JPH0252432A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0252432A
JPH0252432A JP20442888A JP20442888A JPH0252432A JP H0252432 A JPH0252432 A JP H0252432A JP 20442888 A JP20442888 A JP 20442888A JP 20442888 A JP20442888 A JP 20442888A JP H0252432 A JPH0252432 A JP H0252432A
Authority
JP
Japan
Prior art keywords
protective film
film
plasma
semiconductor substrate
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20442888A
Other languages
Japanese (ja)
Inventor
Noriaki Okada
憲明 岡田
Kiyotaka Yonekawa
清隆 米川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20442888A priority Critical patent/JPH0252432A/en
Publication of JPH0252432A publication Critical patent/JPH0252432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent a hot carrier from being increased and to eliminate a bad influence such as a decline in a lifetime, a variation in a threshold voltage of a transistor or the like by a method wherein, after a plasma protective film has been formed, the plasma protective film is irradiated with ultraviolet rays under a prescribed condition. CONSTITUTION:A semiconductor substrate 12 is placed on a stage 11; in this state, a plasma protective film on the semiconductor substrate 12 is irradiated with ultraviolet rays by using ultraviolet light sources 13. Irradiation conditions during this process are e.g.,a stage temperature of 40 to 200 deg.C, an ultraviolet wavelength of 200 to 300nm, an ultraviolet irradiation intensity of 20 to 600mW/cm<2> and an irradiation duration of about 10 to 120 seconds. When a prescribed ultraviolet irradiation operation is executed under such irradiation conditions, hydrogen taken into a gate oxide film of the semiconductor substrate 12 can be detached. That is to say, the hydrogen taken into the gate oxide film when the plasma protective film is formed is contained, e.g., as an NH group and an SH group, these are decomposed by energy given by the ultraviolet irradiation operation and are detached from the gate oxide film. Thereby, it is possible to obtain a desired semiconductor device on the semiconductor substrate 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置、特に集積回路−1−にプラズマを
用いて窒化シリコン膜等のプラズマ保護膜を形成する半
導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device, and particularly to a method for manufacturing a semiconductor device in which a plasma protective film such as a silicon nitride film is formed on an integrated circuit-1- using plasma. be.

ので来の技術) 閏来、このような分野の技術としては、第2図に示すよ
うなものがあった。以下、その製造方法を図を用いて説
明する。
Since then, there have been technologies in this field as shown in Figure 2. The manufacturing method will be explained below with reference to the drawings.

第2図はR来の半導体装置の製造方法を示すだめの半導
体装置の断面図である。
FIG. 2 is a cross-sectional view of a useless semiconductor device showing a method of manufacturing a semiconductor device according to the present invention.

先ず半導体基板1上に公知の技術を用いて集積回路を形
成する。即ち、半導体基板1上にデー1−酸[ヒ膜2を
形成し、その上にゲート電極3を形成する。ゲート酸(
ヒ膜2の両1111部における半導体基板1の表層部に
は、拡散層4を形成する。
First, an integrated circuit is formed on a semiconductor substrate 1 using a known technique. That is, a di-acid film 2 is formed on a semiconductor substrate 1, and a gate electrode 3 is formed thereon. Gate acid (
A diffusion layer 4 is formed in the surface layer portion of the semiconductor substrate 1 at both 1111 portions of the filler film 2 .

次いで、これらのゲート電極3及び拡散層4を含む半導
体基板1上の全面に、例えば常圧CVD法(Chcmi
cal Vapor Deposition法:化学的
堆積法)により中間絶縁膜5を形成する。この中間絶縁
膜5に既知のホトリソ・エツチング技術を用いてコンタ
クトホール6を形成し、続いてその一ヒにアルミニウム
等から成る金属配線層7を形成する。
Next, the entire surface of the semiconductor substrate 1 including the gate electrode 3 and the diffusion layer 4 is subjected to, for example, atmospheric pressure CVD (Chcmi).
The intermediate insulating film 5 is formed by a cal vapor deposition method (chemical deposition method). A contact hole 6 is formed in this intermediate insulating film 5 using known photolithography and etching techniques, and then a metal wiring layer 7 made of aluminum or the like is formed in the contact hole 6.

