JPH0250570B2 - - Google Patents

Info

Publication number
JPH0250570B2
JPH0250570B2 JP23074685A JP23074685A JPH0250570B2 JP H0250570 B2 JPH0250570 B2 JP H0250570B2 JP 23074685 A JP23074685 A JP 23074685A JP 23074685 A JP23074685 A JP 23074685A JP H0250570 B2 JPH0250570 B2 JP H0250570B2
Authority
JP
Japan
Prior art keywords
lightning arrester
power transmission
transmission line
connecting link
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23074685A
Other languages
Japanese (ja)
Other versions
JPS6290811A (en
Inventor
Tetsuya Nakayama
Toshuki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP23074685A priority Critical patent/JPS6290811A/en
Publication of JPS6290811A publication Critical patent/JPS6290811A/en
Publication of JPH0250570B2 publication Critical patent/JPH0250570B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 (産業上の利用分野) 本発明は落雷に起因する高電圧が送電線に印加
されたとき、それを速やかに放電するとともに、
その後生じる続流アークによる地絡事故を防止で
きる架空送電線(懸垂鉄塔)用避雷碍子装置に関
するものである。 (従来の技術) 一般に、送電線に対して所定の気中放電間隙を
もつて避雷碍子を装設する方式の避雷碍子装置に
おいては、特に碍子表面が汚損したり、雨水で湿
潤したりしたとき、雷撃が生じて前記避雷碍子が
動作し、その後碍子表面の清浄時に比べ格段に避
雷碍子の表面漏洩電流が増加し易い条件下におい
ても、短時間に続流アークを遮断する必要があ
る。 この課題を解決するため、従来、架空送電線用
避雷碍子装置として、例えば実開昭54−137838号
公報に開示されたものがあつた。これは第6図に
示すように、鉄塔の支持アーム2に対し、碍子取
付金具31を介して吊下碍子32を吊下するとと
もに、同碍子32の下端部にクランプ33を介し
て電線34を支持し、又、上部のキヤツプ金具3
5には支持金具36を介して避雷碍子37を斜状
に片持ち支持し、同避雷碍子37の下端に止着し
たアーキングホーン38と、前記吊下碍子32の
下端部のキヤツツプ金具39に止着したアーキン
グホーン40とを対向させたものがあつた。 (発明が解決しようとする問題点) ところが、前記従来の架空送電線用避雷碍子装
置は、避雷碍子37が吊下碍子32に対して偏位
して装着されているので、同碍子32中心軸に対
して対称とならず、このため架設時に安定した形
状を保ち難く、取付作業に手間を要していた。 このような構成でなる避雷碍子装置において
は、避雷要素の放電耐量が小さく、耐汚損度レベ
ルが低く避雷碍子37が吊下碍子32に比べ相対
的に小型軽量である場合は、吊下碍子32に直接
取付けされた避雷碍子37単体が碍子装置全体の
挙動に及ぼす影響は無視し得るものであつた。し
かしながら、適用範囲が拡大するにつれて放電耐
量の増加、安全対策の実施や耐汚損特性の向上要
求などから避雷碍子37が大型化するにつれ、こ
の装柱方法の欠点が無視し得なくなつた。 すなわち、無風時の静的なバランス、あるいは
強風下における線路方向や同直角方向横振れ時の
異常な振動によるクリアランス不足、吊下碍子3
2のキヤツプ金具35に避雷碍子37の自重分と
振動による慣性力による曲げ荷重が加わることに
よる強度不足、避雷碍子37の絶縁強度と気中間
隙長を確保する上で避雷碍子を水平に近い状態で
取付けることにより線下幅の拡大等である。 発明の構成 (問題点を解決するための手段) 本発明は前記問題点を解消するため、塔体の支
持アーム2に対し連結金具5を線路方向及び同直
角方向の回動可能に取着するとともに、同連結金
具5の下端部には連結リンク7を連結ピン6によ
り線路方向の回動可能に連結し、同連結リンク7
の下端部には送電線の吊下碍子9を連結ピン10
により線路方向の回動可能に吊下し、同吊下碍子
9の下端部には課電側の放電電極18を送電線か
ら所定距離上方へ変位した位置において線路方向
へ延出し、一方、連結リンク7には取付アーム1
9を介して避雷碍子20を前記課電側の放電電極
18と対応して側方へ変位するように吊下固定
し、同避雷碍子18の下部電極22に支持した放
電電極23と前記課電側の放電電極18とを、所
定の気中放電間隙Gをもつて対向し、さらに、前
記吊下碍子9の上下にはアーキングホーン17,
16を設け、前記連結リンク7の上下両連結ピン
6,10の距離Hと、連結ピン6から前記避雷碍
子20の重心までの水平方向の距離Lとの比L/
Hをほぼ6以下に設定するという手段を採つてい
る。 (作用) 本発明は前記手段を採つたことにより、次のよ
うに作用する。 落雷に起因する異常高電圧が送電線に印加され
ると、同電圧は課電側の放電電極18から放電電
極23に放電され、避雷碍子20に内蔵した非直
線性抵抗素子を経て塔体側へ流れ接地される。
又、その後生じる続流アークは前記気中放電間隙
Gと非直線性抵抗素子により遮断される。 本発明は連結リンク7の上下両連結ピン6,1
0の距離Hと、連結ピン6から前記避雷碍子20
の重心までの水平方向の距離Lとの比L/Hをほ
ぼ6以下に設定したので、66〜154KV程度の送
電路において、放電間隙Gの変位量Dが30〜40mm
程度に抑えられ、同変位量Dが許容値に保持さ
れ、放電特性が安定化する。 (実施例) 以下、本発明を具体化した一実施例を第1図〜
第4図に基づいて説明すると、鉄塔1の支持アー
ム2の先端下面にはボルト3により吊下金具4が
固定され、同吊下金具4には連結金具5が線路
(第1図の左右)方向及び線路方向と直交する方
向の回動可能に連結され、同連結金具5には連結
ピン6によりホーン取付金具を兼用する連結リン
ク7が線路方向の回動方向に連結され、同連結リ
ンク7には多数の懸垂碍子8を直列に連結した碍
