JPH0261252B2 - - Google Patents

Info

Publication number
JPH0261252B2
JPH0261252B2 JP58107444A JP10744483A JPH0261252B2 JP H0261252 B2 JPH0261252 B2 JP H0261252B2 JP 58107444 A JP58107444 A JP 58107444A JP 10744483 A JP10744483 A JP 10744483A JP H0261252 B2 JPH0261252 B2 JP H0261252B2
Authority
JP
Japan
Prior art keywords
coil
subject
magnetic field
detection
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58107444A
Other languages
Japanese (ja)
Other versions
JPS60376A (en
Inventor
Yasuto Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP58107444A priority Critical patent/JPS60376A/en
Publication of JPS60376A publication Critical patent/JPS60376A/en
Publication of JPH0261252B2 publication Critical patent/JPH0261252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3678Electrical details, e.g. matching or coupling of the coil to the receiver involving quadrature drive or detection, e.g. a circularly polarized RF magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • G01R33/3415Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、核磁気共鳴(Nuclear Magnetic
Resonance;以下これをNMRと呼ぶ)現象を利
用して、被検体内における特定原子核分布等を被
検体外部より知るようにしたNMRイメージング
装置におけるNMR信号(FID;Free Induction
Decay)を検出するRFコイル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nuclear magnetic resonance
The NMR signal (FID; Free Induction
RF coil device for detecting Decay).

NMR手法を用いて特定原子核に注目した被検
体の断層像を得るNMRイメージング装置は従来
から知られている。このNMRイメージング装置
の原理の概要をまず簡単に説明する。
NMR imaging devices that use NMR techniques to obtain tomographic images of a subject focusing on specific atomic nuclei have been known for a long time. First, an overview of the principle of this NMR imaging device will be briefly explained.

水素等の特定の物質に対し、z軸方向の静磁場
H0を印加すると、その原子核はz軸のまわりを
次式で示すような角速度ωで歳差運動する。
Static magnetic field in the z-axis direction for specific substances such as hydrogen
When H 0 is applied, the nucleus precesses around the z-axis at an angular velocity ω as shown in the following equation.

ω=γH0(ラーモア角速度) 但し、γ:磁気回転比 この状態の系に角速度ωに対応する周波数の電
磁波(通常ラジオ波:RF信号)を印加すると共
鳴がおこり、原子核はスピン量子数によつて定ま
つたエネルギー準位の高い方のエネルギー準位に
遷移する。核スピン角運動量を持つ原子核が数種
類混在していても、各原子核によつて磁気回転比
γが異なるため、共鳴する周波数が異なり、従つ
て特定の原子核の共鳴のみを取り出すことが可能
である。又、その共鳴の強さを測定すれば、原子
核の存在量も知ることができる。又、共鳴後、緩
和時間と呼ばれる時定数で定まる時間の間に、高
い準位へ励起された原子核は低い準位へ戻る。こ
の緩和時間の内、特にT1と呼ばれるスピン−格
子間緩和時間は、各化合物の結合の仕方に依存し
ている時定数であり、正常組織と悪性腫瘍とで
は、値が大きく異なることが知られている。
ω = γH 0 (Larmor angular velocity), where γ: gyromagnetic ratio When an electromagnetic wave (usually radio wave: RF signal) with a frequency corresponding to the angular velocity ω is applied to a system in this state, resonance occurs, and the atomic nucleus is moved by the spin quantum number. transition to the higher energy level of the determined energy level. Even if several types of atomic nuclei with nuclear spin angular momentum coexist, each nucleus has a different gyromagnetic ratio γ, so the resonant frequencies differ, and it is therefore possible to extract only the resonance of a specific atomic nucleus. Furthermore, by measuring the strength of the resonance, it is possible to determine the amount of atomic nuclei present. Further, after resonance, the atomic nucleus excited to a higher level returns to a lower level during a time determined by a time constant called relaxation time. Among these relaxation times, the spin-interstitial relaxation time called T1 is a time constant that depends on the way each compound binds, and it is known that the value differs greatly between normal tissues and malignant tumors. It is being

そこで、このNMRを利用し、X線CTと同様
な原理で、被検体の仮想輪切り部分のプロトンを
励起し、各プロジエクシヨンの対応するNMR信
号を、被検体の数多くの方向について求め、被検
体の各位置におけるNMR信号強度を再構成法に
よつて求めれば、特定原子核に着目した被検体の
断層像を得ることができる。
Therefore, using this NMR, we excite protons in a virtual cross section of the subject using the same principle as X-ray CT, and obtain NMR signals corresponding to each projection in many directions of the subject. By determining the NMR signal intensity at each position of the specimen using a reconstruction method, it is possible to obtain a tomographic image of the specimen focusing on a specific atomic nucleus.