ここに、金属配線層7と拡散層4は、コンタクトポール
6を介して接続され、MO8形トランジスタを含む所定
の集積回路がJシ成される。
Here, the metal wiring layer 7 and the diffusion layer 4 are connected via the contact pole 6, and a predetermined integrated circuit including an MO8 type transistor is formed.

そのt→〉、中間絶縁膜5及び金属配線層7上に窒化シ
リコン(SixNy)膜から成るプラズマ保護膜8を1
トラ成する。このプラズマ保護膜8の形成は、シラン(
SiH4)とアン′モニア(NH3)雰囲気中において
、例えば温度380°C程度のプラズマCVD法を施す
ことによって行なうことができる、このように形成され
たプラズマ保護M8は、酸化保護膜等に比較して特に耐
湿性の面で優れており、半導体装置の信頼性向上等に貢
献している。
t→〉, a plasma protective film 8 made of silicon nitride (SixNy) film is formed on the intermediate insulating film 5 and the metal wiring layer 7.
Become a tiger. This plasma protective film 8 is formed using silane (
The plasma protection M8 formed in this way, which can be performed by plasma CVD at a temperature of about 380°C in an atmosphere of SiH4) and ammonia (NH3), has a higher It is particularly excellent in terms of moisture resistance, and contributes to improving the reliability of semiconductor devices.

(発明か解決しようとする課題)。(an invention or a problem to be solved).

しh化ながら、上記の半導体装置の製造方法においては
、プラズマ(IiWI模8の形成に際し、ゲート酸(ヒ
膜2中に水素が収り込まれ易く、これに起因)ノζポッ
トキャリアの増加がもたらされるという問題があり、そ
の解決が困難であった。即ち、プラズマ1呆護1模8は
通常SiH4とN H3とから形成さhるため、プラズ
マ中の水素分圧は高く、ゲート酸化膜2中に水素が収り
込まれ易い状態になっている。ゲート酸化膜2中に入っ
た水素はホットキャリアの増加をもたらし、キャリアの
ライフタイムの低下及びMO3I−ランジスタのしきい
値電圧の変動等の悪影響を及ぼす。
However, in the above method for manufacturing a semiconductor device, an increase in ζ pot carriers due to the gate acid (hydrogen is likely to be trapped in the arsenal film 2) during the formation of the plasma (IiWI model 8). This problem has been difficult to solve.That is, since plasma 1 is normally formed from SiH4 and NH3, the hydrogen partial pressure in the plasma is high, and gate oxidation is difficult. Hydrogen is easily trapped in the film 2. Hydrogen entering the gate oxide film 2 causes an increase in hot carriers, resulting in a decrease in carrier lifetime and a decrease in the threshold voltage of the MO3I-transistor. adverse effects such as fluctuations.

本発明は前記bη来技術がもっていた課題として、ゲー
ト酸化膜中の水素によりホットキャリアが増加する点に
ついて解決した半導体装置の製造方法を提供するもので
ある。
The present invention provides a method for manufacturing a semiconductor device that solves the problem of the prior art, which is the increase in hot carriers due to hydrogen in the gate oxide film.

(課題を解決するための手段) 本発明は前記課題を解決するなめに、半導体基板上に集
積回路を形成した後、プラズマを用い゛ζ前記集積回路
上にプラズマ保護膜を形成する半導体装置の製造方法に
おいて、前記プラズマ保護膜を形成した後、そのプラズ
マ保r”JI! )−に波長20(’l1−300n及
び照射強度20−600 mW/Cm2の範囲内の紫外
線を照射するようにしたものである。また、前記紫外線
を照射するプラズマ保護膜としては、窒化シリコン膜、
酸化シリコン膜及び窒素酸シリコン膜を用いるとよい。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a semiconductor device in which an integrated circuit is formed on a semiconductor substrate and then a plasma protective film is formed on the integrated circuit using plasma. In the manufacturing method, after forming the plasma protective film, the plasma protective film is irradiated with ultraviolet rays having a wavelength of 20 ('l1-300n) and an irradiation intensity of 20-600 mW/Cm2. In addition, the plasma protective film for irradiating the ultraviolet rays may include a silicon nitride film,
It is preferable to use a silicon oxide film and a silicon nitrate film.

