JPH0260982B2 - - Google Patents

Info

Publication number
JPH0260982B2
JPH0260982B2 JP54047490A JP4749079A JPH0260982B2 JP H0260982 B2 JPH0260982 B2 JP H0260982B2 JP 54047490 A JP54047490 A JP 54047490A JP 4749079 A JP4749079 A JP 4749079A JP H0260982 B2 JPH0260982 B2 JP H0260982B2
Authority
JP
Japan
Prior art keywords
fluorescent antibody
microorganisms
antibody
fluorescent
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54047490A
Other languages
Japanese (ja)
Other versions
JPS55140151A (en
Inventor
Ryuichiro Kurane
Tomoo Suzuki
Yoshimasa Takahara
Hikari Saka
Hiroyuki Kurita
Makoto Myaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4749079A priority Critical patent/JPS55140151A/en
Publication of JPS55140151A publication Critical patent/JPS55140151A/en
Publication of JPH0260982B2 publication Critical patent/JPH0260982B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は螢光抗体抗原反応を利用した微生物の
定量法に関する。 より詳しくは、予め特定微生物の螢光抗体抗原
反応として螢光色素により標識された抗体と任意
の数からなる特定微生物を接触させ、得られた螢
光抗体抗原に例えば紫外線のような短い波長の光
線を照射し、螢光抗体抗原から発する励起光量を
電気的に計測し特定微生物の定量線を求めるこ
と、次いで前記方法により得られた特定微生物の
定量線と混合微生物系中より予め特定微生物の螢
光抗体抗原反応として調製された抗体と任意の数
からなる特定微生物を接触させ、得られた螢光抗
体抗原に例えば紫外線のような短い波長の光線を
照射し螢光抗体抗原から発する励起光量を電気的
に計測し得られた計測値を符合させ、混合微生物
系中より、特定微生物を定量する方法に関するも
のである。 本発明者らは、先にうさぎなどの脊椎動物の血
液中に特定の微生物を送り込むことにより送り込
まれた特定の微生物に対し、一定期間経過すると
その血液中に脊椎動物特有の抗体(γ―グロブリ
ン)が得られることを利用して、特定微生物を有
効に管理する方法を見出した。すなわち、うさぎ
等の脊椎動物の血液中に産成された抗体は特定微
生物特有の抗体となり、得られた抗体を螢光色素
により染色し標識後、一方の混合培養基より適量
の微生物をサンプリングし、前記の螢光色素によ
り染色し標識した抗体と接触させると螢光抗体反
応により混合培養基よりサンプリングした混合微
生物系中、特定微生物のみが螢光を発してその確
認及び定量ができることを見出し、活性汚泥中に
占める特定微生物の濃度を一定に維持する微生物
管理方法を確立した。(特願昭53―115005号) しかしながら、この方法は、その都度、顕微鏡
により視認しなければならないという煩しさがあ
り且つ定量に至つては正確な定量は望めないもの
である。 他方、混合系の微生物から特定微生物のみを定
量しようとしても従来法の定量法では混合した総
懸濁度あるいは乾燥菌体総量しか測定できないた
め混合系の微生物については全く測定が不可能で
ある。 そこで、本発明者らはより簡便にし微生物を定
量する方法を検討した結果、螢光抗体抗原反応に
より抗体から発する螢光度を計測し結果、螢光度
に対し微生物の定量性があること及びその定量性
は任意の数からなる微生物に対しても常に一定で
あることを新たに見出し本発明を完成するに至つ
た。 以下、図によりその代表例を説明する。図に示
したのはアミンコ社製(米国)、J4型の螢光度計
の原理図であり、1は光源、2は増幅器、3は分
光器、4は螢光抗体抗原、5は分光器、6は増巾
器、7は測定器をそれぞれ示し、L1は分光器3
により分光された特定波長の光線、L2は螢光抗
体抗原4により発光する励起光線、L3は分光器
5により分光された特定波長励起光線を示してい
る。 光源1より発光された光線、(通常は紫外線を
利用)は増幅器2により所定の光量に増幅され分
光器3により特定波長L1として螢光抗体抗原4
に照射される。照射を受けた特定微生物の螢光抗
体抗原は励起光L2として発光し、分光器5に入
り特定波長の励起光L3として分光され、更に増
幅器6により所定の光量に増幅されて測定器7に
より電気的に測定することにより特定微生物の定
量線を求める。また、定量線を求めるにあたつて
は、求めようとする特定微生物を従来法に従い、
例えば乾燥菌体重量換算法等により定量してお
き、該定量結果と電気的による計測結果を符合さ
せ、計測値を定量値に換算する。特定微生物の定
量線は一般的には図2A,Bのように縦軸に螢光
発光度(励起光)、横軸に微生物菌体の懸濁液容
量を示す図が用いられる。次いで、前記方法によ
り求めた特定微生物の定量線と予め特定微生物の
螢光抗体抗原反応として調製された抗体と任意の
数からなる特定微生物を接触させた螢光抗体抗原
4に光源1により発光された光線(通常は紫外線
を利用)を増巾器2により所定の光量に増巾し、
分光器3により所定波長L1とし照射される。照
射を受けた特定微生物の螢光抗体抗原は励起光
L2として発光し、分光器5に入り特定波長の励
起光L3として増巾器6により所定の光量に増巾
されて測定器7により電気的に計測し得られた計
測値を符合させることにより任意の数からなる特
定微生物を定量することができる。 なお、予め調製された螢光抗体抗原反応として
調製された抗体とは、特定の微生物を例えばうさ
ぎなどの脊椎動物の血液中に送り込み、送り込ま
れた微生物に対し一定期間経過すると血液中に形
成される特定の微生物特有の抗体を回収し、螢光
色素により標識したものを云う。 本発明方法により求められる微生物の定量線
は、微生物の懸濁濃度、混合微生物の有無には影
響されずに常に一定である。この理由は、微生物
の螢光抗体抗原から発生する光量を電気的に計測
するためである。従つて、一旦、特定微生物の定
量線を求めておけば実際の定量にあたり、この定
量線と螢光抗体抗原から発光する光量を電気的に
計測して得られた計測値を符合させれば懸濁濃
度、混合微生物の有無等に関係なく特定微生物の
定量ができる。また、抗体抗原反応は、予め反応
させようとする微生物に対応する同一微生物の螢
光抗体を予め用意し、螢光抗体抗原反応に備えな
ければならない。従つて、ここで特定微生物とは
脊椎動物の体内に築成する抗体の抗原となる微生
物全般を指し、同一の微生物の螢光抗体と同一の
微生物の定量に供される微生物を意味する。 また、本発明方法では、微生物の定量線は常に
一定であるので混合微生物中の特定微生物に対し
ても容易に定量が可能であるが係る場合は、螢光
抗体抗原反応により特定の微生物のみが励起光を
発することになる。故に、複数の微生物からなる
螢光抗体を予め調製混合しておき、混合微生物系
中の複数の特定微生物のみ反応させれば同時にし
て複数の特定微生物の定量が可能である。 特定微生物の定量線との計測値の符合は、その
都度、符合するより定量する方法が簡便である
が、微生物毎に定量線を求めておき、得られた定
量線を電機等に記憶させ、反応後直ちに定量する
方法も検討可能である。 次に使用される装置としては、前記のアミコ社
製(米国)の螢光度計を一般的例として示してあ
るが、その他FR―500/510型(島津製作所製)、
204―A/S型、650―10M型、MPF―4型(い
ずれも日立製作所製)など、螢光抗体抗原反応を
定量可能な装置であれば、広範囲にわたる各種の
装置の利用が可能である。 以下、試験例および実施例により本発明を更に
具体的に説明する。 試験例 ノカルデア.エリスロボレスKR―S−1
(FERM―PNo.3530)をブイヨン液体培地に30℃
で5日間培養をおこなつた。培養後冷却遠心をお
こない前記菌体を得た。得られた菌体を生理食塩
水で洗滌後ホルマリンにて一昼夜菌をおこない再
び生理食塩水にて洗滌後、生理食塩水に懸濁し1
%懸濁液として抗原とした。 次に、前記の懸濁液を若成年の体重2.5Kgのウ
サギの耳静脈に第1日目1ml、第2日目2ml、第
3日目3mlを注射し、以後4日間休止し、このこ
の操作を3回繰り返し得られた血液から遠心法に
より抗血清を分離した。 次にこの抗血清を硫安分画法によりγ―グロブ
リン分画を調整し、更にこのγ―グロブリン画分
に螢光色素(フルオレツセインイソチオシアネー
ト英国BBL社製)を10℃で4時間反応させて標
識し、セフアデツクスG―50(生化学工業社製)
にてゲル過を行い、更にDEAE―セルロース
(生化学工学社製)カラムクロマトにて非特異性
因子を除去し螢光抗体液を作成した。 実施例 1 試験例により調整した螢光抗体を用いて目的と