子連よりなる吊下碍子9が連結ピン10により同
じく線路方向の回動可能に吊下されている。 前記吊下碍子9の下端部にはホーン取付金具1
1が線路方向の回動可能に連結され、同取付金具
11の下端部には連結ピン12を介して連結リン
ク13が線路方向の回動可能に連結されている。
同連結リンク13の下端部には電線クランプ14
を介して送電線15が支持されている。 前記連結リンク7、及びホーン取付金具11に
は雷撃時に吊下碍子9の表面を閃絡するアークを
補足して同碍子9の溶断を防止するための課電側
及び接地側のアーキングホーン16,17が片持
ち支持されている。又、ホーン取付金具11には
前記アーキングホーン16と反対側に位置するよ
うに課電側の放電電極18が片持ち支持されてい
る。 一方、前記連結リンク7の上端部には、線路方
向に向けて、避雷碍子20の取付アーム19が二
本のボルト26,27により片持ち支持されてい
る。このボルト26,27のうち、避雷碍子20
側のボルト27を挿通する取付アーム19の挿通
孔19aは上下方向に長く形成され、取付アーム
19がボルト26を中心に上下方向に回動され、
連結リンク7に対するアーム19の取付角を調節
し得るようにしている。同取付アーム19の先端
下面には、電圧−電流特性が非直線性の抵抗素子
(図示略)を内蔵した避雷碍子20の上部電極2
1が垂下固定され、同避雷碍子20の下端に位置
する下部電極22には、前記課電側の放電電極1
8と対向するように、放電電極23が下向きに取
着されている。 前記避雷碍子20の上下両側にはアークリング
24,25が装着され、下側のアークリング25
と、吊下碍子9の上端部に位置する懸垂碍子8の
キヤツプ金具8aとの距離Fは、アークリング2
4,25の間隙Kの1.1倍以上に設定されている。
又、吊下碍子9の上下アーキングホーン16,1
7間の距離Eは、前記放電間隙Gの1.3倍以上に
設定されている。これにより、放電間隙Gで確実
に放電が起こるようになつている。 ところで、前記送電線15により吊下碍子9に
作用する垂直荷重をW1とし、避雷碍子20の自
重をW2とし、両連結ピン6,10間の距離をH
とし、さらに連結ピン6から避雷碍子20の重心
までの距離をLとし、連結リンク7及び取付アー
ム19が力のバランスで回転する角度をθとする
と、力の釣り合いから次の近似式が成立する。 tanθ≒W2・L/W1・H ………(1) すなわち、ある鉄塔での垂直荷重W1が既知で
あれば、予め前記回転角θを考慮して連結リンク
7を製作しておけば、取付アーム19が水平とな
り、かつ避雷碍子20が垂直に保持される平衡状
態をつくり出すことができる。 ところが、前記吊下碍子9に作用する垂直荷重
W1は、環境条件、例えば着雪、着氷や強風等の
影響によつて大きく変化する。従つて、連結リン
ク7の回転角θが変化し、このため避雷碍子20
の位置が上下し、これが放電間隙Gの変動をもた
らす。放電特性をある範囲内に収めようとする
と、回転角θをある範囲内に収める必要が生じ
る。すなわち、放電間隙Gが増加するとそれだけ
絶縁強度が上昇し吊下碍子9で閃絡を生じるよう
になる。一方、放電間隙Gが減少すると遮断器の
開で生じるサージで放電間隙Gが閃絡を生じるよ
うになり、いずれも地絡事故を引き起こすことか
ら放電間隙Gの変位量を許容値に収める必要があ
る。 前述した比L/Hを変化させたときのP点の上
側への変位量、すなわち放電間隙Gの変位量D
は、下記の近似式で求められる。 D≒L・sin(tan-1W2・L/W1・H) ………(2) ここで、具体例を示す。垂直荷重W1の変化要
因の1つとして着氷を考え、6mmスリート(比重
0.9)とする。連結ピン6から避雷碍子20の重
心までの距離Lは、避雷碍子20のアークリング
25と懸垂碍子8のキヤツプ金具8aとの間の距
離Fを確保する都合上、さらに施工性の都合上か
ら600mm程度が必要となる。 又、66kV〜154kV送電線路ではACSR410〜
810sq単導体、径間300m程度が平均的な値であ
る。ACSR410sq単導体は外径28.5mm、重量1.97
Kg/m、ACSR810sq単導体は外径38.4mm、重量
2.70Kg/mである。そして、径間が300mとする
と吊下碍子9の垂直荷重W1の平均値は655Kgと
なる。又、6mmスリート着氷したときの前記垂直
荷重W1の増加量ΔWの平均値は200Kgとなる。 以上の諸元を用いて比L/Hを変化させたとき
の前記(2)式による変位量Dの計算結果を下表に示
す。但し、θ1はW1が655Kgのときの連結リンク
7の初期の回転角、θ2はW1+ΔWが855Kgのとき
の着氷時の連結リンク7の回転角を示す。
Purpose of the Invention (Industrial Application Field) The present invention quickly discharges high voltage caused by lightning when it is applied to a power transmission line, and
This invention relates to a lightning arrester device for overhead power transmission lines (suspension towers) that can prevent ground faults caused by follow-on arcs that occur thereafter. (Prior Art) In general, in a lightning arrester device that installs a lightning arrester insulator with a predetermined air discharge gap to a power transmission line, especially when the surface of the insulator is soiled or wet with rainwater, Even under conditions in which the lightning arrester operates due to a lightning strike and the surface leakage current of the lightning arrester is likely to increase significantly compared to when the surface of the insulator is cleaned afterwards, it is necessary to interrupt the follow-on arc in a short