(作用) 本発明によれば、以上のように半導体装置の製造方法を
楢成したので、プラズマ保護膜形成後にそのプラズマ保
護膜上から所定の紫外線を照射することは、ゲート酸化
膜中に含まれた水素に紫外線のエイ・ルギーを与え、水
素をゲート酸化膜から脱離させるように働(− この働きにより、1〜ランジスタ素子等におけるホラl
−キャリアの増加が防止され、ライフタイムの低下やし
きい値電圧の変動等の悪影響を除去することができる。
(Function) According to the present invention, since the method for manufacturing a semiconductor device has been improved as described above, irradiating a predetermined ultraviolet ray from above the plasma protective film after forming the plasma protective film does not include the components contained in the gate oxide film. It acts to desorb hydrogen from the gate oxide film by applying energy energy from ultraviolet rays to the hydrogen that has been absorbed (- This action reduces the energy consumption of
- An increase in carriers is prevented, and negative effects such as a decrease in lifetime and fluctuations in threshold voltage can be eliminated.

そして、このような紫外線照射は、窒化シリコン膜、酸
化シリコン膜及び窒素酸シリコン膜のいずれかから成る
プラズマ保護膜に対しても同様の作用を及ぼす。したが
って、前記課題を解決することができる。
Further, such ultraviolet irradiation has a similar effect on the plasma protective film made of any one of a silicon nitride film, a silicon oxide film, and a silicon nitride film. Therefore, the above problem can be solved.

(実施例) 第1図は本発明の実施例における半導体装置の製造方法
を示す斜視図である。
(Example) FIG. 1 is a perspective view showing a method of manufacturing a semiconductor device in an example of the present invention.

ステージ11上にはシリコン等から成る半導体基板12
が載置されている。この半導体基板12には、第1図の
従来の半導体基板と同様に集積回路が形成され、その上
に中間絶縁膜及び金属配線層が形成され、さらにその上
に最終保護膜としてのプラズマFA<”!膜が形成され
ている。プラズマ保護膜は例えば窒化シリコン(Six
Ny)膜から成り、従来と同様の方法によって形成され
ている。
On the stage 11 is a semiconductor substrate 12 made of silicon or the like.
is placed. An integrated circuit is formed on this semiconductor substrate 12 in the same way as the conventional semiconductor substrate shown in FIG. "! film is formed. The plasma protective film is made of silicon nitride (Six
Ny) film, and is formed by a conventional method.

[−記のように形成された半導体基板12を前述の如く
ステージ11上に載置し、この状態において半導体基板
12上のプラズマ保護膜上に紫外線光源13を用いて紫
外線を照射する。その際の照射条件は、例えばステージ
温度40〜200℃、紫外線波長200〜300nn、
紫外線照射強度20〜600mW/cm2及び照射時間
10〜120sec程度とする。
[- The semiconductor substrate 12 formed as described above is placed on the stage 11 as described above, and in this state, the plasma protective film on the semiconductor substrate 12 is irradiated with ultraviolet light using the ultraviolet light source 13. The irradiation conditions at that time are, for example, a stage temperature of 40 to 200°C, an ultraviolet wavelength of 200 to 300 nn,
The ultraviolet irradiation intensity is about 20 to 600 mW/cm2 and the irradiation time is about 10 to 120 seconds.

このような照射条件において所定の紫外線照射を力伍す
ことにより、半導体基板12のゲート酸化膜中に収り込
まれた水素を脱離させることができる。即ち、ゲート酸
化膜中には、プラズマ保護膜の形成に際して取り込まれ
た水素が例えばNH基やSH基として含まれているが、
これらは紫外線照射によって与えらhなエネルギーによ
り分解し、グー1〜酸化膜から脱離する。これにより、
半導体基板12上に所望の半導体装置を得ることができ
る。
By refraining from irradiating a predetermined amount of ultraviolet rays under such irradiation conditions, hydrogen trapped in the gate oxide film of the semiconductor substrate 12 can be released. That is, the gate oxide film contains hydrogen incorporated during the formation of the plasma protective film, for example, as NH groups and SH groups.
These are decomposed by the energy given by ultraviolet irradiation and are detached from the goo 1 to oxide film. This results in
A desired semiconductor device can be obtained on the semiconductor substrate 12.

