JPH0263025A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH0263025A
JPH0263025A JP21611888A JP21611888A JPH0263025A JP H0263025 A JPH0263025 A JP H0263025A JP 21611888 A JP21611888 A JP 21611888A JP 21611888 A JP21611888 A JP 21611888A JP H0263025 A JPH0263025 A JP H0263025A
Authority
JP
Japan
Prior art keywords
nonlinear optical
org
optical material
organic
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21611888A
Other languages
Japanese (ja)
Other versions
JP2685828B2 (en
Inventor
Hiroo Miyamoto
裕生 宮本
Katsuaki Umibe
海部 勝晶
Tadao Nakaya
忠雄 仲矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21611888A priority Critical patent/JP2685828B2/en
Publication of JPH0263025A publication Critical patent/JPH0263025A/en
Application granted granted Critical
Publication of JP2685828B2 publication Critical patent/JP2685828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a novel org. nonlinear optical material having satisfactory conversion efficiency and workability by forming a specified nonlinear optical element. CONSTITUTION:The title org. nonlinear optical material is characterized by 1,4[p-alkylphenylamino]anthraquinone expressed by the formula I. In the formula, n is zero or a positive integer. Such org. compd. is synthesized with high reproducibility, and emits such light having corresponding wavelength to that of the second and third higher harmonic of the light incident on the org. compd. Moreover, the generation of higher harmonic is caused with good reproducibility. Thus, a distinct nonlinear optical effect can be caused even of a semiconductor laser having not so high output power density, and high conversion efficiency, i.e. high nonlinear susceptibility, is obtd. Furthermore, formation of a thin film in the prepn. of a circuit is facilitated and precision processing of the material is also facilitated.

Description

【発明の詳細な説明】 (a梁上の利用分野) この発明は、電気光学素子、光高調波発生素子、又光導
波路等を形成する材料として重要な、有機非線形光学材
料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application on A-Beam) The present invention relates to an organic nonlinear optical material that is important as a material for forming electro-optical elements, optical harmonic generation elements, optical waveguides, and the like.

(従来の技術) 系外からの入力光に対し、入力光以外の成分の光を発生
する物質は、いわゆる非線形光学材料として注目されて
いる。この種の材料のいくつかについて又非線形光学効
果については、例えば文献(「有機非線形光学材料」加
藤政雄、中西へ部監修(+985.7.25第1版)シ
ーエムシー)に開示されている。
(Prior Art) Materials that generate components of light other than the input light when input light is input from outside the system are attracting attention as so-called nonlinear optical materials. Some of these materials and their nonlinear optical effects are disclosed, for example, in the literature ("Organic Nonlinear Optical Materials" edited by Masao Kato and Hebe Nakanishi (+985.7.25 1st edition) CMC).

非線形光学材料は、この文献にも開示されている如く、
有機のものと無機のものとがあるが、今までのところは
、二オフ酸リチウム(L 1Nb03)、KC)P(に
H2PO4)又KTP(にTi0PO4)等に代表され
る無機の非線形光学材料の開発のほうが有機のものより
先行している。これは、従来の非線形光学材料の主な用
途が、大出力レーザ光の波長変換等を中心として考えら
れてきたためであり、無機の非線形光学材料においては
このような用途に適した大きさと品質とを具えた単結晶
が得られ易かつたためである。
As disclosed in this document, the nonlinear optical material is
There are organic and inorganic materials, but so far, inorganic nonlinear optical materials such as lithium diophate (L 1Nb03), KC)P (H2PO4), and KTP (Ti0PO4) have been used. The development of organic products is ahead of that of organic products. This is because the main uses of conventional nonlinear optical materials have been focused on wavelength conversion of high-power laser beams, etc., and inorganic nonlinear optical materials have a size and quality suitable for such uses. This is because it is easy to obtain a single crystal with .

一方、有機非線形光学材料については、材料開発並びに
その材料の単結晶化、配列化及び薄膜化等の基本的な研
究がなされているのが現状でありデバイス化はこれから
のテーマであるが、無機のものに比し、大きな非線形光
学定数を有すること、応答性が速いこと、光損傷強度が
高いこと、薄膜化が容易なこと、微細加工が容易なこと
等の特長を有することが知られるようになってきている
。このため、有機非線形光学材料は、有望な非線形光学
材料としで注目されてきている。
On the other hand, with regard to organic nonlinear optical materials, basic research such as material development, single crystallization, arraying, and thin film formation of the materials is currently being conducted, and the development of devices is a future theme. It is known that it has features such as having a large nonlinear optical constant, fast response, high optical damage intensity, easy to form a thin film, and easy to microfabricate. It is becoming. For this reason, organic nonlinear optical materials are attracting attention as promising nonlinear optical materials.