time. In order to solve this problem, a lightning arrester insulator for overhead power transmission lines has been disclosed, for example, in Japanese Utility Model Application Publication No. 137838/1983. As shown in FIG. 6, a hanging insulator 32 is suspended from the support arm 2 of the steel tower via an insulator mounting bracket 31, and an electric wire 34 is attached to the lower end of the insulator 32 via a clamp 33. Supporting and upper cap metal fittings 3
5, a lightning arrester 37 is cantilever-supported diagonally through a support fitting 36, and an arcing horn 38 fixed to the lower end of the lightning arrester 37 and a cap fitting 39 fixed to the lower end of the hanging insulator 32 are attached. There was one with the arching horn 40 facing the other. (Problems to be Solved by the Invention) However, in the conventional lightning arrester device for an overhead power transmission line, since the lightning arrester 37 is installed offset with respect to the hanging insulator 32, the central axis of the insulator 32 is Because of this, it was difficult to maintain a stable shape during erection, and installation work was time-consuming. In a lightning arrester device having such a configuration, when the lightning arrester element has a small discharge withstand capacity, a low level of pollution resistance, and the lightning arrester 37 is relatively smaller and lighter than the hanging insulator 32, the hanging insulator 32 The effect that the lightning arrester 37 alone, which was directly attached to the lightning arrester 37, had on the behavior of the entire insulator device was negligible. However, as the scope of application has expanded and the lightning arrester 37 has become larger due to increased discharge capacity, implementation of safety measures, and demands for improved antifouling properties, the drawbacks of this pole mounting method have become impossible to ignore. In other words, there is insufficient clearance due to static balance when there is no wind, or abnormal vibration when the track oscillates in the direction of the track or perpendicular direction under strong winds, or when the suspended insulator 3
Insufficient strength due to the bending load due to the dead weight of the lightning arrester 37 and the inertial force due to vibration being applied to the cap fitting 35 of No. 2. In order to ensure the insulation strength and air gap length of the lightning arrester 37, the lightning arrester 37 is placed in a nearly horizontal state. By attaching it, the width under the line can be expanded. Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention attaches the connecting fitting 5 to the support arm 2 of the tower body so as to be rotatable in the track direction and in the same orthogonal direction. At the same time, a connecting link 7 is connected to the lower end of the connecting fitting 5 by a connecting pin 6 so as to be rotatable in the track direction.