前記ゲート酸化膜からの水素の脱離は、第3図及び第4
図によって説明される。第3図はステージ11の温度を
50°C1照射強度を570mW/crrI2として紫
外線を照射した際の照射時間と基板電流値との関係を示
すものである。また、第4図は紫外線照射時間を30s
ecとしたときの照射強度と基板電流値との関係を示す
ものである。
Desorption of hydrogen from the gate oxide film is shown in FIGS. 3 and 4.
Illustrated by the diagram. FIG. 3 shows the relationship between the irradiation time and the substrate current value when ultraviolet rays are irradiated at a stage 11 temperature of 50° C. and an irradiation intensity of 570 mW/crrI2. In addition, Figure 4 shows the ultraviolet irradiation time is 30 seconds.
It shows the relationship between the irradiation intensity and the substrate current value when ec.

第3図において、照射時間0〜30sec程度の範囲で
は、照射時間の増加に伴い基板電流が著しく減少し、照
射時間約30secの基板電流は、紫外線照射を行なわ
ないものに対し約1/2となることが分かる。ここに、
基板電流とは、例えばMOSトランジスタのドレインに
一定電圧を印加したとき、ソース・トレイン間に流れる
電流以外の電流を指すものである。
In Fig. 3, in the range of irradiation time from about 0 to 30 seconds, the substrate current decreases significantly as the irradiation time increases, and the substrate current at about 30 seconds of irradiation time is about 1/2 of that without ultraviolet irradiation. I know it will happen. Here,
The substrate current refers to a current other than the current flowing between the source and the train when, for example, a constant voltage is applied to the drain of a MOS transistor.

これより、半導体基板12のプラズマ保護膜上に所定の
紫外線を照射することによって基板電流が減少する、即
ち紫外線照射によってゲート酸化膜中に収り込まれてい
た水素イオン(トI+)が減少していることが分かる。
From this, by irradiating the plasma protection film of the semiconductor substrate 12 with a predetermined amount of ultraviolet rays, the substrate current is reduced, that is, the hydrogen ions (I+) trapped in the gate oxide film are reduced by the ultraviolet irradiation. I can see that

第4図において、照射時間30secでは照射強度の増
大に伴い基板電流が減少し、照射強度的570mW/c
m2吋近においてその減少が顕著になることが分かる。
In Figure 4, when the irradiation time was 30 seconds, the substrate current decreased as the irradiation intensity increased, and the irradiation intensity was 570 mW/c.
It can be seen that the decrease becomes noticeable near m2 inches.

以−ヒのように、本実施例においては、半導体基板12
のプラズマ保護膜に所定の紫外線照射を行なうことによ
り、ゲート酸化膜中に含まれた水素を脱離させることが
できる。その結果、トランジスタ素子等におけるホラ1
へキャリアの増加を防ぎ、ライフタイムの低下やしきい
値電圧の変動等の悪影響を防止することができる。
As shown below, in this embodiment, the semiconductor substrate 12
By irradiating the plasma protective film with a predetermined amount of ultraviolet rays, hydrogen contained in the gate oxide film can be desorbed. As a result, the hole 1 in transistor elements etc.
It is possible to prevent an increase in hemocarriers and prevent adverse effects such as a decrease in lifetime and a fluctuation in threshold voltage.

なお、本発明は図示の実施例に限定されず、種々の変形
が可能であり、例えば次のような変形例が挙げられる。
Note that the present invention is not limited to the illustrated embodiment, and can be modified in various ways, such as the following modifications.