ところで、非線形光学材料の用途を考えたとき、情報化
社会の発展又半導体レーザの急速な進歩に伴い進歩して
いる光通信や光集積回路を見逃すことは出来ない、この
理由は、光通信等においても、光源としで用いるレーザ
光の周波数変換、光変調、又光偏向を行なうための基盤
技術に非線形光学効果が利用されるからである。即ち、
光通信等においては、レーザ光のような強い光と、非線
形光学材料との相互作用(こ基いて現われる光高調波発
生(第二高調波発生: S HG (SecondHa
rmonic Generation)、第三高調波発
生(ThirdHarmonic Generatio
n)) 、光混合、電気磁気光学効果、或は光パラメト
リツク発振等の現象を利用して非線形光学素子を形成し
利用するからである。
By the way, when considering the uses of nonlinear optical materials, we cannot overlook optical communication and optical integrated circuits, which are progressing with the development of the information society and the rapid progress of semiconductor lasers.The reason for this is that optical communication, etc. This is because nonlinear optical effects are utilized in the basic technology for frequency conversion, optical modulation, and optical deflection of laser light used as a light source. That is,
In optical communications, optical harmonic generation (SHG) occurs due to the interaction between strong light such as laser light and nonlinear optical materials.
rmonic Generation), Third Harmonic Generation
This is because a nonlinear optical element is formed and utilized by utilizing phenomena such as optical mixing, electromagneto-optical effect, or optical parametric oscillation.

このように光通信や光集積回路等に非線形光学材料を利
用する場合、この非線形光学材料に対しては、出力パワ
ー密度がそれ程大きくない半導体レーザてあっても非線
形光学効果を顕著に示させることが出来るよう、高い変
換効率即ち高い非線形感受率が要求される。ざらに、回
路作製をする上で薄膜化が容易でかつ微細加工が容易で
あることが望まれる。
In this way, when nonlinear optical materials are used in optical communications, optical integrated circuits, etc., it is necessary to make the nonlinear optical materials exhibit noticeable nonlinear optical effects even if the output power density is not so high as a semiconductor laser. High conversion efficiency, that is, high nonlinear susceptibility is required to achieve this. In general, it is desired that the film be easily thinned and microfabricated in order to fabricate circuits.

(発明が解決しようとする課題) しかしながら、上述したような無機非線形光学材料のい
ずれにおいても、変換効率、加工性を満足できるものは
得られでいない。
(Problems to be Solved by the Invention) However, none of the above-mentioned inorganic nonlinear optical materials has been able to satisfy conversion efficiency and processability.

これに対し有機非線形光学材料は上述した如く変換効率
、加工性共に要求を満足できる可能性を秘めていると云
え、注目に値するものである。
In contrast, organic nonlinear optical materials are worthy of attention because they have the potential to satisfy the requirements for both conversion efficiency and processability as described above.

従って、新規な有機非線形光学材料が望まれている。Therefore, novel organic nonlinear optical materials are desired.

この発明は上述した点に鑑みなされたものであり、従っ
てこの発明の目的は非線形光学材料として優れる新規な
有機非線形光学材料を提供することにある。
This invention has been made in view of the above points, and therefore, an object of the invention is to provide a novel organic nonlinear optical material that is excellent as a nonlinear optical material.

・(課題を解決するための手段) この目的の達成を図るため、この発明の有機非線形光学
材料は、次の一般式(1)で表される1、4−ジ[p−
アルキルフェニルアミノコアントラキノンであることを
特徴とする(但し、n f(tO又は正の整数。)。
- (Means for Solving the Problem) In order to achieve this object, the organic nonlinear optical material of the present invention is a 1,4-di[p-
It is characterized by being an alkylphenylaminocoanthraquinone (provided that n f (tO or a positive integer)).

(実施例) 以下、この発明の有機非線形光学材料の実施例につき説
明する。
(Examples) Examples of the organic nonlinear optical material of the present invention will be described below.