A hanging insulator 9 of a power transmission line is attached to a connecting pin 10 at the lower end of the
The suspended insulator 9 is suspended rotatably in the line direction, and a discharge electrode 18 on the power supply side is extended in the line direction at a position displaced a predetermined distance upward from the power transmission line at the lower end of the hanging insulator 9, while the connection Mounting arm 1 is attached to link 7.
9, the lightning arrester 20 is suspended and fixed so as to be displaced laterally in correspondence with the discharge electrode 18 on the energized side, and the discharge electrode 23 supported on the lower electrode 22 of the lightning arrester 18 and the energized The side discharge electrodes 18 are opposed to each other with a predetermined air discharge gap G, and arcing horns 17 are arranged above and below the hanging insulator 9.
16 is provided, and the ratio L/
A measure is taken to set H to approximately 6 or less. (Function) By adopting the above-mentioned means, the present invention functions as follows. When an abnormally high voltage caused by a lightning strike is applied to the power transmission line, the voltage is discharged from the discharge electrode 18 on the power supply side to the discharge electrode 23, passes through the non-linear resistance element built into the lightning arrester 20, and reaches the tower body side. The flow is grounded.
Further, the subsequent arc generated thereafter is blocked by the above-mentioned aerial discharge gap G and the non-linear resistance element. The present invention provides both upper and lower connecting pins 6 and 1 of the connecting link 7.
0 and the distance H from the connecting pin 6 to the lightning arrester 20.
Since the ratio L/H to the horizontal distance L to the center of gravity of
The amount of displacement D is kept at an allowable value, and the discharge characteristics are stabilized. (Example) Hereinafter, an example embodying the present invention is shown in Figs.
To explain based on FIG. 4, a hanging metal fitting 4 is fixed to the bottom surface of the tip of the support arm 2 of the steel tower 1 with a bolt 3, and a connecting metal fitting 5 is attached to the hanging metal fitting 4 for the railway line (left and right in Fig. 1). A connecting link 7 which also serves as a horn mounting bracket is connected to the connecting fitting 5 by a connecting pin 6 in a rotating direction in the railway direction. A hanging insulator 9 made of an insulator chain in which a number of suspended insulators 8 are connected in series is suspended by a connecting pin 10 so as to be rotatable in the track direction. A horn mounting bracket 1 is attached to the lower end of the hanging insulator 9.
1 are connected to be rotatable in the track direction, and a connecting link 13 is connected to the lower end of the mounting bracket 11 via a connecting pin 12 so as to be rotatable in the track direction.
A wire clamp 14 is attached to the lower end of the connecting link 13.
A power transmission line 15 is supported via. The connecting link 7 and the horn mounting bracket 11 are provided with arcing horns 16 on the energizing side and the grounding side for capturing the arc that flashes across the surface of the hanging insulator 9 during a lightning strike and preventing the insulator 9 from melting. 17 is supported in a cantilevered manner. Further, a discharge electrode 18 on the energizing side is supported in a cantilever manner by the horn mounting bracket 11 so as to be located on the opposite side from the arcing horn 16. On the other hand, a mounting arm 19 for the lightning arrester 20 is supported in a cantilever manner by two bolts 26 and 27 at the upper end of the connection link 7 in the direction of the railway line. Among these bolts 26 and 27, lightning arrester 20
The insertion hole 19a of the mounting arm 19 through which the side bolt 27 is inserted is formed to be long in the vertical direction, and the mounting arm 19 is rotated in the vertical direction around the bolt 26.
The angle at which the arm 19 is attached to the connecting link 7 can be adjusted. An upper electrode 2 of a lightning arrester 20 having a built-in resistance element (not shown) with non-linear voltage-current characteristics is provided on the lower surface of the tip of the mounting arm 19.
The discharge electrode 1 on the energized side is fixed to the lower electrode 22 located at the lower end of the lightning arrester 20.
A discharge electrode 23 is attached facing downward so as to face the discharge electrode 8 . Arc rings 24 and 25 are attached to the upper and lower sides of the lightning arrester 20, and the lower arc ring 25
The distance F between the suspension insulator 8 and the cap fitting 8a located at the upper end of the suspension insulator 9 is
It is set to be 1.1 times or more the gap K of No. 4, 25.
