JPH0242725A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0242725A
JPH0242725A JP19271688A JP19271688A JPH0242725A JP H0242725 A JPH0242725 A JP H0242725A JP 19271688 A JP19271688 A JP 19271688A JP 19271688 A JP19271688 A JP 19271688A JP H0242725 A JPH0242725 A JP H0242725A
Authority
JP
Japan
Prior art keywords
semiconductor device
manufacturing
gas
oxide film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19271688A
Other languages
Japanese (ja)
Inventor
Taijo Nishioka
西岡 泰城
Yuzuru Oji
譲 大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19271688A priority Critical patent/JPH0242725A/en
Publication of JPH0242725A publication Critical patent/JPH0242725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To decrease interfacial level by introducing a trace quantity of halogen to the interface between a wet oxide film or high pressure oxide film and substrate Si. CONSTITUTION:A semiconductor device, containing a trace quantity of halogen atoms at the interface between Si substrate and SiO2 formed by dry oxidation process, is oxidized in an oxygen atmosphere containing steam, or in a pyrogenic atmosphere, or in high pressure oxygen. By introducing a suitable quantity of halogen element such as F, Cl, having large bonding strength with Si, to the Si/SiO2 interface, the distortion at the interface can be relaxed. Thus, the surface leak, caused by the interfacial level produced at the interface between silicon oxide and Si and a fixed charge, can be prevented so that a highly reliable MOS device (for example, against the irradiation and hot carrier injection by X-ray, electron beam, etc.) can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高集積微細MOSデバイスの製造方法に係り、
特に耐放射線、耐ホツトキャリア現象に対して優れた半
導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a highly integrated fine MOS device,
In particular, the present invention relates to a method of manufacturing a semiconductor device that is excellent in radiation resistance and hot carrier phenomenon resistance.

〔従来の技術〕[Conventional technology]

従来の報告例によれば、耐放射線特性、耐ホツトキャリ
ア特性の優れたゲート絶縁膜が、常圧下での乾燥酸化中
あるいは酸化前のSiの表面にF又はClを適当な量導
入することによって得られることが示されている。
According to conventional reports, a gate insulating film with excellent radiation resistance and hot carrier resistance can be obtained by introducing an appropriate amount of F or Cl into the Si surface during or before dry oxidation under normal pressure. It has been shown that it can be obtained.

これらの報告の例としては1例えば、アイ・イー・イー
・イー、エレクトロンデバイス レター第9巻(198
8年)第38頁から40頁(IE[1EIElectr
on Device Letter、 EDL−9(1
988)。
Examples of these reports include 1, for example, IEE, Electron Device Letters Volume 9 (198
8th year) pages 38 to 40 (IE[1EIElectr
on Device Letter, EDL-9 (1
988).

pp38−40)において論じられている。pp 38-40).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はlMOSトランジスタのゲート絶縁膜の
信頼性向上を目的としている。したかつ\ 1て、酸化膜は乾燥(ドライ)酸化法によって形成され
た500Å以下の簿膜であって、MOSデバイスのアイ
ソレーション等で必要とされる5000人−1μm程度
の厚膜を形成できる水蒸気中での酸化(ウェット)法に
ついてハロゲンの効果については配慮されていなかった
The purpose of the above-mentioned conventional technology is to improve the reliability of the gate insulating film of an IMOS transistor. First, the oxide film is a film with a thickness of 500 Å or less formed by a dry oxidation method, and it is possible to form a thick film of about 5000-1 μm, which is required for isolation of MOS devices, etc. Regarding the oxidation (wet) method in water vapor, no consideration was given to the effect of halogens.

Siデバイスにおいては浅接合化が必要であるが、その
さい、Siデバイスの製造工程における熱処理温度を低
く抑えることも重要になってきた。
In Si devices, shallower junctions are required, and at this time, it has become important to keep the heat treatment temperature low in the Si device manufacturing process.