第1図はこのような従来装置における検査手法
の一例を説明するための波形図である。被検体
に、はじめに第1図ロに示すようにz勾配磁場
Gz+と、イ示すように細い周波数スペクトルfの
RFパルス(90゜パルス)を印加する。この場合、
ラーモア角速度ω=γ(H0+ΔGz)となる面だけ
のプロトンが励起され、磁化Mを第2図イに示す
ようなωで回転する回転座標系上に示せば、y′軸
方向に90゜向きを変えたものとなる。続いて、第
1図ハ,ニに示すようにx勾配磁場Gxとy勾配
磁場Gyを加え、これによつて2次元勾配磁場を
作り、ホに示すようなNMR信号を検出する。こ
こで、磁化Mは第2図ロに示すように、磁場の不
均一性によつて、x′,y′面内で矢印方向に次第に
分散していくので、やがてNMR信号は減少し、
第1図ホに示すようにτ時間経過して無くなる。
このようにして得られたNMR信号をフーリエ変
換すれば、x勾配磁場Gx,y勾配磁場Gyにより
合成された勾配磁場と直角方向のプロジエクシヨ
ンとなる。
FIG. 1 is a waveform diagram for explaining an example of an inspection method in such a conventional device. First, a z-gradient magnetic field is applied to the subject as shown in Figure 1B.
Gz + and the narrow frequency spectrum f as shown in A.
Apply RF pulse (90° pulse). in this case,
Protons are excited only on the plane where the Larmor angular velocity ω = γ (H 0 + ΔGz), and if the magnetization M is expressed on a rotating coordinate system rotating at ω as shown in Figure 2A, then it will be 90° in the y'-axis direction. The direction will be changed. Subsequently, as shown in FIG. 1C and D, an x gradient magnetic field Gx and a y gradient magnetic field Gy are applied, thereby creating a two-dimensional gradient magnetic field, and an NMR signal as shown in E is detected. Here, as shown in Figure 2 (b), the magnetization M gradually disperses in the direction of the arrow in the x', y' plane due to the non-uniformity of the magnetic field, so the NMR signal eventually decreases.
As shown in FIG. 1E, it disappears after a period of τ.
When the NMR signal obtained in this way is subjected to Fourier transformation, it becomes a projection in the direction perpendicular to the gradient magnetic field synthesized by the x gradient magnetic field Gx and the y gradient magnetic field Gy.

以下、同じようにして、所定の時間τ′だけ待つ
て、次のシーケンスを繰り返す。各シーケンスに
おいては、Gx,Gyを少しずつ変える。これによ
つて、各プロジエクシヨンに対応するNMR信号
を被検体の数多くの方向について求めることがで
きる。
Thereafter, in the same way, wait for a predetermined time τ' and repeat the next sequence. In each sequence, Gx and Gy are changed little by little. Thereby, NMR signals corresponding to each projection can be obtained in many directions of the object.

この場合の磁場用コイル部分は、第3図のよう
に構成されている。即ち、被検体がその中に設置
される円筒1の周囲に、一様な静磁場H0(z方
向)を与える静磁場用コイル2、z勾配磁場
Gz+、Gz-を発生させるためのz勾配磁場用コイ
ルとy勾配磁場用コイル及びx勾配磁場用コイル
よりなる勾配磁場用コイル3、被検体に細い周波
数スペクトルfのRFパルスを電磁場として与え
る励磁コイル4、被検体からのNMR信号を検出
するための検出コイル5がそれぞれ設置されてい
る。
The magnetic field coil portion in this case is constructed as shown in FIG. That is, a static magnetic field coil 2 that provides a uniform static magnetic field H 0 (in the z direction) around a cylinder 1 in which the subject is placed, and a z gradient magnetic field.
A gradient magnetic field coil 3 consisting of a z gradient magnetic field coil, a y gradient magnetic field coil, and an x gradient magnetic field coil for generating Gz + and Gz - , and excitation to give an RF pulse with a narrow frequency spectrum f to the subject as an electromagnetic field. A coil 4 and a detection coil 5 for detecting NMR signals from the subject are installed.