Also, the upper and lower arcing horns 16, 1 of the hanging insulator 9
The distance E between the discharge gaps 7 and 7 is set to be 1.3 times or more the discharge gap G. This ensures that discharge occurs in the discharge gap G. By the way, the vertical load acting on the hanging insulator 9 by the power transmission line 15 is W1, the dead weight of the lightning arrester 20 is W2, and the distance between the connecting pins 6 and 10 is H.
Further, if the distance from the connecting pin 6 to the center of gravity of the lightning arrester 20 is L, and the angle at which the connecting link 7 and the mounting arm 19 rotate due to the balance of forces is θ, then the following approximate formula holds from the balance of forces. . tanθ≒W2・L/W1・H……(1) In other words, if the vertical load W1 on a certain steel tower is known, if the connecting link 7 is manufactured in consideration of the rotation angle θ in advance, the installation will be easier. It is possible to create an equilibrium state in which the arm 19 is held horizontally and the lightning arrester 20 is held vertically. However, the vertical load W1 acting on the hanging insulator 9 changes greatly depending on environmental conditions, such as snow, ice, strong winds, and the like. Therefore, the rotation angle θ of the connecting link 7 changes, and therefore the lightning arrester 20
The position of G increases and decreases, which causes the discharge gap G to fluctuate. In order to keep the discharge characteristics within a certain range, it becomes necessary to keep the rotation angle θ within a certain range. That is, as the discharge gap G increases, the insulation strength increases accordingly, and flash shorting occurs in the hanging insulator 9. On the other hand, if the discharge gap G decreases, the discharge gap G will cause a flash fault due to the surge caused by the opening of the circuit breaker, which will cause a ground fault, so it is necessary to keep the displacement amount of the discharge gap G within an allowable value. be. The amount of upward displacement of point P when changing the ratio L/H mentioned above, that is, the amount of displacement D of discharge gap G
is determined by the following approximate formula. D≒L・sin (tan −1 W2・L/W1・H) (2) Here, a specific example will be shown. Considering icing as one of the factors that change the vertical load W1, a 6mm sleeve (specific gravity
0.9). The distance L from the connecting pin 6 to the center of gravity of the lightning arrester 20 is set to 600 mm in order to ensure the distance F between the arc ring 25 of the lightning arrester 20 and the cap fitting 8a of the suspension insulator 8, and also for ease of construction. degree is required. Also, for 66kV to 154kV transmission lines, ACSR410 to
The average value is 810sq single conductor and a span of about 300m. ACSR410sq single conductor has outer diameter 28.5mm and weight 1.97
Kg/m, ACSR810sq single conductor outer diameter 38.4mm, weight
It is 2.70Kg/m. If the span is 300 m, the average value of the vertical load W1 of the hanging insulator 9 will be 655 kg. Further, the average value of the increase amount ΔW in the vertical load W1 when 6 mm of icing occurs is 200 kg. The table below shows the calculation results of the displacement D using the above equation (2) when the ratio L/H is changed using the above specifications. However, θ1 indicates the initial rotation angle of the connecting link 7 when W1 is 655 kg, and θ2 indicates the rotating angle of the connecting link 7 at the time of icing when W1+ΔW is 855 kg.