の合 先ず、−例として下記(2)式で示されるこの発明の有
機化合物の合成方法の一例につき説明する。しかしなが
ら、以下の合成側中で述べる使用薬品名、数値的粂件、
処理方法等は、単なる一例にすぎないことは理解された
い。
First, an example of the method for synthesizing the organic compound of the present invention represented by the following formula (2) will be explained. However, the names of the chemicals used, numerical values, and
It should be understood that the processing method etc. is merely an example.

(作用) 上述の(1)式で示される有機化合物は、後述する実験
結果からも明らかなように、この物質に入射された光の
第二高調波及び第三高調波に相当する光を発する。ざら
に、この物質は再現性良く合成でき、然も高調波発生も
再現性良く起こる。
(Function) As is clear from the experimental results described below, the organic compound represented by formula (1) above emits light corresponding to the second and third harmonics of the light incident on the substance. . In general, this material can be synthesized with good reproducibility, and harmonic generation occurs with good reproducibility.

先ず、2.49のキニザリンと、109のp−ブチルア
ニリンと、1mlの塩酸と、0.59の硼酸とを混合し
、この混合物を85℃の温度に加熱する。これに、0.
59の亜鉛粉末を加え100℃の温度で5時間攪拌しな
がら反応させる。次いで、これを放置冷却した後これに
メタノールを加えると、生成物が沈殿する。この生成物
を濾過によって取り、ざら(こ、メタノール及び水で洗
浄した後乾燥する。これを再結晶法によって精製する。
First, 2.49 of quinizarin, 109 of p-butylaniline, 1 ml of hydrochloric acid, and 0.59 of boric acid are mixed and the mixture is heated to a temperature of 85°C. To this, 0.
Zinc powder No. 59 was added and reacted at a temperature of 100° C. for 5 hours with stirring. Next, when this is allowed to cool and methanol is added thereto, the product precipitates. The product is filtered, washed with sieve, methanol and water, and then dried. It is purified by recrystallization.

このようにして上述の(2)式で示される1、4−ジ[
p−ブチルフェニルアミノコアントラキノンなる有機化
合物を得る。この物質は、幅及び厚さがそれぞれ100
〜200μmでその長さが約1mmの棒状の結晶であっ
た。下記(3)式は、上述の合成方法を示す反応式であ
る。
In this way, 1,4-di[
An organic compound p-butylphenylaminocoanthraquinone is obtained. This material has a width and a thickness of 100
It was a rod-shaped crystal with a diameter of ~200 μm and a length of about 1 mm. The following formula (3) is a reaction formula showing the above-mentioned synthesis method.

上述のように合成した有機〕ヒ合物を元素分析及びFT
IR(赤外)スペクトルζこよってそれぞれ同定した。
The organic] arsenide synthesized as described above was subjected to elemental analysis and FT.
Each was identified based on its IR (infrared) spectrum ζ.

元素分析の結果は、以下に示す通りであった。The results of elemental analysis were as shown below.

C:81.30 H:6.78 N:5.61 尚、計算値は、C:81.24、H:6.82、N:5
.57である。
C: 81.30 H: 6.78 N: 5.61 The calculated values are C: 81.24, H: 6.82, N: 5
.. It is 57.

又、赤外線吸収スペクトルの測定の結果は、波数345
0crrr’付近及び1260cm−’付近に芳香族第
二アミンの吸収、波数2900cm−’付近にブチル基
の吸収、波数1630cm−’付近にカルボニル基の吸
収がそれぞれ認められた。
In addition, the results of the measurement of the infrared absorption spectrum show that the wave number is 345.
Absorption of an aromatic secondary amine was observed near 0 crrr' and 1260 cm-', absorption of a butyl group was observed near a wave number of 2900 cm-', and absorption of a carbonyl group was observed near a wave number of 1630 cm-'.

1 形゛′   の・査 上述の合成例で得た1、4−ジ[p−ブチルフェニルア
ミノコアントラキノンなる有機化合物を用い光高調波発
生素子を作製し、光高調波の発生の有無を確認する。
1. Investigation of form ゛' An optical harmonic generation element was prepared using the organic compound 1,4-di[p-butylphenylaminocoanthraquinone obtained in the above synthesis example, and the presence or absence of generation of optical harmonics was confirmed. do.