ところで、このような従来の装置において、静
磁場H0の均一度や、勾配磁場等の摂動成分の精
度は良いとしても、検出コイル5のRFコイルは
いかにも大き過ぎるという問題がある。3〜5M
Hz(800G〜1.2KGで)に共振するとしても、約
0.7〜1.0mφの径で数回巻となり、その線材とし
ても太い銅の帯又はパイプ状の線材を用いて形成
される。およそコイルというものはその囲む空間
に磁気エネルギーが入つたときのエネルギー密度
は小となる。従つて、スピンとの間のエネルギー
のやりとりは、大寸法のコイル程大まかになり、
検出感度が鈍くなる。ただ、大寸法のものではそ
の分Q0を高くとることができるので、実際には
検出感度の低下は小量に抑えることはできる。し
かし、何としても、大寸法の検出コイルは製造す
るにも設置するにも大変不便で厄介である。
Incidentally, in such a conventional device, even if the uniformity of the static magnetic field H 0 and the precision of perturbation components such as the gradient magnetic field are good, there is a problem in that the RF coil of the detection coil 5 is too large. 3~5M
Even if it resonates at Hz (at 800G to 1.2KG), approx.
It is wound several times with a diameter of 0.7 to 1.0 mφ, and the wire is formed using a thick copper band or pipe-shaped wire. Generally speaking, when magnetic energy enters the space surrounding a coil, the energy density is small. Therefore, the larger the size of the coil, the rougher the exchange of energy between the spin and the spin.
Detection sensitivity decreases. However, if the size is large, Q 0 can be increased accordingly, so the decrease in detection sensitivity can actually be suppressed to a small amount. However, large-sized detection coils are very inconvenient and cumbersome to manufacture and install.

本発明は、このような点に鑑みてなされたもの
で、その目的は、大寸法の検出コイルを避け、信
号捕捉効率が良く、S/Nの向上も図り得るよう
なNMRイメージング装置におけるRFコイル装
置を提供することにある。
The present invention has been made in view of these points, and its purpose is to provide an RF coil for an NMR imaging device that avoids large-sized detection coils, has good signal capture efficiency, and can improve S/N. The goal is to provide equipment.

この目的を達成する本発明は、同じ共鳴周波数
の核種についての信号を検出する多数の検出コイ
ルを、被検体の周辺に被検体を囲むように環状に
並べ、その各々に受信増幅器を接続し、該受信増
幅器の出力をすべて一様に又は必要に応じて一部
のみを用いて1つの信号に合成しつつ被検体の磁
気応答を受信するように構成したことを特徴とす
るものである。
The present invention achieves this objective by arranging a large number of detection coils that detect signals for nuclides having the same resonance frequency in a ring around a subject, connecting each of them to a receiving amplifier, The present invention is characterized in that it is configured to receive the magnetic response of the subject while combining the outputs of the receiving amplifier into a single signal, either uniformly or using only a portion as necessary.

以下、図面を参照し本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第4図は本発明の一実施例を示す模式的構成図
である。図において、H0の摂動用コイルは省略
してあるが、被検体のサンプルスライス41(そ
の厚みは選択励起により決まる)に対し、H0
水平方向、RF磁場Hrfを垂直方向とする。この
ような状態において、同じ共鳴周波数の核種につ
いての信号を検出する小形の多数の検出コイル4
2を被検体の周辺に被検体を囲むように環状に並
べ、その出力は、それぞれ受信増幅器43を介し
て取り出され、その出力はすべて一様に若しくは
選択的に利用するようになつている。各検出コイ
ル42は、被検体スライス41の近傍に配置され
ており、それぞれスライス41の浅い部位と結合
をもつので、各々は特定の励起は大きな励起用コ
イル44で行つてもよいが、この検出コイル42
で行うようにしてもよい。
FIG. 4 is a schematic diagram showing an embodiment of the present invention. Although the perturbation coil H 0 is omitted in the figure, it is assumed that H 0 is in the horizontal direction and the RF magnetic field Hrf is in the vertical direction with respect to the sample slice 41 of the subject (the thickness of which is determined by selective excitation). In such a state, a large number of small detection coils 4 detecting signals for nuclides with the same resonance frequency are activated.
2 are arranged in a ring around the subject, and their outputs are respectively taken out via receiving amplifiers 43, and all of the outputs are used uniformly or selectively. Each detection coil 42 is arranged near the subject slice 41 and has a connection with a shallow part of the slice 41, so each detection coil 42 may perform a specific excitation using a large excitation coil 44. coil 42
You may also do this using