【表】 又、表の結果をグラフに示すと、第4図のよう
になる。ところで、66〜154kV程度の送電路では
前述した変位量Dは、臨界通絡特性面から碍子連
結関数の少ない軽汚損地区では、30〜40mm程度が
限界であるから、比L/Hはほぼ6以下が必須で
ある。 次に、前記のように構成した架空送電線用避雷
碍子装置について、その作用を説明する。 今、送電線15に対し落雷に起因する異常高電
圧が印加されると、この電圧は電線クランプ1
4、連結リンク13及びホーン取付金具11を経
て、課電側の放電電極18から放電電極23へ放
電され、さらに避雷碍子20内の非直線性抵抗素
子を通つて取付アーム19へ流れ、支持アーム2
及び鉄塔1を経て接地される。その後、発生する
続流アークは気中放電間隙G及び前記非直線性抵
抗素子により遮断され、地絡事故が防止されると
ともに同アークによる両放電電極18,23の溶
断が防止される。 特に、この実施例では前述したように比L/H
をほぼ6以下に設定したので、66〜154KV程度
の送電路において、避雷碍子20の放電間隙Gの
変位量Dを許容値、つまり30〜40mm程度に抑え
て、放電特性を安定化することができる。 ところで、垂直荷重W1が減少するケースはス
リートジヤンプその他極めてまれな条件下でしか
発生せず一般には考慮しなくてもよい。 なお、本発明は次のように具体化することもで
きる。 (1) 吊下碍子9に長幹碍子(図示略)を使用する
こと。 (2) 前記吊下碍子9をジヤンパー線(図示略)の
吊下碍子として使用すること。この明細書では
送電線と言うとき、ジヤンパー線も含むものと
する。 (3) 第5図に示すように、前記連結リンク7と取
付アーム19を一体に形成して線路方向に施行
させ、前記連結リンクにはアーキングホーン1
7を取付けるとともに、前記取付アーム19に
は避雷碍子20を下端ほど吊下碍子9から離隔
する斜状に取付けることもできる。 発明の効果 以上詳述したように、本発明は避雷碍子を簡単
に取着することができ、かつ、課電側の放電電極
も既設のホーン取付金具を利用して簡単に取り付
けることができる。又、本発明は避雷碍子が吊下
碍子と対応して線路方向へ変位し、さらに、課電
側の放電電極が送電線の上方において接地側の放
電電極と対応しているので、避雷碍子と鉄塔との
気中絶縁間隙を充分確保することができ、放電時
にアークが送電線に触れるのをなくして送電線の
溶断を防止することができる。 特に、本発明は連結リンク7の上下両連結ピン
6,10の距離Hと、連結ピン6から前記避雷碍
子の重心までの水平方向の距離Lとの比L/Hを
ほぼ6以下に設定したので、66〜154KV程度の
送電路において、放電間隙の変位量を許容範囲内
に収めて、放電特性を安定化することができる効
果がある。
[Table] The results of the table can be plotted in a graph as shown in Figure 4. By the way, for a power transmission line of about 66 to 154 kV, the above-mentioned displacement D is limited to about 30 to 40 mm in lightly polluted areas where the insulator connection function is low due to critical continuity characteristics, so the ratio L/H is approximately 6. The following are required. Next, the operation of the lightning arrester device for overhead power transmission lines constructed as described above will be explained. Now, when an abnormally high voltage is applied to the power transmission line 15 due to a lightning strike, this voltage is applied to the wire clamp 1.
4. Via the connecting link 13 and the horn mounting bracket 11, the discharge is discharged from the discharge electrode 18 on the power supply side to the discharge electrode 23, and further flows through the nonlinear resistance element in the lightning arrester 20 to the mounting arm 19, and then the support arm 2
and is grounded via the steel tower 1. Thereafter, the generated follow-on arc is interrupted by the air discharge gap G and the non-linear resistance element, thereby preventing a ground fault and also preventing both discharge electrodes 18 and 23 from being blown out by the arc. In particular, in this embodiment, as mentioned above, the ratio L/H
is set to approximately 6 or less, it is possible to stabilize the discharge characteristics by suppressing the displacement D of the discharge gap G of the lightning arrester 20 to an allowable value, that is, approximately 30 to 40 mm, in a power transmission line of about 66 to 154 KV. can. Incidentally, the case in which the vertical load W1 decreases occurs only under extremely rare conditions such as a three-way jump, and generally there is no need to consider it. Note that the present invention can also be embodied as follows. (1) A long-stem insulator (not shown) should be used for the hanging insulator 9. (2) The hanging insulator 9 is used as a hanging insulator for jumper wire (not shown). In this specification, when power transmission lines are referred to, jumper wires are also included. (3) As shown in FIG. 5, the connecting link 7 and the mounting arm 19 are integrally formed and extend in the track direction, and the connecting link has an arcing horn 1.