する微生物を分別定量することを目的として次の
ような実験を行つた。 即ち、ブイヨン寒天培地にて30℃で2日間培養
した前記ノカルデア・エリスロボレスKR―S―
1株(FERM―P―No.3530)を白金耳にてかき
とり集菌し、生理食塩水にて懸濁を行つた。ここ
で分光光度計にて波長660nmにて菌の懸濁度を測
定した。このノカルデア.エリスロポレスKR―
S―1懸濁液0.5mlに対し、試験例により調整し
たノカルデア.エリスロポレスKR―S―1用の
螢光抗体液を0.5ml加え、30℃にて1時間反応さ
せる。 次に遠心を行つて反応物を集めた後、1.5mlの
生理食塩水に再懸濁をした後、螢光光度計(米国
アミコ社製)にて螢光発光度を測定した。 なお、螢光光度計の一次フイルターは紫外線透
過可視光吸収フイルターを、二次フイルター付シ
ヤープカツト黄フイルター(415nm以上の波長の
み光を透過させる)を用いた。 菌の懸濁度と螢光発光度との関係を表1に示
す。 表1 ノカルデア.エリスロボレスKR―S―1
株の懸濁度とS―1株用螢光抗体を反応させた後
の菌一螢光抗体物の螢光発光度
The present invention relates to a method for quantifying microorganisms using a fluorescent antibody-antigen reaction. More specifically, as a fluorescent antibody-antigen reaction of a specific microorganism, an antibody labeled with a fluorescent dye and an arbitrary number of specific microorganisms are contacted in advance, and the obtained fluorescent antibody antigen is exposed to short wavelength light such as ultraviolet light. irradiate with a light beam and electrically measure the amount of excitation light emitted from the fluorescent antibody antigen to determine the quantitative line of the specific microorganism, and then compare the quantitative line of the specific microorganism obtained by the above method with the quantitative line of the specific microorganism in the mixed microbial system in advance. The amount of excitation light emitted from the fluorescent antibody antigen by bringing the antibody prepared as a fluorescent antibody antigen reaction into contact with an arbitrary number of specific microorganisms, and irradiating the obtained fluorescent antibody antigen with short wavelength light such as ultraviolet rays. The present invention relates to a method for quantifying specific microorganisms in a mixed microbial system by electrically measuring them and matching the measured values obtained. The present inventors first introduced specific microorganisms into the blood of vertebrates such as rabbits, and after a certain period of time, antibodies specific to vertebrates (γ-globulin) were detected in the blood of the animals. ), we have discovered a method to effectively manage specific microorganisms. In other words, antibodies produced in the blood of vertebrates such as rabbits become antibodies specific to specific microorganisms, and after staining and labeling the obtained antibodies with a fluorescent dye, an appropriate amount of microorganisms is sampled from one mixed culture medium. It was discovered that when brought into contact with an antibody dyed and labeled with the fluorescent dye described above, only specific microorganisms in a mixed microbial system sampled from a mixed culture medium emit fluorescence due to the fluorescent antibody reaction, making it possible to confirm and quantify activated sludge. We have established a microbial control method that maintains a constant concentration of specific microorganisms. (Japanese Patent Application No. 53-115005) However, this method is troublesome as it requires visual confirmation using a microscope each time, and accurate quantification cannot be expected. On the other hand, even if an attempt is made to quantify only specific microorganisms from a mixed system of microorganisms, conventional quantitative methods can only measure the total degree of suspension or the total amount of dry microbial cells in the mixture, making it impossible to measure the mixed system of microorganisms at all. Therefore, the present inventors investigated a simpler method for quantifying microorganisms, and as a result, they measured the fluorescence intensity emitted from antibodies through a fluorescent antibody-antigen reaction. The present inventors have newly discovered that the properties of microorganisms are always constant even for any number of microorganisms, leading to the completion of the present invention. Hereinafter, typical examples will be explained with reference to figures. The figure shows the principle of a J4 type fluorometer manufactured by Aminco (USA), where 1 is a light source, 2 is an amplifier, 3 is a spectrometer, 4 is a fluorescent antibody antigen, 5 is a spectrometer, 6 indicates the amplifier, 7 indicates the measuring device, and L 1 indicates the spectrometer 3.