第5図は他の実施例図である。この場合H0
垂直方向、HrfはH0の軸を中心とした放射状の向
きに被検体スライス41に印加される。FID信号
はH0と垂直なあらゆる方角から観測できるため、
励起はどの方向から行つても受信可能である。但
し、90゜パルスのみの励起では死角が生ずるため、
90゜パルスと180゜パルスを適宜併用するか、若し
くは、90゜のみでイメージングする場合には図の
如く直交する2組の励起専用のコイル51a,5
1bと52a,52bを配置し適宜に使い分け
る。本図の場合も個々の検出コイル53は直下の
スライス浅部とより強く結合するから、ある特定
の部位の精密なイメージングを行うのに適してい
る。尚、各検出コイル53の出力は受信増幅器5
4を介した後、すべてを一様に或いは任意の数個
所ずつを選択的に利用するようにしてよい。選択
的に利用する場合は、重み付け係数器55によつ
て各出力に与えられる重みを可変することにより
行われる。すべてを一様に利用する場合は重み付
け係数器55の各重みを等しくしておけばよい。
重み付け係数器55の出力はすべて一様に加算ア
ンプ56で加算し1本の信号として出力される。
FIG. 5 is a diagram of another embodiment. In this case, H 0 is applied to the subject slice 41 in a vertical direction, and Hrf is applied in a radial direction centered on the axis of H 0 . Since the FID signal can be observed from any direction perpendicular to H 0 ,
Excitation can be received from any direction. However, excitation with only 90° pulses creates blind spots, so
If 90° pulse and 180° pulse are used together as appropriate, or if imaging is performed only at 90°, two sets of excitation-only coils 51a, 5 orthogonal as shown in the figure are used.
1b, 52a, and 52b are arranged and used appropriately. In the case of this figure as well, the individual detection coils 53 are more strongly coupled to the shallow slice portion immediately below, so that it is suitable for performing precise imaging of a specific region. Note that the output of each detection coil 53 is transmitted to the receiving amplifier 5.
4, all of them may be used uniformly or any number of locations may be selectively used. When used selectively, this is done by varying the weight given to each output by the weighting coefficient unit 55. If all are to be used uniformly, each weight of the weighting coefficient unit 55 may be made equal.
All outputs of the weighting coefficient unit 55 are uniformly added together by an adding amplifier 56 and outputted as one signal.

このように加算することは、適切な位相整合を
確保する必要を生ずる。そして適切な位相整合が
確保されれば、全体としての検出におけるノイズ
フイギユアの向上につながる。有感領域の寸法
(体積)が従来のものと比べて著しく小さく(約
1/10以下)なつていること自体からもS/Nの向
上につながつていることが分る。
Adding in this manner creates the need to ensure proper phase matching. If proper phase matching is ensured, the noise figure in the overall detection will be improved. It can be seen that the fact that the size (volume) of the sensitive area is significantly smaller (approximately 1/10 or less) compared to the conventional one leads to an improvement in the S/N ratio.

このようにして得たFID信号の利用方法乃至イ
メージング再構成の方法は従来と同様である。
The method of using the FID signal thus obtained and the method of imaging reconstruction are the same as conventional methods.

