JPH0243776A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPH0243776A
JPH0243776A JP63193768A JP19376888A JPH0243776A JP H0243776 A JPH0243776 A JP H0243776A JP 63193768 A JP63193768 A JP 63193768A JP 19376888 A JP19376888 A JP 19376888A JP H0243776 A JPH0243776 A JP H0243776A
Authority
JP
Japan
Prior art keywords
electrode
amorphous semiconductor
semiconductor layer
electrode layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63193768A
Other languages
Japanese (ja)
Inventor
Naoki Ito
直樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP63193768A priority Critical patent/JPH0243776A/en
Publication of JPH0243776A publication Critical patent/JPH0243776A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To dispense with a patterning process of an amorphous semiconductor layer, which is to be performed between the formation of the amorphous layer and a second electrode, and to make the connection resistance between units adjacent to each other lower by a method wherein the output and the sweep rate of laser rays used for boring a through-hole are so set as to be within a specified range of values. CONSTITUTION:Two or more first electrodes 21-23 are formed so as to be arranged in a line on an insulating substrate 1, and an amorphous semiconductor layer 3 and a second electrode layer 4 are laminated covering the electrodes 21-23, and then not only two or more through-holes 71-73 are bored in the second electrode layer 4 and the amorphous semiconductor layer 3 reaching above the vicinity of the edges of the first electrodes 21-23 respectively but also the amorphous semiconductor layer 3 and others around the through-holes 71-73 are made excellent in conductivity by irradiation with laser rays 6, and only the second electrode layer 4 is divided by cutting if off at the points above the inside of the first electrodes 21-23 and separate from the through-holes 71-73. In the manufacture of a series-connected type thin film solar cell as mentioned above, a YAG laser is used for obtaining the above laser rays 6, whose optical output and sweep rate of the laser beam is made to be 400-450mW and 90-100mm/sec respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁性基板上にあって基板側に第一電極9反
基板側に第二電極を備えたアモルファス半導体層からな
るユニットセルが、第−電極層を隣接セルの第二電極層
に接続することによって直列接続される薄膜太陽電池の
製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a unit cell comprising an amorphous semiconductor layer on an insulating substrate and having a first electrode on the substrate side and a second electrode on the opposite side of the substrate. , relates to a method for manufacturing thin film solar cells connected in series by connecting a first electrode layer to a second electrode layer of an adjacent cell.

〔従来の技術〕[Conventional technology]

原料ガスのグロー放電分解や光CVD法により形成され
るアモルファス半導体膜は気相成長であるため、大面積
化が容易で、低コスト太陽電池の光電変換膜として期待
されている。こうした大面積のアモルファス太陽電池か
ら効率よく電力を取り出すためのよ(知られた方法とし
て、第2図に示されるように直列接続型の太陽電池があ
る。これは、ガラス基板1などの絶縁性基板上に、酸化
すずやITOなどの透明導電薄膜からなる第一電極21
.22.23・・・を短冊状に形成し、その上に光起電
力発生部であるアモルファス半導体層領域31゜32、
33・・・を、次いで金属薄膜や透明導電薄膜からなる
第二電極41.42.43・・・を形成したものである
Since amorphous semiconductor films formed by glow discharge decomposition of raw material gas or photo-CVD are grown in a vapor phase, they can be easily grown to a large area and are expected to be used as photoelectric conversion films for low-cost solar cells. In order to efficiently extract power from such large-area amorphous solar cells, a well-known method is to use series-connected solar cells as shown in Figure 2. A first electrode 21 made of a transparent conductive thin film such as tin oxide or ITO is placed on the substrate.
.. 22, 23... are formed in a strip shape, and amorphous semiconductor layer regions 31, 32, which are photovoltaic force generating parts are formed thereon.
33..., and then second electrodes 41, 42, 43, etc. made of a metal thin film or a transparent conductive thin film were formed.