L 2 is an excitation light beam emitted by the fluorescent antibody antigen 4 , and L 3 is an excitation light beam of a specific wavelength that is separated by the spectroscope 5 . The light beam (usually using ultraviolet rays) emitted from the light source 1 is amplified to a predetermined light intensity by the amplifier 2, and then converted to a specific wavelength L1 by the spectroscope 3, which is then detected by the fluorescent antibody antigen 4.
is irradiated. The fluorescent antibody antigen of the irradiated specific microorganism emits light as excitation light L2 , which enters the spectrometer 5 and is spectrally dispersed as excitation light L3 with a specific wavelength, which is further amplified to a predetermined light intensity by the amplifier 6 and sent to the measuring device 7. Quantitative curve of specific microorganisms is determined by electrical measurement. In addition, when determining the quantitative curve, the specific microorganism to be determined is determined according to the conventional method.
For example, it is quantified using a dry bacterial weight conversion method or the like, and the quantification result and electrical measurement result are matched to convert the measured value into a quantified value. For the quantitative determination of specific microorganisms, diagrams such as those shown in FIGS. 2A and 2B are generally used, in which the vertical axis shows the fluorescence luminescence intensity (excitation light) and the horizontal axis shows the suspension volume of the microorganism cells. Next, the light source 1 emits light from the fluorescent antibody antigen 4 which has been brought into contact with the quantitative line of the specific microorganism obtained by the above method, an antibody prepared in advance as a fluorescent antibody antigen reaction of the specific microorganism, and an arbitrary number of specific microorganisms. The beam of light (usually using ultraviolet rays) is amplified to a predetermined amount of light by amplifier 2,
It is irradiated with a predetermined wavelength L1 by the spectroscope 3. Fluorescent antibody antigens of specific microorganisms that have been irradiated are exposed to excitation light.
It emits light as L2 , enters the spectroscope 5, becomes excitation light L3 of a specific wavelength, is amplified to a predetermined light intensity by an amplifier 6, and is electrically measured by a measuring device 7, and the obtained measurement value is matched. It is possible to quantify specific microorganisms consisting of an arbitrary number. In addition, antibodies prepared as pre-prepared fluorescent antibody-antigen reactions are produced by introducing specific microorganisms into the blood of a vertebrate animal such as a rabbit, and forming them in the blood against the introduced microorganisms after a certain period of time. Antibodies unique to specific microorganisms are collected and labeled with fluorescent dyes. The quantitative line for microorganisms determined by the method of the present invention is always constant, regardless of the suspended concentration of microorganisms or the presence or absence of mixed microorganisms. The reason for this is to electrically measure the amount of light generated from the fluorescent antibody antigen of the microorganism. Therefore, once the quantification curve for a specific microorganism has been determined, for actual quantification, it is necessary to match this quantification curve with the measurement value obtained by electrically measuring the amount of light emitted from the fluorescent antibody antigen. Specific microorganisms can be quantified regardless of turbidity concentration, presence or absence of mixed microorganisms, etc. In addition, for the antibody-antigen reaction, it is necessary to prepare in advance a fluorescent antibody of the same microorganism that corresponds to the microorganism to be reacted, and prepare for the fluorescent antibody-antigen reaction. Therefore, the term "specific microorganisms" as used herein refers to all