尚、第5図においては各検出コイルは固定配置
の場合を示しているが、第6図に示すように各検
出コイルをプローブコイルとして図示の径方向に
エアシリンダー等のプランジヤ61を用いて移動
自在に構成し、被検体表面に各検出コイルを押し
当てるようにすることもできる。このような構成
によれば、被検体の太細、形状の制約を余り受け
ることなく体表面直下を、よくイメージングする
ことができる。又、被検体搭載台62の上にもプ
ローブコイルを配設するようにしてもよい。
In addition, although each detection coil is shown in a fixed arrangement in FIG. 5, as shown in FIG. 6, each detection coil can be moved as a probe coil in the radial direction shown using a plunger 61 such as an air cylinder. It is also possible to configure it freely so that each detection coil is pressed against the surface of the subject. According to such a configuration, the area directly below the body surface can be well imaged without being too limited by the thickness and shape of the subject. Further, a probe coil may also be arranged on the subject mounting table 62.

以上説明したように、同じ共鳴周波数の核種に
ついての信号を検出する多数の検出コイルを、被
検体の周辺に被検体を囲むように環状に並べた本
発明によれば、大寸法の検出コイルを用いなくて
もよく、従来のような大寸法の検出コイルを用い
た場合に比べて、検出コイルの製造や設置が容易
であることは勿論のこと、多数の検出コイルがそ
れぞれ局所毎に感度を確保しつつ観察するので、
検出コイル全体としては、広範囲にわたつて同じ
共鳴周波数の核種を観察することになり、信号捕
捉効率がよく、S/Nの向上も図り得るNMRイ
メージング装置のRFコイル装置を実現すること
ができる。
As explained above, according to the present invention, in which a large number of detection coils for detecting signals of nuclides having the same resonance frequency are arranged in a ring around the subject, large-sized detection coils can be arranged around the subject. Not only is it easier to manufacture and install the detection coil than in the case of conventional large-sized detection coils, but the large number of detection coils can individually adjust the sensitivity. We will observe while securing the
The detection coil as a whole observes nuclides having the same resonance frequency over a wide range, making it possible to realize an RF coil device for an NMR imaging device that has good signal capture efficiency and can improve S/N.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のNMR装置における検査手法の
一例を説明するための波形図、第2図は第1図の
手法による磁化Mの方向を説明するための図、第
3図は従来装置における磁場用コイル部分の構成
図、第4図は本発明の一実施例を示す構成図、第
5図及び第6図は本発明の他の実施例を示す構成
図である。 1……円筒、2……静磁場用コイル、3……勾
配磁場用コイル、4……励磁コイル、5,42,
53……検出コイル。
Figure 1 is a waveform diagram for explaining an example of an inspection method in a conventional NMR device, Figure 2 is a diagram for explaining the direction of magnetization M by the method in Figure 1, and Figure 3 is a diagram for explaining the magnetic field in a conventional device. FIG. 4 is a block diagram showing one embodiment of the present invention, and FIGS. 5 and 6 are block diagrams showing other embodiments of the present invention. 1... Cylinder, 2... Coil for static magnetic field, 3... Coil for gradient magnetic field, 4... Excitation coil, 5, 42,
53...Detection coil.

Claims (1)

【特許請求の範囲】 1 同じ共鳴周波数の核種についての信号を検出
する多数の検出コイルを、被検体の周辺に被検体
を囲むように環状に並べ、その各々に受信増幅器
を接続し、該受信増幅器の出力をすべて一様に又
は必要に応じて一部のみを用いて1つの信号に合
成しつつ被検体の磁気応答を受信するように構成
したことを特徴とする核磁気共鳴イメージング装
置におけるRFコイル装置。 2 前記検出コイルは、被検体の励起をも行い得
るようにしたことを特徴とする特許請求の範囲第
1項記載の核磁気共鳴イメージング装置における
RFコイル装置。 3 前記検出コイルは、移動自在に構成され、被
検体表面に当接又は至近距離に移動して配置させ
ることができるように構成したことを特徴とする
特許請求の範囲第1項記載の核磁気共鳴イメージ
ング装置におけるRFコイル装置。
[Claims] 1. A large number of detection coils for detecting signals of nuclides having the same resonance frequency are arranged in a ring around the subject, a reception amplifier is connected to each of them, and a receiving amplifier is connected to each of the detection coils. RF in a nuclear magnetic resonance imaging apparatus characterized in that it is configured to receive a magnetic response of a subject while combining all the outputs of the amplifiers uniformly or using only a part as necessary into one signal. coil device. 2. The nuclear magnetic resonance imaging apparatus according to claim 1, wherein the detection coil is also capable of exciting the subject.
RF coil device. 3. The nuclear magnetism according to claim 1, wherein the detection coil is configured to be movable and can be placed in contact with the surface of the subject or moved at a close distance. RF coil device in resonance imaging equipment.
JP58107444A 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device Granted JPS60376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107444A JPS60376A (en) 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107444A JPS60376A (en) 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device