第一電極21. アモルファス半導体層3工および第二
電極41の組合せ、第一電極22.アモルファス半導体
層32および第二電極42の組合せ等が各ユニットセル
を構成する。そして、一つのユニー/)セルの第一電極
層が隣接するユニットセルの第二電極層と一部接触する
構造となるよう画電極およびアモルファス半導体層のパ
ターンが形成され、各ユニ、トセルが直列に接続される
First electrode 21. Combination of three amorphous semiconductor layers and second electrode 41, first electrode 22. A combination of the amorphous semiconductor layer 32 and the second electrode 42 constitutes each unit cell. Then, a pattern of the picture electrode and the amorphous semiconductor layer is formed so that the first electrode layer of one unit cell is in partial contact with the second electrode layer of the adjacent unit cell, and each unit cell is connected in series. connected to.

このような直列接続型太陽電池で良好な性能を得るため
には、第一電極層とこれに接触する隣接するユニットセ
ルの第二電極層間の抵抗が小さいこと、一つのユニット
セル内の第一電極層とアモルファス半導体層間およびア
モルファス半導体層と第二電極層間の接触が良好であり
、特に傷等によるアモルファス半導体層の一部欠落によ
り第一電極層の一部と第二電極層の一部が直接接触する
いわゆる短絡をなくすことが重要である。
In order to obtain good performance in such a series-connected solar cell, the resistance between the first electrode layer and the second electrode layer of the adjacent unit cell that is in contact with it must be small, and the resistance of the first electrode layer in one unit cell must be small. There is good contact between the electrode layer and the amorphous semiconductor layer and between the amorphous semiconductor layer and the second electrode layer, and in particular, if a part of the amorphous semiconductor layer is missing due to scratches or the like, a part of the first electrode layer and a part of the second electrode layer are It is important to eliminate direct contact and so-called short circuits.

通常直列接触型太陽電池の形成は、第一電極層の全面被
着、第一電極層のパターニング、アモルファス半導体層
の全面被着、アモルファス半導体層のパターニング、第
二電極層の全面被着、第二電極層のパターニングの順序
で行われ、各層の7(ターニングには、レーザスクライ
ブ法、メカニカルスクライブ法、フォトエツチング法な
どのプロセス技術が用いられる。
Typically, the formation of a series contact solar cell involves the following steps: depositing a first electrode layer on the entire surface, patterning the first electrode layer, depositing the amorphous semiconductor layer on the entire surface, patterning the amorphous semiconductor layer, depositing the second electrode layer on the entire surface, and depositing the second electrode layer on the entire surface. The patterning is performed in the order of patterning the two electrode layers, and a process technique such as a laser scribing method, a mechanical scribing method, or a photoetching method is used for turning each layer.

しかしながら、このようにアモルファス半導体層の形成
と第二電極層の形成の間にアモルファス半導体層のパタ
ーニング工程が入る場合、このアモルファス半導体層の
パターニング工程において、発生する微小な破片や雰囲
気中のほこり等により、アモルファス半導体層に傷がつ
いて短絡が発生したり、表面が汚染されて第二電極層と
の良好な接触が妨げられることが起こる。表面の汚染を
除去するためには、第二電極層の形成前に表面の洗浄を
行うことが必要になるが、この洗浄工程を入れるとアモ
ルファス半導体層をさらに傷つけ短絡発生の確率が高く
なり、また当然太陽電池の製造工数が増すという欠点が
あった。
However, when the amorphous semiconductor layer patterning process is performed between the formation of the amorphous semiconductor layer and the second electrode layer, minute fragments and dust in the atmosphere are generated during the patterning process of the amorphous semiconductor layer. As a result, the amorphous semiconductor layer may be scratched, causing a short circuit, or the surface may be contaminated, preventing good contact with the second electrode layer. In order to remove surface contamination, it is necessary to clean the surface before forming the second electrode layer, but adding this cleaning step will further damage the amorphous semiconductor layer and increase the probability of short circuits. Another disadvantage is that the number of man-hours required to manufacture the solar cell increases.