microorganisms that serve as antigens for antibodies built in the bodies of vertebrates, and refers to microorganisms that are used for quantitative determination of fluorescent antibodies of the same microorganisms and the same microorganisms. In addition, in the method of the present invention, since the quantification line for microorganisms is always constant, it is possible to easily quantify specific microorganisms in a mixed microorganism. This will emit excitation light. Therefore, it is possible to simultaneously quantify a plurality of specific microorganisms by preparing and mixing fluorescent antibodies composed of a plurality of microorganisms in advance and allowing only the plurality of specific microorganisms in the mixed microorganism system to react. It is easier to determine the agreement of the measurement value with the quantification line of a specific microorganism, rather than matching it each time. It is also possible to consider a method of quantifying the amount immediately after the reaction. As for the equipment to be used next, the above-mentioned fluorophotometer made by Amico (USA) is shown as a general example, but other devices include FR-500/510 type (made by Shimadzu Corporation),
A wide variety of devices can be used as long as they are capable of quantifying fluorescent antibody-antigen reactions, such as the 204-A/S type, 650-10M type, and MPF-4 type (all manufactured by Hitachi). . The present invention will be explained in more detail below using test examples and examples. Test example Nocaldea. Erythroboles KR-S-1
(FERM-PNo.3530) in broth liquid medium at 30℃
Culture was carried out for 5 days. After culturing, cooling centrifugation was performed to obtain the bacterial cells. The obtained bacterial cells were washed with physiological saline, cultured overnight in formalin, washed again with physiological saline, and suspended in physiological saline.
The antigen was prepared as a % suspension. Next, 1 ml of the suspension was injected into the ear vein of a young adult rabbit weighing 2.5 kg on the first day, 2 ml on the second day, and 3 ml on the third day. The antiserum was separated from the blood obtained by repeating the procedure three times by centrifugation. Next, a γ-globulin fraction was prepared from this antiserum by ammonium sulfate fractionation, and this γ-globulin fraction was further reacted with a fluorescent dye (fluorescein isothiocyanate manufactured by BBL, UK) at 10°C for 4 hours. Labeled with Sephadex G-50 (manufactured by Seikagaku Corporation)
A fluorescent antibody solution was prepared by gel filtration using DEAE-Cellulose (Seikagaku Kogyo Co., Ltd.) column chromatography to remove non-specific factors. Example 1 The following experiment was conducted for the purpose of differentially quantifying a target microorganism using a fluorescent antibody prepared according to the test example. That is, the Nocaldea erythroboles KR-S- was cultured on a bouillon agar medium at 30°C for 2 days.
One strain (FERM-P-No. 3530) was collected by scraping with a platinum loop, and suspended in physiological saline. Here, the degree of bacterial suspension was measured using a spectrophotometer at a wavelength of 660 nm. This Nocaldea. Erythropores KR―
Nocaldea prepared according to the test example was added to 0.5 ml of S-1 suspension. Add 0.5 ml of fluorescent antibody solution for Erythropores KR-S-1 and react at 30°C for 1 hour. Next, the reaction product was collected by centrifugation, and then resuspended in 1.5 ml of physiological saline, and the fluorescence intensity was measured using a fluorophotometer (manufactured by Amico, USA). The primary filter of the fluorophotometer was an ultraviolet transmitting and visible light absorbing filter, and a sharp cut yellow filter with a secondary filter (transmits only light with wavelengths of 415 nm or more). Table 1 shows the relationship between the degree of suspension of bacteria and the degree of fluorescence. Table 1 Nocaldea. Erythroboles KR-S-1
Suspension of strain and fluorescence luminescence of bacteria and fluorescent antibody after reacting with fluorescent antibody for strain S-1