先ず、素子作製についてであるが、この実施例の場合以
下に説明するように行なう。
First, regarding device fabrication, in this example, it is performed as described below.

大きさが13x38mmで厚さが0.8mmのガラス板
を二枚用意し、これらガラス板間に0.1〜0.3mm
の間隙を設けこの間隙内に上述の如く合成した有機化合
物を封入して素子を得る。尚、ガラス板の寸法やガラス
板間の隙間寸法は一例であり、設計に応じ変更出来る。
Prepare two glass plates with a size of 13 x 38 mm and a thickness of 0.8 mm, with a distance of 0.1 to 0.3 mm between these glass plates.
A gap is provided and the organic compound synthesized as described above is sealed in the gap to obtain an element. Note that the dimensions of the glass plates and the dimensions of the gaps between the glass plates are merely examples, and can be changed depending on the design.

次に、高調波発生の有無を測定する装置であるが、この
実施例の場合以下lこ示すような装Mを用いる。第1図
は、この測定装置!を概略的に示すプロ・ンク図である
。尚、測定装置は他の構成であっても良いことは明らか
である。
Next, regarding a device for measuring the presence or absence of harmonic generation, in this embodiment, a device M as shown below is used. Figure 1 shows this measuring device! FIG. It is clear that the measuring device may have other configurations.

第1図において、11はレーザ光を発するレーザ光源を
示す。この実施例の場合のレーザ光源は、Nd:YAG
レーザ(波長11064nで尖頭出力16にWのもの)
を用いている。13は集光レンズ、15は分光器、17
は光電子増倍管、19は電流増幅器、21は積分器、2
3は記録計をそれぞれ示す、又、25はレーザ光源11
と積分器21とを同期させるための同期回路を示す。
In FIG. 1, reference numeral 11 indicates a laser light source that emits laser light. The laser light source in this example is Nd:YAG
Laser (wavelength 11064n, peak output 16W)
is used. 13 is a condenser lens, 15 is a spectrometer, 17
is a photomultiplier tube, 19 is a current amplifier, 21 is an integrator, 2
3 indicates a recorder, and 25 indicates a laser light source 11.
A synchronization circuit for synchronizing the integrator 21 and the integrator 21 is shown.

このような装置に、作製した試料素子を、この実施例の
場合、試料素子の一方のガラス基板の主面に直角な方向
かうレーザ光源11の集光レンズ13で集光されたレー
ザ光が照射されるように組み込む(第1図参照、尚、第
1図において31は試料素子を示す、)。
In this example, the fabricated sample element is irradiated with a laser beam focused by a condenser lens 13 of a laser light source 11 directed perpendicular to the main surface of one of the glass substrates of the sample element in such an apparatus. (See FIG. 1; in FIG. 1, numeral 31 indicates the sample element.)

尚、測定の原理は次の通りである。試料素子31からの
散乱光を分光器15で分光し、この分光光を光電子増倍
管17によって受光させる。この分光器15は、分解能
が可変できるものとしてあり、この実施例の場合ある分
解能で波長300〜900nmにわたって順次走査する
。そして、その時の波長否を示す情報(第1図中、Ss
で示す)を記録計23にその都度出力する。又、この受
光光に対応する電流は電流増幅器19で増幅した後、レ
ーザ発振に同期させである積分器21で平均化処理し、
この積分器21からの出力を記録計23で記録する。
The principle of measurement is as follows. Scattered light from the sample element 31 is separated into spectra by a spectroscope 15, and this spectroscopic light is received by a photomultiplier tube 17. The spectroscope 15 is of variable resolution, and in this embodiment, it sequentially scans wavelengths from 300 to 900 nm with a certain resolution. Then, information indicating whether the wavelength is present at that time (in Fig. 1, Ss
) is output to the recorder 23 each time. The current corresponding to the received light is amplified by a current amplifier 19, and then averaged by an integrator 21 in synchronization with laser oscillation.
The output from this integrator 21 is recorded by a recorder 23.

このようにして、散乱光スペクトルを得る。In this way, a scattered light spectrum is obtained.