このようなアモルファス半導体層のパターニング工程に
より生ずる問題が存在しない直列接続型太陽電池として
、第一電極および第二電極は分割して形成するが、アモ
ルファス半導体層は分割せず、そのシート抵抗の高いこ
とを利用してユニットセル間にも残しておき、各ユニッ
トセルの接続は、ユニットセルの配列方向に見て側方に
引き出された第一電極層および第二電極層の延長部を接
触させて行う方式のものがある。しかし、この方式は、
第一、第二電極層の延長部のために太陽電池の占有面積
が大きくなり、面積あたりの発電容量が小さくなるとい
う欠点がある。
In order to create a series-connected solar cell that does not have the problems caused by the patterning process of the amorphous semiconductor layer, the first electrode and the second electrode are formed separately, but the amorphous semiconductor layer is not divided, and its high sheet resistance is Taking advantage of this fact, the connection between each unit cell is made by contacting the extended portions of the first electrode layer and the second electrode layer, which are pulled out laterally when viewed in the arrangement direction of the unit cells. There is a method to do this. However, this method
There is a drawback that the area occupied by the solar cell becomes large due to the extensions of the first and second electrode layers, and the power generation capacity per area becomes small.

このような問題点を解決するために、第一電極層の上を
覆ってアモルファス半導体層、第二電極層を積層する工
程の後に、レーザ光の照射により第二電極層およびアモ
ルファス半導体層に各第一電極の縁部近傍に達する複数
の貫通孔を形成すると共に、その貫通孔周囲のアモルフ
ァス半導体層を良導電性化あるいはその貫通孔周囲の第
二電極。
In order to solve these problems, after the step of laminating the amorphous semiconductor layer and the second electrode layer over the first electrode layer, the second electrode layer and the amorphous semiconductor layer are laminated by laser beam irradiation. A plurality of through holes reaching near the edge of the first electrode are formed, and the amorphous semiconductor layer around the through holes is made to have good conductivity, or a second electrode is formed around the through holes.

アモルファス半導体、第一電極を良導電性化する工程と
、第二電極層のみを前記貫通孔より第一電極の内側の上
で切断し、分割する工程を含む方式が提案されている(
特願昭62−211798号明細・書参照)。
A method has been proposed that includes a step of making an amorphous semiconductor and a first electrode highly conductive, and a step of cutting and dividing only the second electrode layer from the through hole above the inside of the first electrode (
(Refer to the specification and book of Japanese Patent Application No. 62-211798).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら前述の技術においては、レーザ光の出力が
低すぎると第二電極、アモルファス半導体層をうまく除
去することができず、接触抵抗の増大を招き、また出力
が高すぎると第一電極層にまで強いレーザ光が照射され
、第一電極層をも除去してしまうことがある。また貫通
孔は複数個存在するのだが、その複数個の貫通孔を形成
する際のレーザ光の掃引速度あるいは掃引回数によって
も貫通孔の密度が変わることになり、その密度が低い場
合には接触抵抗が増大し、出力特性が低下してしまう問
題点があった。
However, in the above-mentioned technology, if the output of the laser beam is too low, the second electrode and amorphous semiconductor layer cannot be removed successfully, leading to an increase in contact resistance, and if the output is too high, the second electrode and the amorphous semiconductor layer may be removed. The strong laser light may be irradiated and even the first electrode layer may be removed. Furthermore, although there are multiple through holes, the density of the through holes changes depending on the sweep speed or number of sweeps of the laser beam when forming the multiple through holes, and if the density is low, contact may occur. There was a problem that resistance increased and output characteristics deteriorated.

〔課題を解決するための手段〕[Means to solve the problem]

上述のような課題を解決するために、本発明の方法は絶
縁性基板上に一列に配列された複数の第一電極を形成し
、その上を覆ってアモルファス半導体層、第二電極層を
積層する工程の後に、レーザ光の照射により第二電極層
およびアモルファス半導体層に各第一電極の縁部近傍に
達する複数の貫通孔を形成すると共に、その貫通孔周囲
のアモルファス半導体層を良導電性化あるいはその貫通
孔周囲の第二電極、アモルファス半導体、第一電極を良
導電性化する工程と、第二電極層のみを前記貫通孔より
第一電極の内側の上で切断し、分解する工程のなかで、
レーザ光の出力を150〜450mWとし、その掃引速
度を90〜100mm/secとするものとする。
In order to solve the above-mentioned problems, the method of the present invention forms a plurality of first electrodes arranged in a line on an insulating substrate, and laminates an amorphous semiconductor layer and a second electrode layer to cover the first electrodes. After the process, a plurality of through holes reaching near the edges of each first electrode are formed in the second electrode layer and the amorphous semiconductor layer by irradiation with laser light, and the amorphous semiconductor layer around the through holes is made to have good conductivity. a step of converting or making the second electrode, amorphous semiconductor, and the first electrode around the through hole conductive; and a step of cutting only the second electrode layer above the inside of the first electrode from the through hole and decomposing it. Among the
It is assumed that the output of the laser beam is 150 to 450 mW and the sweep speed is 90 to 100 mm/sec.