【表】 表1に示す如く、菌の懸濁度と菌一螢光抗体物
の螢光発光度は同じように直線関係を示し、定量
性のあることが認められた。 実施例 2 実施例1のノカルデア.エリスロポレスKR―
S―1株の無希釈の懸濁液にブイヨン寒天培地か
らかきとつた。シユウドモナスKR―256―1株
(FERM P―No.3529)を追加懸濁したところ、
混合懸濁液の懸濁度は3900になつた。この混合懸
濁度を表1における希釈割合と同じように2倍、
5倍、10倍希釈した後、表1にて行つたのと同じ
方法により、S―1株用の螢光抗体と反応させた
後、同じ方法を用い菌一螢光抗体の螢光発光度を
調べた。もし、シユウドモナス.KR―256―1
株に妨げられずノカルデア.エリスロボレスS―
1株のみを確認し、分別定量できるならば螢光抗
体と反応せた後の螢光発光度の値は表1と同じ値
をしめすはずである。 表2 ノカルデア.エリスロポレスKR―S―1
株とシユウドモナス.アシドボランスKR―256
―1株の混合系における混合懸濁度とS―1株用
の螢光抗体を用いた菌―螢光抗体の螢光発光度の
関係を示す。
[Table] As shown in Table 1, the degree of suspension of the bacteria and the fluorescence luminescence intensity of the bacteria-fluorescent antibody similarly showed a linear relationship, and it was confirmed that the results were quantitative. Example 2 Nocaldea of Example 1. Erythropores KR―
An undiluted suspension of strain S-1 was scraped from the broth agar medium. When Pseudomonas KR-256-1 strain (FERM P-No. 3529) was additionally suspended,
The suspension degree of the mixed suspension was 3900. This mixed suspension degree was doubled in the same manner as the dilution ratio in Table 1.
After diluting 5-fold and 10-fold, react with the fluorescent antibody for strain S-1 using the same method as shown in Table 1. Examined. If it is Pseudomonas. KR-256-1
Nocaldea unhindered by stocks. Erythroboles S-
If only one strain can be identified and separately quantified, the value of fluorescence luminescence after reacting with a fluorescent antibody should show the same value as in Table 1. Table 2 Nocaldea. Erythropores KR-S-1
Strains and pseudomonas. Acidoborance KR-256
This figure shows the relationship between the degree of mixing suspension in a mixed system of the S-1 strain and the fluorescence luminescence intensity of the bacteria-fluorescent antibody using the fluorescent antibody for the S-1 strain.