7 can be attached to the mounting arm 19, and a lightning arrester 20 can also be attached to the mounting arm 19 in a diagonal manner such that the lower end thereof is further away from the hanging insulator 9. Effects of the Invention As detailed above, according to the present invention, the lightning arrester can be easily attached, and the discharge electrode on the energizing side can also be easily attached using the existing horn mounting bracket. Furthermore, in the present invention, the lightning arrester is displaced in the direction of the line in correspondence with the hanging insulator, and furthermore, the discharge electrode on the energized side corresponds to the discharge electrode on the ground side above the transmission line, so that the lightning arrester and A sufficient air insulation gap with the steel tower can be secured, and the arc can be prevented from touching the power transmission line during discharge, thereby preventing the power transmission line from fusing. In particular, the present invention sets the ratio L/H of the distance H between the upper and lower connecting pins 6 and 10 of the connecting link 7 to the horizontal distance L from the connecting pin 6 to the center of gravity of the lightning arrester to approximately 6 or less. Therefore, in a power transmission line of about 66 to 154 KV, the displacement amount of the discharge gap can be kept within the allowable range, and the discharge characteristics can be stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す正面図、第2
図は第1図の避雷碍子を省略した状態を示す右側
面図、第3図は取付アーム付近の拡大正面図、第
4図は比L/Hと放電間隙の変位量との関係を示
すグラフ、第5図は本発明の別例を示す正面図、
第6図は従来例を示す正面図である。 1……鉄塔、2……支持アーム、6,10……
連結ピン、7……連結リンク、9……吊下碍子、
11……ホーン取付金具、13……連結リンク、
14……電線クランプ、15……送電線、16,
17……アーキングホーン、18,23……放電
電極、19……取付アーム、20……避雷碍子、
G……放電間隙、E……吊下碍子9の上下アーキ
ングホーン16,17間の距離、F……キヤツプ
金具8aとアークリング25との距離、θ……連
結リンク7及び取付アーム19の傾き角度、D…
…放電間隙Gの変位量、W1……吊下碍子9に作
用する垂直荷重、W2……避雷碍子20の自重、
L……連結ピン6から避雷碍子20の重心までの
距離、H……連結ピン6,10の距離。
Figure 1 is a front view showing one embodiment of the present invention, Figure 2 is a front view showing one embodiment of the present invention;
The figure is a right side view with the lightning arrester in Figure 1 omitted, Figure 3 is an enlarged front view of the vicinity of the mounting arm, and Figure 4 is a graph showing the relationship between the ratio L/H and the displacement of the discharge gap. , FIG. 5 is a front view showing another example of the present invention,
FIG. 6 is a front view showing a conventional example. 1... Steel tower, 2... Support arm, 6, 10...
Connecting pin, 7... Connecting link, 9... Hanging insulator,
11...Horn mounting bracket, 13...Connection link,
14...Electric wire clamp, 15...Power transmission line, 16,
17...Arching horn, 18, 23...Discharge electrode, 19...Mounting arm, 20...Lightning arrester,
G...Discharge gap, E...Distance between the upper and lower arcing horns 16 and 17 of the hanging insulator 9, F...Distance between the cap fitting 8a and the arc ring 25, θ...Inclination of the connecting link 7 and the mounting arm 19 Angle, D...
...displacement amount of the discharge gap G, W1...vertical load acting on the hanging insulator 9, W2...self weight of the lightning arrester 20,
L: Distance from the connecting pin 6 to the center of gravity of the lightning arrester 20, H: Distance between the connecting pins 6 and 10.

Claims (1)

【特許請求の範囲】 1 塔体の支持アーム2に対し連結金具5を線路
方向及び同直角方向の回動可能に取着するととも
に、同連結金具5の下端部には連結リンク7を連
結ピン6により線路方向の回動可能に連結し、同
連結リンク7の下端部には送電線の吊下碍子9を
連結ピン10により線路方向の回動可能に吊下
し、同吊下碍子9の下端部には課電側の放電電極
18を送電線から所定距離上方へ変位した位置に
おいて線路方向へ延出し、一方、連結リンク7に
は取付アーム19を介して避雷碍子20を前記課
電側の放電電極18と対応して側方へ変位するよ
うに吊下固定し、同避雷碍子20の下部電極22
に支持した放電電極23と前記課電側の放電電極
18とを、所定の気中放電間隙Gをもつて対向
し、さらに、前記吊下碍子9の上下にはアーキン
グホーン17,16を設け、連結リンク7の上下
両連結ピン6,10の距離Hと、連結ピン6から
前記避雷碍子20の重心までの水平方向の距離L
との比(L/H)をほぼ6以下に設定したことを
特徴とする架空送電線用避雷碍子装置。 2 吊下碍子9の上下アーキングホーン16,1
7間の距離Eは、前記両方放電電極18,23の
放電間隙Gの1.3倍以上に設定されている特許請
求の範囲第1項に記載の架空送電線用避雷碍子装
置。 3 前記課電側の放電電極18は、吊下碍子9の
下端に取着したホーン取付金具11に片持ち支持
されている特許請求の範囲第1項に記載の架空送
電線用避雷碍子装置。 4 連結リンク7に対し取付アーム19が上下方
向の取付角の調節可能に取着されている特許請求
の範囲第1項に記載の架空送電線用避雷碍子装
置。 5 前記連結リンク7と取付アーム19を一体に
形成して線路方向に指向させ、前記連結リンク7
にはアーキングホーン17を取付けるとともに、
前記取付アーム19には避雷碍子20を下端ほど
吊下碍子9から離隔する斜状に取付けた特許請求
の範囲第1項に記載の架空送電線用避雷碍子装
置。
[Scope of Claims] 1. A connecting fitting 5 is attached to the support arm 2 of the tower body so as to be rotatable in the track direction and in the perpendicular direction, and a connecting link 7 is attached to the lower end of the connecting fitting 5 with a connecting pin. A hanging insulator 9 of a power transmission line is suspended from the lower end of the connecting link 7 so as to be rotatable in the track direction by a connecting pin 10. At the lower end, a discharge electrode 18 on the energized side extends in the direction of the line at a position displaced upward from the power transmission line by a predetermined distance, and on the other hand, a lightning arrester 20 is attached to the connecting link 7 via a mounting arm 19 on the energized side. The lower electrode 22 of the lightning arrester 20 is suspended and fixed so as to be displaced laterally corresponding to the discharge electrode 18 of the lightning arrester 20.