〔作用〕[Effect]

上記のようにレーザ光の出力と掃引速度を規定するとき
は、第二電極とアモルファス半導体層を除去するに十分
で、なおかつ第一電極を除去するには至らないエネルギ
が加わることとなる。
When the laser beam output and sweep speed are defined as described above, energy sufficient to remove the second electrode and the amorphous semiconductor layer, but not sufficient to remove the first electrode, is applied.

〔実施例〕〔Example〕

以下本発明の一実施例を第2図と共通の部分に同一の符
号を付した第1図を引用して説明する。
An embodiment of the present invention will be described below with reference to FIG. 1, in which parts common to those in FIG. 2 are given the same reference numerals.

第1図(a)は、本発明によるレーザ光線によるユニッ
トセル間の電気的接続を行う直前の太陽電池の状態を示
す図である。この状態は次のようにして得られる。まず
、ガラス基板l上に5n02膜からなる第一電極層を5
000人の厚さで全面被着し、これをレーザスクライブ
法により第一電極21.22.23・・・にバターニン
グする。次にこの上にアモルファス半導体層3を400
0人の厚さで形成し、アモルファス半導体層のバターニ
ングを行うことなく引き続きアルミ薄膜からなる第二電
極層4を3000〜5000人の厚さで形成する。第二
電極層4としてはアルミ薄膜だけでなく、銀薄嗅で形成
してもよい。
FIG. 1(a) is a diagram showing the state of a solar cell immediately before electrical connection between unit cells is made using a laser beam according to the present invention. This state can be obtained as follows. First, a first electrode layer consisting of a 5n02 film is placed on a glass substrate l.
The first electrodes 21, 22, 23, . . . are patterned by a laser scribing method. Next, an amorphous semiconductor layer 3 with a thickness of 400 mm is applied on top of this.
The second electrode layer 4 made of an aluminum thin film is subsequently formed to a thickness of 3,000 to 5,000 wafers without buttering the amorphous semiconductor layer. The second electrode layer 4 may be formed not only from an aluminum thin film but also from a silver thin film.

但しAg薄膜の場合、反射率が高いため、レーザ光で貫
通孔を開けることがやや困難であるため、厚みとしては
2000人程度程度く、それ以上の厚みで第二電極層の
電気的接続を行った状態を示す断面図であり、第1図(
C)は電気的接続を施した後、さらに第二電極層(Ag
薄膜)4を従来と同様の方法でバターニングしてできる
最終的な直列接続型薄膜太陽電池の断面を示す図である
。しかし、第1図(b)に示した電気的接続と第1図(
C)に示した第二電極層のバターニングの順序は逆にす
ることも可能である。
However, in the case of a thin Ag film, it is somewhat difficult to make a through hole with a laser beam due to its high reflectance, so the thickness should be approximately 2000, and the electrical connection of the second electrode layer should be made with a thickness greater than that. It is a cross-sectional view showing the state in which the
C) is a second electrode layer (Ag
FIG. 4 is a diagram showing a cross section of a final series-connected thin film solar cell obtained by patterning the thin film 4 in a conventional manner. However, the electrical connection shown in Figure 1(b) and the electrical connection shown in Figure 1(b)
The order of patterning the second electrode layer shown in C) can also be reversed.