第2図及び第3図は、このようにして得た散乱光スペク
トルを示す図であり、特に第2図は分光器15の分解能
@3nmとして測定したTHGスペクトルを示す1図、
第3図は、分解能!6nmとして測定したSHGスペク
トルを示す図である。
2 and 3 are diagrams showing the scattered light spectra obtained in this way, in particular, FIG. 2 is a diagram showing the THG spectrum measured with the resolution of the spectrometer 15 @ 3 nm,
Figure 3 shows resolution! It is a figure which shows the SHG spectrum measured as 6 nm.

尚、いずれの図も、横軸は波長(nm)、縦軸は強度(
任意単位)を示している。
In both figures, the horizontal axis is wavelength (nm), and the vertical axis is intensity (nm).
(arbitrary unit).

第2図及び第3図からも明らかなように、試料素子31
からは、波長355nmのところと、波長532nmの
ところにのみ鋭いスペクトルが現われることが分った。
As is clear from FIGS. 2 and 3, the sample element 31
It was found that sharp spectra appeared only at a wavelength of 355 nm and a wavelength of 532 nm.

波長355nmのスペクトルは波長が1064nmであ
る入射光の第三高調波に対応し、波長532nmのスペ
クトルはこの入射光の第二高調波に対応することから、
この発明にかかる有機化合物は、非線形光学特性を有す
ることが分る。
Since the spectrum with a wavelength of 355 nm corresponds to the third harmonic of the incident light with a wavelength of 1064 nm, and the spectrum with the wavelength of 532 nm corresponds to the second harmonic of this incident light,
It can be seen that the organic compound according to the present invention has nonlinear optical properties.

尚、この発明の有機非線形光学材料は、大きなSHG!
発するが、これは結晶が反転対称中心を持たない構造と
なっているためであると考えられる。
Incidentally, the organic nonlinear optical material of this invention has a large SHG!
This is thought to be because the crystal has a structure that does not have a center of inversion symmetry.

尚、上述の実施例においては、一般式(1)中のnが3
である物質につき説明しているが、nが3以タトの物質
に関しても実施例と同様な特性を示すと思われる。ざら
に、nが14以上のものになるとこの物質は分子が両親
媒性を示すようになり、このため、ラングミュア・ブロ
ジエ・シト法による薄膜作製に適するものとなることが
期待出来る。
In addition, in the above-mentioned example, n in general formula (1) is 3
Although the description is given for a substance where n is 3 or more, it is thought that the same characteristics as in the example will be exhibited with respect to a substance where n is 3 or more. Roughly speaking, when n is 14 or more, the molecules of this substance exhibit amphiphilic properties, and therefore, it can be expected that it will be suitable for thin film production by the Langmuir-Brosier-Cito method.

(発明の効果) 上述した説明からも明らかなように、この発明に係る有
機化合物は、SHG、THGなる高調波を良好に発する
ことから、新規な非線形光学材料であると云え、従って
、高調波発生素子等の有用な非線形光学素子の実現に寄
与する。
(Effects of the Invention) As is clear from the above explanation, the organic compound according to the present invention can be said to be a novel nonlinear optical material because it emits harmonics such as SHG and THG well, and therefore, it can be said to be a novel nonlinear optical material. Contributes to the realization of useful nonlinear optical elements such as generation elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る有機化合物か非線形光学効果
を示すか否かの確認をするため、光高調波発生特性を測
定するために用いた装百ヲ概略的に示すブロック図、 第2図は、この発明の有機非線形光学材料のTHGスペ
クトルを示す図、 第3図は、この発明の有機非線形光学材料のSHGスペ
クトルを示す図である。 11・・・レーザ光源、 15・・・分光器、 1.9・・・電流増幅器、 23・・・記録計、 31・・・試料素子。 13・・・集光レンズ 17・・・光電子増倍管 21・・・積分器 25・・・同期回路
FIG. 1 is a block diagram schematically showing the equipment used to measure the optical harmonic generation characteristics in order to confirm whether the organic compound according to the present invention exhibits a nonlinear optical effect. The figure shows the THG spectrum of the organic nonlinear optical material of the invention, and FIG. 3 shows the SHG spectrum of the organic nonlinear optical material of the invention. DESCRIPTION OF SYMBOLS 11... Laser light source, 15... Spectrometer, 1.9... Current amplifier, 23... Recorder, 31... Sample element. 13... Condenser lens 17... Photomultiplier tube 21... Integrator 25... Synchronous circuit

Claims (1)