The discharge electrode 23 supported by the discharge electrode 23 and the discharge electrode 18 on the energizing side are opposed to each other with a predetermined aerial discharge gap G, and arcing horns 17 and 16 are provided above and below the hanging insulator 9, The distance H between the upper and lower connecting pins 6 and 10 of the connecting link 7, and the horizontal distance L from the connecting pin 6 to the center of gravity of the lightning arrester 20.
1. A lightning arrester device for an overhead power transmission line, characterized in that the ratio (L/H) is set to approximately 6 or less. 2 Upper and lower arcing horns 16, 1 of the hanging insulator 9
The lightning arrester device for an overhead power transmission line according to claim 1, wherein the distance E between the discharge electrodes 18 and 23 is set to be 1.3 times or more the discharge gap G between the discharge electrodes 18 and 23. 3. The lightning arrester device for an overhead power transmission line according to claim 1, wherein the discharge electrode 18 on the energizing side is cantilevered by a horn mounting bracket 11 attached to the lower end of the hanging insulator 9. 4. The lightning arrester device for an overhead power transmission line according to claim 1, wherein the mounting arm 19 is attached to the connecting link 7 so that the mounting angle in the vertical direction can be adjusted. 5 The connecting link 7 and the mounting arm 19 are integrally formed and oriented in the track direction, and the connecting link 7
Attach arching horn 17 to the
2. The lightning arrester device for an overhead power transmission line according to claim 1, wherein a lightning arrester 20 is attached to the mounting arm 19 in an oblique manner such that the lower end thereof is further away from the hanging insulator 9.
JP23074685A 1985-10-16 1985-10-16 Lightening protecting insulator for overhead transmission line Granted JPS6290811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23074685A JPS6290811A (en) 1985-10-16 1985-10-16 Lightening protecting insulator for overhead transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23074685A JPS6290811A (en) 1985-10-16 1985-10-16 Lightening protecting insulator for overhead transmission line

Publications (2)

Publication Number Publication Date
JPS6290811A JPS6290811A (en) 1987-04-25
JPH0250570B2 true JPH0250570B2 (en) 1990-11-02

Family

ID=16912639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23074685A Granted JPS6290811A (en) 1985-10-16 1985-10-16 Lightening protecting insulator for overhead transmission line

Country Status (1)

Country Link
JP (1) JPS6290811A (en)

Also Published As

Publication number Publication date
JPS6290811A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
JPH0250570B2 (en)
JP2505443B2 (en) Lightning arrester device for power lines
JPS61260506A (en) Arresting insulator for aerial power transmission wire
JP2535364B2 (en) Lightning-proof horn insulator device
JPH0250569B2 (en)
JP2607611B2 (en) Insulator mounting adapter for lightning horn insulator device
JP2509598B2 (en) Lightning arrester device for power lines
JP2656105B2 (en) Lightning-resistant horn insulator device
JPS6398922A (en) Arresting insulator for transmission line
JPH0412573Y2 (en)
JPH0350369B2 (en)
JP2564324B2 (en) Lightning protection horn insulator device
JPS62168305A (en) Thunder resistant horn insulator
JP2564347B2 (en) Lightning arrester device
JP2555100B2 (en) Lightning protection horn insulator device
JPH07272824A (en) Arresting horn insulator device
JPS63200421A (en) Lightningproof horn insulator
JPH07249335A (en) Discharge pole for insulator apparatus
JPH0515131B2 (en)
JPH0743973B2 (en) Lightning arrester device
JPH0834068B2 (en) Lightning arrester device for overhead power lines
JPH01140523A (en) Thunder-proof horn insulator device
JPH0654623B2 (en) Lightning protection horn insulator device
JPH02309583A (en) Lightning arrester for power-transmission line
JPH01149326A (en) Anti-lightening horn insulator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term