上述の電気的接続を行うためのレーザ光源としては波長
0.53μmのYAGレーザを利用し、アルミ薄膜すな
わち第二電極4側から入射する。ここで第3図に基づき
、レーザパワーと接触抵抗の関係について述べる。この
場合レーザの励起ランプ電流を0から徐々に上げていく
と、ランプ電流が低い第一の領域ではアルミ薄膜の蒸発
は起こらず、ランプ電流を高くしていくとアルミ薄膜と
アモルファス半導体層が蒸発して除去され、同時に除去
されたアモルファス半導体層の周縁部にアモルファス半
導体層とアルミが溶融あるいは結晶化して良導電性化す
る部分が発生する。この時SnG、からなる第一電極層
は表面がわずかに変質するだけでほとんど損傷を受けな
い。この第二の領域のレーザパワーの領域での最適値は
400〜450mWである。
A YAG laser with a wavelength of 0.53 μm is used as a laser light source for making the above-mentioned electrical connection, and enters from the aluminum thin film, that is, the second electrode 4 side. Here, based on FIG. 3, the relationship between laser power and contact resistance will be described. In this case, when the excitation lamp current of the laser is gradually increased from 0, evaporation of the aluminum thin film does not occur in the first region where the lamp current is low, and as the lamp current is increased, the aluminum thin film and the amorphous semiconductor layer evaporate. At the periphery of the amorphous semiconductor layer removed at the same time, a portion where the amorphous semiconductor layer and aluminum melt or crystallize and become highly conductive is generated. At this time, the first electrode layer made of SnG is hardly damaged except for a slight change in surface quality. The optimum value in this second region of laser power is 400 to 450 mW.

さらにランプ電流の大きな第三の領域(500mv以上
のレーザパワー)では、アルミ薄膜、アモルファス半導
体層ばかりでなく、第一電極層も蒸発し除去されるので
避けなければならない。
Further, in the third region where the lamp current is large (laser power of 500 mv or more), not only the aluminum thin film and the amorphous semiconductor layer but also the first electrode layer are evaporated and removed, so this must be avoided.

次に第4.第5図に基づき、レーザの掃引速度と接触抵
抗の関係について述べる。第4図かられかるようにレー
ザパワーの最適値である400〜450mWの出力にお
いては、ビームの掃引速度が90〜100印/secの
時(第二領域)が最適値である。即ち、掃引速度がそれ
より速い時(110mm/sec :第三領域)は、形
成される貫通孔の密度が低く (第5図(a))、ユニ
ットセル間の電気的接続は不十分な値となる。また掃引
速度が遅い時(80mIII/sec以下:第−領域)
は、貫通孔が互いに重なり合って形成されることになり
(第5図(C))、第一電極へのレーザ光照射の度合い
が増加するため、第一電極が変質あるいは蒸発してしま
い、接触抵抗は増加する。
Next is the fourth. Based on FIG. 5, the relationship between laser sweep speed and contact resistance will be described. As can be seen from FIG. 4, at an output of 400 to 450 mW, which is the optimum value of the laser power, the optimum value is when the beam sweep speed is 90 to 100 marks/sec (second region). That is, when the sweep speed is faster than that (110 mm/sec: third region), the density of the formed through holes is low (Fig. 5 (a)), and the electrical connection between unit cells is insufficient. becomes. Also, when the sweep speed is slow (80 mIII/sec or less: region -)
In this case, the through-holes are formed overlapping each other (Fig. 5 (C)), and the degree of laser light irradiation to the first electrode increases, resulting in deterioration or evaporation of the first electrode, resulting in contact failure. resistance increases.

次に第6.第7図に基づいて、貫通孔を形成し良導電性
部を形成する工程(以下カッティングと称す)の回数と
接触抵抗について述べる。第6図に示すように、カッテ
ィングの回数は1回より2回の方がよいが、3回にする
と逆に接触抵抗が増加する。1回より2回の方がよいの
は、良導電性部の面積が増加するためであるが(第7図
(a)、 (b))、3回以降になると抵抗が増加する
ことは次のように説明できる。即ちレーザ光により貫通
孔を開ける際、第一電極層の表面はごくわずかに変質す
る。
Next is the 6th. Based on FIG. 7, the number of steps (hereinafter referred to as cutting) of forming through holes and forming highly conductive parts (hereinafter referred to as cutting) and contact resistance will be described. As shown in FIG. 6, it is better to cut twice than once, but if it is cut three times, the contact resistance increases. The reason why it is better to do it twice than once is because the area of the good conductive part increases (Fig. 7 (a), (b)), but after the third time, the resistance increases. It can be explained as follows. That is, when a through hole is formed using a laser beam, the surface of the first electrode layer is slightly altered in quality.