【表】 螢光抗体を反応させた後の螢光発光度をみると
表1と表2の値は完全と一致していることより、
本発明により目的とする微生物のみを混合系にお
いても確認し分別定量できたことがわかつた。 なお、従来の定量法において乾燥菌体量を測定
しても、混合した総菌体量のみを測定できるにす
ぎず、分別定量は不可能であつた。 実施例 3 実施例1と同じ方法を用いて、人間に対してカ
ンジダ病としての病原性を示す。カンジダ.アル
ビカンスN―500(IAM4080)株を用いて、N―
500株用の螢光体を調整した。このカンジダ、ア
ルビカンスN―500株の生理食塩水の懸濁液の懸
濁度を分光光度計で660nmにおいて測定したとこ
ろ0.35を示した。この懸濁液1ml、0.5ml、0.1ml
に対して前記N―500株用の螢光抗体液0.5を加え
37℃にて1時間反応させた後実施例1と同じよう
に生理食塩水3.5mlに再懸濁を行い菌一螢光抗体
の螢光発光度を測定した。 更に、このカンジタ.アルビカンスN―500の
懸濁液0.1ml、0.5ml、1mlに大腸菌、IFM3281株
の懸濁液(660nmで測定した懸濁度0.48)0.5mlを
各々に加えた後、前記N―500株用の螢光抗体液
0.5mlを反応させ、反応後の菌―螢光抗体の螢光
発光度を測定した。 これらの結果をまとめて図2に示す。 なお、図2において、グラフAは、加えたカン
ジダ.アルビカンス菌体の懸濁度と抗カンジダ.
アルビカンスアストロシチン抗体とを反応させた
後の螢光発光量の関係を示しており、カンジダ.
アルビカンスのための定量線が求められた。又、
グラフBは従来、菌の定量するために用いられて
いた吸光度測定と加えたカンジダ.アルビカンス
の懸濁度との関係を示している。グラフA,Bよ
り螢光発光量を測定することにより定量線を示
す。 次に、カンジダ.アルビカンスと大腸菌の混合
系に本法を適用したところ、従来の吸光度を測定
する方法ではグラフDの如く、全体の懸濁度が測
定されるのみでカンジダ.アルビカンスがその混
合系においてどの位存在するか定量できないこと
は明らかである。これに対し、グラフCに示す如
く螢光発光量を測定するとカンジダ.アルビカン
スのみを混合系において分別確認し、あらかじめ
求めておいた定量線(グラフA)と対比させるこ
とによつて容易に分別定量できた。 この結果、実施例1と同じようにカンジダ病と
して名高い病原微生物であるカンジダ.アルビカ
ンスN―500を本発明によれば分別確認し、分別
定量できることが認められた。
[Table] Looking at the fluorescence intensity after reacting with the fluorescent antibody, the values in Tables 1 and 2 are in perfect agreement.
It was found that, according to the present invention, only the target microorganisms could be identified and separately quantified even in a mixed system. Note that even if the amount of dry bacterial cells is measured using the conventional quantitative method, only the total amount of mixed bacterial cells can be measured, and fractional quantification is not possible. Example 3 Using the same method as in Example 1, pathogenicity as a Candida disease was demonstrated to humans. Candida. Using N. albicans N-500 (IAM4080) strain, N-
I prepared a phosphor for 500 plants. The suspension degree of this suspension of Candida albicans N-500 strain in physiological saline was measured with a spectrophotometer at 660 nm and found to be 0.35. This suspension 1ml, 0.5ml, 0.1ml
Add 0.5 of the fluorescent antibody solution for the N-500 strain to the
After reacting at 37°C for 1 hour, the suspension was resuspended in 3.5 ml of physiological saline in the same manner as in Example 1, and the fluorescence intensity of the bacteria-fluorescent antibody was measured. Furthermore, this candida. After adding 0.5 ml of a suspension of Escherichia coli and IFM3281 strain (suspension degree 0.48 measured at 660 nm) to 0.1 ml, 0.5 ml, and 1 ml of the suspension of E. albicans N-500, Fluorescent antibody solution
0.5 ml was reacted, and the fluorescence intensity of the bacteria-fluorescent antibody after the reaction was measured. These results are summarized in FIG. 2. In addition, in FIG. 2, graph A shows the added Candida. Suspension degree of C. albicans cells and anti-Candida.
It shows the relationship between the amount of fluorescent light emitted after reacting with Candida albicans astrocytin antibody.
A quantitative line for C. albicans was determined. or,
Graph B shows Candida. It shows the relationship with the degree of suspension of C. albicans. A quantitative line is shown by measuring the amount of fluorescence from graphs A and B. Next, candida. When this method was applied to a mixed system of Candida albicans and E. coli, the conventional method of measuring absorbance only measured the overall degree of suspension, as shown in graph D. It is clear that it is not possible to quantify how much C. albicans is present in the mixed system. On the other hand, when the amount of fluorescent light emission was measured as shown in graph C, Candida. Only C. albicans was separated and confirmed in the mixed system, and by comparison with a predetermined quantitative curve (graph A), it was possible to easily separate and quantify. As a result, as in Example 1, Candida, which is a pathogenic microorganism famous for Candida disease. It has been confirmed that C. albicans N-500 can be separately confirmed and quantified according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は螢光度計の計測機構図を示し、1は光
源、2は増幅器、3は分光器、4は微生物の螢光
抗体抗原、5は分光器、6は増幅器、L1は光源
1より発光された特定波長、L2は励起光、L3
特定波長の励起光を示している。図2は菌体を螢
光抗体抗原としたときの螢光発光度による微生物
の定量線及び吸光度測定による微生物の定量線を
それぞれ示している。図2中のAはカンジダ菌を
螢光抗体抗原としたときの螢光発光度による同菌
の定量線を示し縦軸に螢光発光度(励起光)、横
軸に同菌の懸濁度を示している。Bは同菌の従
来、菌の定量用として用いられている吸光度測定
の結果を示し、縦軸に吸光度、横軸に同菌の懸濁
度を示している。Cは同菌と大腸菌との混合系に
おける同菌の螢光抗体抗原としたときの螢光発光
度による計測結果を示し、縦軸に螢光発光度(励
起光)、横軸に同菌の懸濁度を示している。Dは
同菌と大腸菌との混合系において従来より使用さ
れている吸光度測定の結果を示し、縦軸に吸光
度、横軸に同菌と大腸菌との懸濁度を示してい
る。
Figure 1 shows the measurement mechanism of a fluorometer, where 1 is a light source, 2 is an amplifier, 3 is a spectrometer, 4 is a fluorescent antibody antigen of microorganisms, 5 is a spectrometer, 6 is an amplifier, and L 1 is from light source 1. The specific wavelength of light emitted, L 2 indicates excitation light, and L 3 indicates excitation light of a specific wavelength. FIG. 2 shows a quantitative line of microorganisms based on fluorescence luminescence and a quantitative line of microorganisms based on absorbance measurement when bacterial cells are used as a fluorescent antibody antigen. A in Figure 2 shows the quantitative line of Candida bacteria based on the fluorescence intensity when the fluorescent antibody antigen is used. The vertical axis is the fluorescence intensity (excitation light), and the horizontal axis is the suspension degree of the same bacteria. It shows. B shows the result of absorbance measurement of the same bacterium, which is conventionally used for quantifying the bacterium, with the vertical axis showing the absorbance and the horizontal axis showing the degree of suspension of the same bacterium. C shows the measurement results of the fluorescence intensity when using the same bacteria as a fluorescent antibody antigen in a mixed system of the same bacteria and E. coli, where the vertical axis is the fluorescence intensity (excitation light) and the horizontal axis is the fluorescence of the same bacteria. It shows the degree of suspension. D shows the results of absorbance measurement conventionally used in a mixed system of the same bacteria and E. coli, with the vertical axis showing the absorbance and the horizontal axis showing the degree of suspension between the same bacteria and E. coli.