従来の大気圧中の酸化法に比べて、高圧の酸素ガス中で
酸化することにより、酸化速度を増大させる方法(高圧
酸化法)がある。この高圧酸化方法によって、低温でも
MOSデバイスの実現に必要な酸化膜厚を得ることがで
きる。
Compared to the conventional oxidation method at atmospheric pressure, there is a method (high-pressure oxidation method) in which the oxidation rate is increased by oxidizing in high-pressure oxygen gas. This high-pressure oxidation method makes it possible to obtain the oxide film thickness necessary to realize a MOS device even at low temperatures.

この高圧酸化法におけるハロゲンの効果についても配慮
されていなかった。
No consideration was given to the effect of halogen in this high-pressure oxidation method.

本発明の目的は、MOSデバイス中等のアイソレーショ
ン等で必要とされる高信頼性のウェット酸化膜や低温で
形成できる高圧酸化膜を製造することにある。
An object of the present invention is to manufacture a highly reliable wet oxide film required for isolation of MOS devices, etc., and a high-pressure oxide film that can be formed at low temperatures.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ウェット酸化膜または高圧酸化膜と基板S
iとの界面に微量のハロゲンを8人することにより、達
成される。
The above purpose is to combine wet oxide film or high pressure oxide film with substrate S.
This is achieved by adding a small amount of halogen to the interface with i.

〔作用〕[Effect]

絶縁膜とSiとの界面の信頼性は、この絶縁膜(通常は
5iOz)とSiの結合の格子不整合による歪に大きく
依存すると考えられる。この歪を持つ界面での5i−0
結合は、放射線ダメージ。
The reliability of the interface between the insulating film and Si is considered to be largely dependent on the strain caused by the lattice mismatch in the bond between the insulating film (usually 5 iOz) and Si. 5i-0 at the interface with this strain
The bond is radiation damage.

ホットキャリア注入で生ずる欠陥の該Si/SiO2界
面に拡散により切断される。この切断された結合によっ
て、界面準位、固定電荷トラップ中心などが形成される
ことが知られている。これに対して、Siと結合力の強
いF、CI2などのハロゲン元素をSi/SiOx界面
に適当な量導入することによって、この界面での歪を緩
和することができ、これによって高信頼のSi/SiO
x界面を形成できると考えられる。
Defects caused by hot carrier injection are cut at the Si/SiO2 interface by diffusion. It is known that interface states, fixed charge trap centers, and the like are formed by these broken bonds. On the other hand, by introducing an appropriate amount of halogen elements such as F and CI2, which have a strong bonding force with Si, into the Si/SiOx interface, the strain at this interface can be alleviated. /SiO
It is thought that an x-interface can be formed.

本発明によって、ドライ酸化膜が確かめられていた、ハ
ロゲン導入によるS i / S i O2の信頼性の
向上が、ウェット酸化法によって形成されたSi/Si
Oxの界面においても同様に起こることが明らかになっ
た。
According to the present invention, the reliability improvement of Si/SiO2 due to the introduction of halogen, which has been confirmed in dry oxide films, has been confirmed to be improved by Si/SiO2 formed by wet oxidation method.
It has become clear that the same phenomenon occurs at the Ox interface.

〔実施例〕〔Example〕

以下、実施例によって、本発明の概念を詳細に説明する
Hereinafter, the concept of the present invention will be explained in detail with reference to Examples.

(実施例1) 本実施例においては、本発明の効果を明確に示すために
、従来法を用いて形成した酸化膜と本発明を用いた絶縁
膜とを形成して、キャパシタを作り、耐ホツトキャリア
特性を調べた。
(Example 1) In this example, in order to clearly demonstrate the effects of the present invention, a capacitor was fabricated by forming an oxide film formed using a conventional method and an insulating film using the present invention. The hot carrier properties were investigated.