その部分の接触抵抗への影響は、貫通孔の密度が少ない
時には関係ないが、密度が増加していくにつれてしだい
に影響が現れてくる(第7図(C))。
The influence of this portion on the contact resistance is irrelevant when the density of the through holes is low, but as the density increases, the influence gradually becomes apparent (FIG. 7(C)).

つまり、接触抵抗は良導電性部と第一電極層の変質部と
の競合で決定されるため、カッティング回数1回の時は
良導電件部不足、3回以降は第一電極層の変質部の増加
により、共に接触抵抗が増加する。但しカッティングの
回数は全てにおいて2回がいいわけではなく、第一電極
層の膜厚により変化する。第8図に、第一電極層にSn
O□を用いた場合の膜厚をパラメータとした接触抵抗と
カッティング回数との関係を示す。この時はレーザパワ
ー400mW、  掃引速度1(10mm/secであ
る。SnO2層が比較的薄い場合はカッティング回数は
1回でよく、厚い場合は2回〜3回の方がよいことがわ
かる。
In other words, the contact resistance is determined by the competition between the highly conductive part and the deteriorated part of the first electrode layer, so when the number of cuttings is 1, there is insufficient conductive part, and after 3 times, the deteriorated part of the first electrode layer is insufficient. An increase in both causes an increase in contact resistance. However, the number of times of cutting is not always two, and it changes depending on the thickness of the first electrode layer. In FIG. 8, the first electrode layer is made of Sn.
The relationship between the contact resistance and the number of cuttings using film thickness as a parameter when using O□ is shown. At this time, the laser power was 400 mW, and the sweep speed was 1 (10 mm/sec). It can be seen that if the SnO2 layer is relatively thin, the number of cutting is sufficient, and if it is thick, it is better to cut 2 to 3 times.

これはSnO,の膜厚が薄い場合、SnO2自体のシー
ト抵抗も増加するため第一電極層の変質部は少ない方が
よく、厚い場合はSnO2のシート抵抗が減少するため
、第一電極層の変質部はある程度増加しても影響を受け
ないことによるものである。
This is because when the film thickness of SnO is thin, the sheet resistance of SnO2 itself increases, so it is better to have fewer altered parts in the first electrode layer, and when it is thick, the sheet resistance of SnO2 decreases, so the sheet resistance of the first electrode layer This is because the altered part is not affected even if it increases to a certain extent.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、絶縁性基板上に形成された第一電極層
、アモルファス半導体層、第二電極層からなる複数のユ
ニットセル間の電気的接続を、レーザ光を第二電極層側
から照射して第二電極層およびアモルファス半導体層を
除去して貫通孔を形成する際に貫通孔の周囲にアモルフ
ァス半導体層および第二電極層が溶融あるいは結晶化し
て生ずる十分な面積の良導電性部により行う際に、レー
ザ光のレーザパワーおよびその掃引速度を最適化させた
ので、アモルファス半導体層の形成と第二電極層の形成
の間にアモルファス半導体層のパタニング工程を入れる
必要なく、隣接するユニットセル間をより低抵抗で接続
することが可能となり、低コスト、高信頼性を有する直
列接続型薄膜太陽電池が得られる。
According to the present invention, electrical connections between a plurality of unit cells formed on an insulating substrate, each consisting of a first electrode layer, an amorphous semiconductor layer, and a second electrode layer, are established by irradiating laser light from the second electrode layer side. When the second electrode layer and the amorphous semiconductor layer are removed to form a through hole, the amorphous semiconductor layer and the second electrode layer are melted or crystallized around the through hole, resulting in a highly conductive portion with a sufficient area. Since the laser power and sweep speed of the laser beam were optimized when performing this process, there is no need to include a patterning process for the amorphous semiconductor layer between the formation of the amorphous semiconductor layer and the formation of the second electrode layer. It becomes possible to connect between the two with a lower resistance, and a series-connected thin film solar cell with low cost and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、ら)、(C)は本発明が適用される製造
方法の一実施例を工程を追って示す断面図、第2図は従
来の直列接続型薄膜太陽電池の断面図、第3図はレーザ
パワーと接触抵抗の関係を示す線図、第4図はレーザ光
掃引速度と接触抵抗の関係を示す線図、第5図(a)、
 (b)、 (C)はレーザ光掃引速度を変化させた際
の貫通孔周囲の平面図、第6図はカッティング回数と接
触抵抗の関係を示す線図、第7図(a)、 (b)、 
(C)はカッティング回数を変えたときの貫通孔周囲の
平面図、第8図はSnO,薄膜をパラメータとした時の
カッティング回数と接触抵抗の関係を示す線図である。 1 ガラス基板、21.22.23  第一電極、3ア
モルファス半導体層、31.32.33  アモルファ
ス半導体層領域、4 第二電極層、41.42.43第
二電極、51.52.53  良導電性部、6 レーザ
光、?1.72.73  貫通孔。 第 図 ビ ム掃引速度(mm/5ec) 第 図 (a) (b) (C) 第 図 第 図 レ ザーパワ (mW) 第 図 カッティング回数 第 区 (a) (b) (C) 第 図
1(a), 1), and 1(C) are cross-sectional views showing step by step an embodiment of the manufacturing method to which the present invention is applied; FIG. 2 is a cross-sectional view of a conventional series-connected thin film solar cell; Figure 3 is a diagram showing the relationship between laser power and contact resistance, Figure 4 is a diagram showing the relationship between laser beam sweep speed and contact resistance, Figure 5 (a),
(b), (C) are plan views of the area around the through hole when the laser beam sweep speed is changed, Figure 6 is a diagram showing the relationship between the number of cuttings and contact resistance, and Figures 7 (a) and (b). ),
(C) is a plan view of the area around the through hole when the number of cuttings is changed, and FIG. 8 is a diagram showing the relationship between the number of cuttings and the contact resistance when SnO and thin film are used as parameters. 1 glass substrate, 21.22.23 first electrode, 3 amorphous semiconductor layer, 31.32.33 amorphous semiconductor layer region, 4 second electrode layer, 41.42.43 second electrode, 51.52.53 good conductivity Sexual part, 6 Laser light,? 1.72.73 Through holes. Figure: Beam sweep speed (mm/5ec) Figure: (a) (b) (C) Figure: Razor power (mW) Figure: Cutting frequency (a) (b) (C) Figure:

Claims (1)

【特許請求の範囲】[Claims] 1)絶縁性基板上にあって基板側に第一電極、反基板側
に第二電極を備えたアモルファス半導体層からなる複数
のユニットセルが直列接続されるものを製造するに際し
、絶縁性基板上に一列に配列された複数の第一電極を形
成する工程と、その上を覆ってアモルファス半導体層、
第二電極層を積層する工程の後に、レーザ光の照射によ
り第二電極層およびアモルファス半導体層を各第一電極
の縁部近傍の上に達する複数の貫通孔を形成すると共に
該貫通孔周囲のアモルファス半導体層を良導電性化ある
いは該貫通孔周囲の第二電極、アモルファス半導体層、
第一電極を良導電性化する工程と第二電極層のみを前記
貫通孔より第一電極の内側の上で切断し、分割する工程
を含む薄膜太陽電池の製造方法において、前記レーザ光
にYAGレーザを用い、そのレーザ光出力を400〜4
50mWとし、レーザビームの掃引速度を90〜100
mm/secとしたことを特徴とする薄膜太陽電池の製
造方法。
1) When manufacturing a device in which a plurality of unit cells made of an amorphous semiconductor layer are connected in series on an insulating substrate and have a first electrode on the substrate side and a second electrode on the opposite side, a process of forming a plurality of first electrodes arranged in a line; covering the first electrodes with an amorphous semiconductor layer;
After the step of laminating the second electrode layer, the second electrode layer and the amorphous semiconductor layer are irradiated with laser light to form a plurality of through holes reaching above the vicinity of the edge of each first electrode, and to form a plurality of through holes around the through holes. The amorphous semiconductor layer has good conductivity or the second electrode around the through hole, the amorphous semiconductor layer,
In the method for manufacturing a thin film solar cell, the method includes the step of making the first electrode conductive and cutting only the second electrode layer on the inside of the first electrode from the through hole to divide the YAG layer. Using a laser, the laser light output is 400~4
50 mW, and the sweep speed of the laser beam was 90-100 mW.
A method for manufacturing a thin-film solar cell, characterized in that the solar cell is manufactured at a rate of mm/sec.
JP63193768A 1988-08-03 1988-08-03 Manufacture of thin film solar cell Pending JPH0243776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193768A JPH0243776A (en) 1988-08-03 1988-08-03 Manufacture of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193768A JPH0243776A (en) 1988-08-03 1988-08-03 Manufacture of thin film solar cell

