of aminolevulinic acids

Country Status (1)

Country Link
JP (1) JPH0276841A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228084C1 (en) * 1992-08-24 1993-12-23 Suedzucker Ag Process for the preparation of N-acyl derivatives of 5-aminolevulinic acid and the hydrochloride of free acid
EP0607952A1 (en) * 1993-01-20 1994-07-27 Cosmo Research Institute Process for preparing 5-aminolevulinic acid
JPH0753487A (en) * 1993-08-19 1995-02-28 Cosmo Sogo Kenkyusho:Kk Plant-growth regulator
WO2007034673A1 (en) 2005-09-21 2007-03-29 Cosmo Oil Co., Ltd. Process for producing 5-aminolevulinic acid hydrochloride
JP2007254291A (en) * 2006-03-20 2007-10-04 Cosmo Oil Co Ltd Crystal of 5-aminolevulinic acid hydrochloride
WO2007119302A1 (en) 2006-03-13 2007-10-25 Cosmo Oil Co., Ltd. Method for production of phosphate salt of amino acid
WO2008018273A1 (en) 2006-08-10 2008-02-14 Cosmo Oil Co., Ltd. Polyphenol-content-increasing agent for plant
WO2008093740A1 (en) 2007-02-02 2008-08-07 Cosmo Oil Co., Ltd. Agent for improving alpha acid content or hop oil content in hop
WO2008126374A1 (en) 2007-03-30 2008-10-23 Cosmo Oil Co., Ltd. Agent for improving alkali resistance of plant and method for improving alkali resistance of plant
EP2727589A1 (en) 2004-09-02 2014-05-07 Cosmo Oil Co., Ltd. Constitutional function-improving agents

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584585A1 (en) * 1992-08-24 1994-03-02 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Process for the preparation of N-acylderivatives of the acid 5-aminolevulinic and their hydrochlorides
DE4228084C1 (en) * 1992-08-24 1993-12-23 Suedzucker Ag Process for the preparation of N-acyl derivatives of 5-aminolevulinic acid and the hydrochloride of free acid
EP0607952A1 (en) * 1993-01-20 1994-07-27 Cosmo Research Institute Process for preparing 5-aminolevulinic acid
JPH0753487A (en) * 1993-08-19 1995-02-28 Cosmo Sogo Kenkyusho:Kk Plant-growth regulator
EP2727589A1 (en) 2004-09-02 2014-05-07 Cosmo Oil Co., Ltd. Constitutional function-improving agents
EP2402306A1 (en) 2005-09-21 2012-01-04 Cosmo Oil Co., Ltd. Method for producing 5-aminolevulinic acid hydrochloride
WO2007034673A1 (en) 2005-09-21 2007-03-29 Cosmo Oil Co., Ltd. Process for producing 5-aminolevulinic acid hydrochloride
US8148574B2 (en) 2005-09-21 2012-04-03 Cosmo Oil Co., Ltd. Method for producing 5-aminolevulinic acid hydrochloride
WO2007119302A1 (en) 2006-03-13 2007-10-25 Cosmo Oil Co., Ltd. Method for production of phosphate salt of amino acid
US8207376B2 (en) 2006-03-13 2012-06-26 Cosmo Oil Co., Ltd. Method for producing amino acid phosphates
JP2007254291A (en) * 2006-03-20 2007-10-04 Cosmo Oil Co Ltd Crystal of 5-aminolevulinic acid hydrochloride
WO2008018273A1 (en) 2006-08-10 2008-02-14 Cosmo Oil Co., Ltd. Polyphenol-content-increasing agent for plant
WO2008093740A1 (en) 2007-02-02 2008-08-07 Cosmo Oil Co., Ltd. Agent for improving alpha acid content or hop oil content in hop
WO2008126374A1 (en) 2007-03-30 2008-10-23 Cosmo Oil Co., Ltd. Agent for improving alkali resistance of plant and method for improving alkali resistance of plant

Similar Documents

Publication Publication Date Title
JPH0276841A (en) Production of aminolevulinic acids
NO154725B (en) PROCEDURE FOR THE PREPARATION OF 5-CARBAMYL-10-OXO-10,11-DIHYDRO-5H-DIBENZ (B, F) AZEPIN.
JPH02304080A (en) 6h-dibenzo(b,d)pyran-6-one derivative, its production and use thereof
JPH0368026B2 (en)
JPH0579055B2 (en)
IL116384A (en) Ylidene compounds and their preparation
JP4922152B2 (en) Method for producing fluorinated proline derivative
Brownell et al. A new synthesis of croweacin aldehyde
Werner et al. The Alkaloids of Tabernanthe Iboga. VII. 1 Derivatives of Isoquinuclidine
JPS6014033B2 (en) Method for producing 4-methyloxazole
US4408074A (en) Process for preparing 1-(3,5-dimethoxy-4-hydroxy phenyl)-2-(N-methylamino) ethanol hydrochloride
CA2550638A1 (en) Process for preparing high-purity, halogen-free o-phthalaldehyde
JPS60100536A (en) Preparation of 2-(p-isobutylphenyl)propionic acid
US6452046B2 (en) Process for producing 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid
SU1039444A3 (en) Process for preparing 1-oxadethia cephalosporin
SU422152A3 (en) METHOD FOR OBTAINING DERIVATIVES 1-
Rogers et al. The synthesis of DL-lysine from dihydropyran
Skowronski et al. New chemical conversions of 5-hydroxymethylfurfural and the electrochemical oxidation of its derivatives
US3786068A (en) Intermediate in the total synthesis of elenolic acid
RU2058302C1 (en) Method for production of 3,3′-dibrom-4,4′-diacetamido diphenyl methane
JPS6039183A (en) Manufacture of terephthalaldehyde
US4324906A (en) Citric acid esters and process for producing citric acid
GB2041935A (en) Process for the manufacture of hydroxycarbonyl compounds
SU570602A1 (en) Method of preparing 3,5-dibromine-4-oxypyridine
SU943229A1 (en) Process for producing complex of dibromomalonitrile with potassium bromide