Claims (1)

【特許請求の範囲】 1 混合微生物系中よりの微生物の定量におい
て、 1) 予め特定微生物の螢光抗体抗原反応とし
て、螢光色素により標識された抗体と特定微生
物を接触させ、得られた前記抗体と特定微生物
の螢光抗体抗原に光線を照射し、螢光抗体抗原
から発生する光量を電気的に計測して特定微生
物の定量線を求めること、 2) 前記方法により得られた特定微生物の定量
線と、混合微生物系中予め特定微生物の螢光抗
体抗原反応として、螢光色素により標識された
抗体と特定微生物を接触させ、得られた前記抗
体と特定微生物の螢光抗体原に光線を照射し螢
光抗体抗から発光する光量を電気的に計測し、
得られた計測値とを符号させること、 を特徴とする螢光抗体抗原反応を利用した微生物
の定量法。
[Scope of Claims] 1. In the quantitative determination of microorganisms in a mixed microorganism system, 1) the above-mentioned microorganism obtained by contacting an antibody labeled with a fluorescent dye with a specific microorganism in advance as a fluorescent antibody-antigen reaction of the specific microorganism; irradiating the antibody and the fluorescent antibody antigen of the specific microorganism with light, and electrically measuring the amount of light generated from the fluorescent antibody antigen to determine the quantitative line of the specific microorganism; 2) determining the quantitative line of the specific microorganism obtained by the above method; As a fluorescent antibody-antigen reaction of a specific microorganism in a mixed microbial system, an antibody labeled with a fluorescent dye and a specific microorganism are brought into contact with the quantitative line, and a light beam is applied to the obtained antibody and the fluorescent antibody antigen of the specific microorganism. The amount of light emitted from the fluorescent antibody is measured electrically.
A method for quantifying microorganisms using a fluorescent antibody-antigen reaction, characterized in that the obtained measured value is coded.
JP4749079A 1979-04-18 1979-04-18 Quantitative measurement of microorganism using fluorescent anti-body-antigen reaction Granted JPS55140151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4749079A JPS55140151A (en) 1979-04-18 1979-04-18 Quantitative measurement of microorganism using fluorescent anti-body-antigen reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4749079A JPS55140151A (en) 1979-04-18 1979-04-18 Quantitative measurement of microorganism using fluorescent anti-body-antigen reaction