Publications (1)

Publication Number Publication Date
JPH0243776A true JPH0243776A (en) 1990-02-14

Family

ID=16313486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193768A Pending JPH0243776A (en) 1988-08-03 1988-08-03 Manufacture of thin film solar cell

Country Status (1)

Country Link
JP (1) JPH0243776A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956572A (en) * 1996-08-26 1999-09-21 Sharp Kabushiki Kaisha Method of fabricating integrated thin film solar cells
JP2006049552A (en) * 2004-08-04 2006-02-16 Fuji Electric Holdings Co Ltd Solar battery module and solar battery element
CN102906875A (en) * 2010-05-28 2013-01-30 弗立泽姆公司 Method and apparatus for thin film module with dotted interconnects and vias
US20170162810A1 (en) * 2014-08-29 2017-06-08 Rohm Co., Ltd. Organic thin film photovoltaic device module and electronic apparatus
US10096731B2 (en) 2014-01-31 2018-10-09 Flisom Ag Method for thin-film via segments in photovoltaic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956572A (en) * 1996-08-26 1999-09-21 Sharp Kabushiki Kaisha Method of fabricating integrated thin film solar cells
JP2006049552A (en) * 2004-08-04 2006-02-16 Fuji Electric Holdings Co Ltd Solar battery module and solar battery element
CN102906875A (en) * 2010-05-28 2013-01-30 弗立泽姆公司 Method and apparatus for thin film module with dotted interconnects and vias
JP2013527618A (en) * 2010-05-28 2013-06-27 フリソム アクツィエンゲゼルシャフト Method and apparatus for thin film modules with point interconnections and vias
US8928105B2 (en) 2010-05-28 2015-01-06 Flisom Ag Method and apparatus for thin film module with dotted interconnects and vias
US10096731B2 (en) 2014-01-31 2018-10-09 Flisom Ag Method for thin-film via segments in photovoltaic device
US10566479B2 (en) 2014-01-31 2020-02-18 Flisom Ag Method for thin-film via segments in photovoltaic device
US20170162810A1 (en) * 2014-08-29 2017-06-08 Rohm Co., Ltd. Organic thin film photovoltaic device module and electronic apparatus
US10886484B2 (en) * 2014-08-29 2021-01-05 Rohm Co., Ltd. Organic thin film photovoltaic device module and electronic apparatus

Similar Documents

Publication Publication Date Title
AU2004204637B8 (en) Transparent thin-film solar cell module and its manufacturing method
JP3035565B2 (en) Fabrication method of thin film solar cell
CN100502057C (en) Photovoltaic cell, photovoltaic cell module, method of fabricating photovoltaic cell and method of repairing photovoltaic cell
US4542578A (en) Method of manufacturing photovoltaic device
JPH0472392B2 (en)
JP2002319686A (en) Method of manufacturing integrated thin film solar battery
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JPH0851229A (en) Integrated solar battery and its manufacture
JPH053151B2 (en)
JPH0243776A (en) Manufacture of thin film solar cell
JP2000196117A (en) Manufacture of photoelectric conversion device
JP3111820B2 (en) Manufacturing method of thin film solar cell
JPH11112010A (en) Solar cell and manufacture therefor
JP2001210851A (en) Integrated thin-film solar cell
JPH11103079A (en) Manufacture of laminated photovoltaic device
JP2001119048A (en) Method for manufacturing integrated thin-film solar cell
JP2000252490A (en) Integrated thin-film solar cell and its manufacture
JPS61280680A (en) Manufacture of semiconductor device
JPH0758351A (en) Manufacture of thin film solar cell
JP2006165338A (en) Integrated thin-film solar cell and its manufacturing method
JPH11224956A (en) Thin-film solar cell and manufacture therefor
JP2001237442A (en) Solar cell and its manufacturing method
JPH11191630A (en) Manufacture of photovoltaic device and photovoltaic device thereof
JP2000049371A (en) Photovoltaic device and its manufacture
JP3685964B2 (en) Photoelectric conversion device