の 前記実施例ではプラズマ保護膜として窒化シリコン
膜を用いるものとしたが、これに代え−(酸化シリコン
(Si○)膜或は窒素酸シリコン(S L ON ) 
v、から成るプラズマ保護膜に対しても本発明の適用が
可能である。
In the above embodiment, a silicon nitride film was used as the plasma protection film, but instead of this, a silicon oxide (Si○) film or a silicon nitride film (SLON) was used.
The present invention can also be applied to a plasma protective film made of V.

(2)  +’+if記実施例ではプラズマ保護膜を最
終保護膜とし−(用いる場合について示したが、例えば
酸化シリ:17膜を中間絶縁膜として用いるような場合
にあっても、本発明の適用が可能て′ある。
(2) +'+if In the embodiment, the case where the plasma protective film is used as the final protective film is shown. It is possible to apply.

(3) 半導体装置は第2図で例示したものに限らず、
池の種々の半導体装置に対して適用可能である6 (4) 照射条件は前記実施例で例示したもの以外に、
半導体装置の形式、プラズマ保護膜の材質及び膜厚等に
応じて適当な条件を選択することができる。
(3) Semiconductor devices are not limited to those illustrated in FIG.
(4) In addition to the irradiation conditions exemplified in the above example, the irradiation conditions are applicable to various semiconductor devices.
Appropriate conditions can be selected depending on the type of semiconductor device, the material and thickness of the plasma protective film, etc.

(発明の効宋) 以上詳イ41!に説明したように本発明によれば、プラ
ズマ保護膜形成後、プラズマ保護膜に所定条件の紫外線
を照射するようにしたので、プラズマ保護膜形成に際し
ゲート酸化膜中に取り込まれた水素を脱離させることが
できる。これにより、ホットキャリアの増加が防止され
、ライフタイムの低下やトランジスタのしきい値電圧の
変動等の悪影響を除去することが可能となる。したがっ
て、集積回路におけるトランジスタ素子等の特性安定化
及び高信頼性化を図ることができる。
(Efficacy of invention in Song Dynasty) Details 41! As explained in , according to the present invention, after the plasma protective film is formed, the plasma protective film is irradiated with ultraviolet rays under predetermined conditions, so that the hydrogen incorporated into the gate oxide film during the formation of the plasma protective film is desorbed. can be done. This prevents an increase in hot carriers and makes it possible to eliminate adverse effects such as a decrease in lifetime and fluctuations in the threshold voltage of the transistor. Therefore, it is possible to stabilize the characteristics and increase the reliability of transistor elements and the like in an integrated circuit.

また、プラズマ1呆護股として、窒化シリコン膜、酸化
シリコン膜及び窒素酸シリコン膜のいずれを用いる場合
にあっても、それらの生成法から考慮して同様の効果が
期待できる。
Furthermore, regardless of whether a silicon nitride film, a silicon oxide film, or a silicon nitride film is used as the plasma 1 protector, similar effects can be expected in consideration of the method of producing them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における半導体装置の製造方法
を示す斜視図、第2図は従来の半導体装置の製造方法を
示す半導体装置の断面図、第3図は本発明の実施例の製
造方法における紫外線照射時間と基板電流値との関係図
、及び第4図は本発明の製造方法における紫外線照射強
度と基板電流値との関係図である。 11・・・・・・ステージ、12・・・・・・半導体基
板、13・・・・・・紫外線光源。
FIG. 1 is a perspective view showing a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a semiconductor device showing a conventional method for manufacturing a semiconductor device, and FIG. FIG. 4 is a diagram showing the relationship between ultraviolet irradiation time and substrate current value in the method, and FIG. 4 is a relationship diagram between ultraviolet irradiation intensity and substrate current value in the manufacturing method of the present invention. 11... Stage, 12... Semiconductor substrate, 13... Ultraviolet light source.