Publications (2)

Publication Number Publication Date
JPS60376A JPS60376A (en) 1985-01-05
JPH0261252B2 true JPH0261252B2 (en) 1990-12-19

Family

ID=14459301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107444A Granted JPS60376A (en) 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPS60376A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616758B2 (en) * 1984-10-15 1994-03-09 株式会社東芝 Magnetic resonance imaging device
WO1987006712A1 (en) * 1986-04-21 1987-11-05 The Board Of Trustees Of The Leland Stanford Junio Reduced noise nmr localization system
JPS6321049A (en) * 1986-07-15 1988-01-28 工業技術院長 Brain function measuring apparatus using neclear magnetic resonance phenomenon
NL8602821A (en) * 1986-11-07 1988-06-01 Philips Nv METHOD AND APPARATUS FOR DETERMINING CORRECTED MRI SURFACE SPOOL IMAGE
JPS63203147A (en) * 1987-02-20 1988-08-23 株式会社東芝 Magnetic resonance imaging apparatus
JPS6417636A (en) * 1987-07-14 1989-01-20 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus
JPH01207044A (en) * 1988-02-15 1989-08-21 Yokogawa Medical Syst Ltd Receiving device of nuclear magnetic resonance image diagnostic apparatus
JPH022911A (en) * 1988-06-17 1990-01-08 Otsuka Denshi Kk Method and apparatus for measuring nmr of organism tissue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397894A (en) * 1977-02-08 1978-08-26 Jeol Ltd High frequency circuit for nuclear magnetism resonance device
JPS56132551A (en) * 1980-02-05 1981-10-16 Thomson Csf Electromagnetic coil system and nmr imaging device using thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397894A (en) * 1977-02-08 1978-08-26 Jeol Ltd High frequency circuit for nuclear magnetism resonance device
JPS56132551A (en) * 1980-02-05 1981-10-16 Thomson Csf Electromagnetic coil system and nmr imaging device using thereof

Also Published As

Publication number Publication date
JPS60376A (en) 1985-01-05

Similar Documents

Publication Publication Date Title
US6600319B2 (en) Magnetic resonance imaging device
US4536712A (en) Method and apparatus for examination by nuclear magnetic resonance
US20130278255A1 (en) System and method of receive sensitivity correction in mr imaging
CN103477239B (en) Motion triggered MR imaging using APT/CEST
EP0130479B1 (en) Method of projection reconstruction imaging with reduced sensitivity to motion-related artifacts
JPH0332756B2 (en)
US5578921A (en) Magnetic resonance imaging using three-dimensional spectral-spatial excitation
US5010300A (en) Multi-axis pre-saturated spin echo phase encoded spectroscopy
US5739688A (en) Magnetic resonance imaging method and apparatus employing a static magnetic field having a predetermined inhomogeneity in one spatial direction
CN111693912A (en) Passive field camera and method for operating a passive field camera
EP0390086B1 (en) Magnetic resonance imaging method.
JPS6346146A (en) Magnetic resonance measuring apparatus
JPH0261252B2 (en)
JPH0337931B2 (en)
US4683432A (en) Nuclear magnetic resonance methods and apparatus
JPS6170445A (en) Nuclear magnetic resonance chemical shift mapping method anddevice
US4743850A (en) Method of mapping the nuclear magnetic properties of an object to be examined
WO1994003823A1 (en) A single shot magnetic resonance method to measure diffusion, flow and/or motion
US5068611A (en) Measuring procedure for the elimination of faults from an NMR signal by comparing RF field components spinning in opposite directions
US5227726A (en) Nuclear magnetic resonance methods and apparatus
JPS6240658B2 (en)
JPH0370792B2 (en)
JPS60146140A (en) Method and apparatus of inspection using nuclear magnetic resonance
JP3478867B2 (en) Magnetic resonance imaging equipment
JPH05253207A (en) Mri device for medical diagnostic image