Publications (2)

Publication Number Publication Date
JPS55140151A JPS55140151A (en) 1980-11-01
JPH0260982B2 true JPH0260982B2 (en) 1990-12-18

Family

ID=12776551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4749079A Granted JPS55140151A (en) 1979-04-18 1979-04-18 Quantitative measurement of microorganism using fluorescent anti-body-antigen reaction

Country Status (1)

Country Link
JP (1) JPS55140151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439802U (en) * 1990-07-24 1992-04-03

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170053A (en) * 1988-12-23 1990-06-29 Meiji Seika Kaisha Ltd Method and device for detecting microorganism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016597A (en) * 1973-05-07 1975-02-21
JPS52149195A (en) * 1976-06-02 1977-12-12 Beckman Instruments Inc Method of and apparatus for generating signal for introduction of chemical reactive component into chemical analysis apparatus
US4100416A (en) * 1977-03-02 1978-07-11 Block Engineering, Inc. Serum fluorescence suppression
US4133873A (en) * 1975-05-26 1979-01-09 Noller Hans G Method of determining extracellular antigens and antibodies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016597A (en) * 1973-05-07 1975-02-21
US4133873A (en) * 1975-05-26 1979-01-09 Noller Hans G Method of determining extracellular antigens and antibodies
JPS52149195A (en) * 1976-06-02 1977-12-12 Beckman Instruments Inc Method of and apparatus for generating signal for introduction of chemical reactive component into chemical analysis apparatus
US4100416A (en) * 1977-03-02 1978-07-11 Block Engineering, Inc. Serum fluorescence suppression

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439802U (en) * 1990-07-24 1992-04-03

Also Published As

Publication number Publication date
JPS55140151A (en) 1980-11-01

Similar Documents

Publication Publication Date Title
EP0174744B1 (en) Fluorescent energy transfer with phycobiliproteins
Hahn et al. Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots
US4822733A (en) Lifetime-resolved assay procedures
Cohen et al. Interaction of a fluorescent ligand with membrane-bound cholinergic receptor from Torpedo marmorata
US4169137A (en) Antigen detecting reagents
JPH06500852A (en) Method for amplifying luminescent signals from fluorescent compounds
JPS6122254A (en) Bioluminescence coupling determination method
JP2013532275A (en) A highly sensitive homogeneous chemiluminescence assay method
US4018530A (en) Fluorescence spectrometry employing excitation of bleaching intensity
McNeil et al. Fluorometric estimation of GSH-OPT
Patsenker et al. Fluorescent probes and labels for biomedical applications
US5776703A (en) Immunoassay
US20060275310A1 (en) Method and detection and decontamination of antigens by nanoparticle-raman spectroscopy
Makhneva et al. Carotenoids are probably involved in singlet oxygen generation in the membranes of purple photosynthetic bacteria under light irradiation
JPH0260982B2 (en)
Lv et al. Activated alkyne-enabled turn-on click bioconjugation with cascade signal amplification for ultrafast and high-throughput antibiotic screening
Murtazina et al. Fluorescent polarization immunoassay for sulphadiazine using a high specificity antibody
Surzhikova et al. Effect of Phosphate Ions on the Dianion–Anion Equilibrium of Fluorescein Excited State
EP0343346B1 (en) Fluorescence immunoassay method utilizing pseudo-antigens combined with fluorescent quenchers
Seyedi et al. Spectroscopic properties of various blood antigens/antibodies
JP2007053926A (en) Highly sensitive method for detecting phototoxicity, and phototoxicity detection kit
US5229302A (en) Fluorescence immunoassay method utilizing pseudo-antigens combined with fluorescent quenchers
US4207075A (en) Rabbit immunoglobulin-N-(3-pyrene)-maleimide conjugate for fluorescent immunoassay
US20220365092A1 (en) A method for detecting an analyte
Ye et al. Photoinducible silane diazirine as an effective crosslinker in the construction of a chemiluminescent immunosensor targeting a model E. coli analyte