Claims (1)

【特許請求の範囲】 1、半導体基板上に集積回路を形成した後、プラズマを
用いて前記集積回路上にプラズマ保護膜を形成する半導
体装置の製造方法において、 前記プラズマ保護膜を形成した後、そのプラズマ保護膜
上に波長200〜300nn及び照射強度20〜600
mW/cm^2の範囲内の紫外線を照射することを特徴
とする半導体装置の製造方法。 2、請求項1記載の半導体装置の製造方法において、窒
化シリコン膜、酸化シリコン膜及び窒素酸シリコン膜の
いずれかから成る前記プラズマ保護膜に前記紫外線を照
射する半導体装置の製造方法。
[Claims] 1. A method for manufacturing a semiconductor device, in which an integrated circuit is formed on a semiconductor substrate and then a plasma protective film is formed on the integrated circuit using plasma, comprising: after forming the plasma protective film. On the plasma protective film, a wavelength of 200 to 300 nm and an irradiation intensity of 20 to 600 nm are applied.
A method for manufacturing a semiconductor device, comprising irradiating ultraviolet light within a range of mW/cm^2. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the plasma protection film made of any one of a silicon nitride film, a silicon oxide film, and a silicon nitride film is irradiated with the ultraviolet rays.
JP20442888A 1988-08-16 1988-08-16 Manufacture of semiconductor device Pending JPH0252432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20442888A JPH0252432A (en) 1988-08-16 1988-08-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20442888A JPH0252432A (en) 1988-08-16 1988-08-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0252432A true JPH0252432A (en) 1990-02-22

Family

ID=16490376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20442888A Pending JPH0252432A (en) 1988-08-16 1988-08-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0252432A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102137A (en) * 1991-10-08 1993-04-23 Sharp Corp Forming method for silicon nitride passivation film
US6589257B1 (en) 1998-06-10 2003-07-08 Tapic International Co., Ltd. Artificial neural tube
US6736901B2 (en) 2001-08-10 2004-05-18 Toshiba Machine Co., Ltd. Vertical chemical vapor deposition system
JP2009224791A (en) * 2009-05-26 2009-10-01 Tokyo Electron Ltd Film-forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102137A (en) * 1991-10-08 1993-04-23 Sharp Corp Forming method for silicon nitride passivation film
US6589257B1 (en) 1998-06-10 2003-07-08 Tapic International Co., Ltd. Artificial neural tube
US6736901B2 (en) 2001-08-10 2004-05-18 Toshiba Machine Co., Ltd. Vertical chemical vapor deposition system
JP2009224791A (en) * 2009-05-26 2009-10-01 Tokyo Electron Ltd Film-forming method

Similar Documents

Publication Publication Date Title
JP3737277B2 (en) Method for manufacturing a semiconductor device
US4266985A (en) Process for producing a semiconductor device including an ion implantation step in combination with direct thermal nitridation of the silicon substrate
US7629243B2 (en) Method for manufacturing semiconductor device
JP2003531490A (en) UV pretreatment of ultra-thin oxynitride for forming silicon nitride films
JPH0377329A (en) Manufacture of semiconductor device
Hsieh et al. Characteristics of low‐temperature and low‐energy plasma‐enhanced chemical vapor deposited SiO2
JPS61134055A (en) Manufacture of semiconductor device
JPS63132434A (en) Semiconductor device and manufacture thereof
JPH0252432A (en) Manufacture of semiconductor device
JP3326717B2 (en) Method for manufacturing semiconductor device
JPH1041506A (en) Semiconductor device and its manufacture
KR20010110800A (en) Uv-supported activation of a doping agent in compound semiconductors by means of rtp systems
JP3256059B2 (en) Method for manufacturing semiconductor device
JPH05190849A (en) Manufacture of semiconductor device
US7329589B2 (en) Method for manufacturing silicon-on-insulator wafer
JP3603611B2 (en) Method for manufacturing semiconductor device
JP2779996B2 (en) Method for manufacturing semiconductor device
JP3068277B2 (en) Method of forming semiconductor film
JPS59105364A (en) Semiconductor device
KR100358128B1 (en) Method for forming gate electrode
JP3876411B2 (en) Insulated gate type semiconductor device manufacturing method and insulated gate type semiconductor device
JPS6180823A (en) Manufacture of semiconductor device
JPH0644573B2 (en) Silicon semiconductor device manufacturing method
JPH05226369A (en) Manufacture of vertical mosfet
JPS63276270A (en) Manufacture of radiation resistant semiconductor device