【特許請求の範囲】[Claims] (1)次の一般式(1)で表される有機非線形光学材料
(但し、nは0又は正の整数。)。 ▲数式、化学式、表等があります▼…(1)
(1) An organic nonlinear optical material represented by the following general formula (1) (where n is 0 or a positive integer). ▲There are mathematical formulas, chemical formulas, tables, etc.▼…(1)
JP21611888A 1988-08-30 1988-08-30 Organic nonlinear optical material Expired - Lifetime JP2685828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21611888A JP2685828B2 (en) 1988-08-30 1988-08-30 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21611888A JP2685828B2 (en) 1988-08-30 1988-08-30 Organic nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH0263025A true JPH0263025A (en) 1990-03-02
JP2685828B2 JP2685828B2 (en) 1997-12-03

Family

ID=16683530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21611888A Expired - Lifetime JP2685828B2 (en) 1988-08-30 1988-08-30 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2685828B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018601A1 (en) * 1993-02-05 1994-08-18 Sumitomo Electric Industries, Ltd. Third-order nonlinear optical material
US5966932A (en) * 1996-05-31 1999-10-19 Toyota Jidosha Kabushiki Kaisha Joint structure for exhaust pipes of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018601A1 (en) * 1993-02-05 1994-08-18 Sumitomo Electric Industries, Ltd. Third-order nonlinear optical material
US5679808A (en) * 1993-02-05 1997-10-21 Sumitomo Electric Industries, Ltd. Tertiary non-linear optical material
US5966932A (en) * 1996-05-31 1999-10-19 Toyota Jidosha Kabushiki Kaisha Joint structure for exhaust pipes of internal combustion engine

Also Published As

Publication number Publication date
JP2685828B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
Subashini et al. Synthesis, growth and characterization of 4-bromo-4′ chloro benzylidene aniline—A third order non linear optical material
Dhanuskodi et al. Structural and thermal characterization of a semiorganic NLO material: l-alanine cadmium chloride
Caroline et al. Growth and characterization of dichlorobis l-proline Zn (II): A semiorganic nonlinear optical single crystal
Johnson et al. Process development and characterization of centrosymmetric semiorganic nonlinear optical crystal: 4-dimethylaminopyridine potassium chloride
Prakash et al. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-Phenylalanine L-phenylalaninium malonate
Manivannan et al. Growth and characterization of a new organic nonlinear optical crystal: semicarbazone of p-dimethylamino benzaldehyde
Dhanabal et al. Synthesis, structural, thermal and nonlinear optical characterization of benzotriazolinium picrate crystals
EP0303429A2 (en) Second harmonic generation with 5-chloro-2-nitroaniline
JPH0263025A (en) Organic nonlinear optical material
Anbuselvi et al. Growth and optical, thermal, mechanical and surface morphology studies of semiorganic nonlinear optical material: Dichlorobis (l-proline) zinc (II) crystal
Hemalatha et al. Synthesis, growth and characterization of new nonlinear optical material of L-Norvalinium hydrogen maleate
Manikandan et al. EPR of γ-irradiated single crystals of 2-amino-5-nitro pyridinium l-tartrate: a NLO material
Manivannan et al. Spectral, thermal and SHG studies on phase matchable organic NLO material EDMP for blue-green laser generation
Vasantha et al. The structural, thermal and optical characterizations of a new nonlinear optical material
Deepa et al. Theoretical and experimental study of new nonlinear optical material nicotinohydrazide
Anbuchezhiyan et al. Synthesis and characterization of a new organic nonlinear optical crystal: l-Phenylalaninium maleate
JPS62156628A (en) Orgranic non-linear optical material
CN111850690A (en) Scandium nitrate inorganic compound crystal, preparation method thereof, nonlinear optical crystal material and application in laser
JP2655669B2 (en) Organic nonlinear optical material
Ravindran et al. Influence of sodium bromide on the growth of succinic acid crystal
JPH03215835A (en) Molecular crystal and method for converting light wavelength by using this crystal
JPH0277026A (en) Organic nonlinear optical material
Dhanuskodi et al. Semiorganic nonlinear optical material for frequency doubling: Preparation and properties of sodium p-nitrophenolate dihydrate (SPNP)
Palaninathan et al. Growth, optical and thermal characterization of novel optical crystal: glycine-doped L-valine potassium chloride for NLO applications
JPS63163826A (en) Organic nonlinear optical material