従来技術を用いたMOSキャパシタは例えば、Si基板
の洗浄後に1000℃の乾燥酸素中で約50分酸化して
約500人のドライ酸化膜を形成したのち、1000℃
の水蒸気を含む酸素中で約30分酸化して合計約500
0人の酸化膜を形成した。
For example, in a MOS capacitor using the conventional technology, after cleaning the Si substrate, oxidize it for about 50 minutes in dry oxygen at 1000°C to form a dry oxide film of about 500%, and then oxidize it at 1000°C.
Oxidized for about 30 minutes in oxygen containing water vapor to give a total of about 500
An oxide film of 0 people was formed.

一方、本発明の方法を用いたMOSキャパシタは、Si
基板の洗浄後に、この基板を2.5%の弗化水素酸の水
溶液に約5分間侵し、そのまま乾燥させる。そのさい、
このSi基板の表面には、多量の弗素が吸着されている
。このSi基板を1000℃の乾燥雰囲気で50分間酸
化して500人の酸化膜を形成する。さらに、この50
0人の弗素を導入したドライ酸化膜を1000℃の水蒸
気を含む酸素中で約30分酸化することによって合計約
5000人の膜厚の酸化膜を形成する。
On the other hand, a MOS capacitor using the method of the present invention is made of Si
After cleaning the substrate, the substrate is soaked in a 2.5% aqueous solution of hydrofluoric acid for about 5 minutes and then allowed to dry. At that time,
A large amount of fluorine is adsorbed on the surface of this Si substrate. This Si substrate is oxidized for 50 minutes in a dry atmosphere at 1000° C. to form a 500-layer oxide film. Furthermore, this 50
A dry oxide film into which 0 fluorine was introduced was oxidized for about 30 minutes in oxygen containing water vapor at 1000° C. to form an oxide film with a total thickness of about 5000 fluorine.

上記の方法によって i)通常のドライ酸化膜500人 ii)ドライ+ウェット酸化膜5000人1ii)ウェ
ット酸化膜5000人 iy)フッ素を含むドライ酸化膜500人V)フッ素を
含むドライ+ウェット酸化膜5000人 の5種類の膜を形成して、この絶縁膜(SiO2)上に
AQ組電極形成してキャパシタを作成し、そのホットキ
ャリア注入による界面準位の発生量を比較した。
By the above method, i) Normal dry oxide film 500 people ii) Dry + wet oxide film 5000 people 1ii) Wet oxide film 5000 people iy) Dry oxide film containing fluorine 500 people V) Dry + wet oxide film containing fluorine 5000 people Five types of films were formed, and a capacitor was created by forming an AQ electrode set on the insulating film (SiO2), and the amount of interface states generated by hot carrier injection was compared.

ホットキャリア注入は、Si基板から酸化膜中に電子を
注入するF−Nトンネル法で行った。電流密度は6 x
 10””A/ciで、注入時間は200秒である。界
面準位の測定は、高周波(I M Hz )と準静的容
量−電圧測定により行った。
Hot carrier injection was performed using the F-N tunneling method in which electrons are injected from the Si substrate into the oxide film. Current density is 6 x
At 10''A/ci, the injection time is 200 seconds. The interface state was measured by high frequency (I MHz) and quasi-static capacitance-voltage measurements.

第1図に、ホットキャリア注入後に発生した界面準位密
度のSiのバンドキャップ中での分布を、比較して示す
。第1図の1は弗素を含まない500人の膜厚のドライ
酸化膜、2は弗素を含まない5000人の膜厚のドライ
+ウェット酸化膜、3は弗素を含まない5000人のウ
ェット酸化膜、4は弗素を含む500人のドライ酸化膜
、5は本発明の実施例の弗素を含む500人の膜厚のド
ライ+ウェット酸化膜をそれぞれ示す。
FIG. 1 shows a comparative distribution of the interface state density generated after hot carrier injection in the Si band gap. In Figure 1, 1 is a 500-layer dry oxide film that does not contain fluorine, 2 is a 5000-layer dry + wet oxide film that does not contain fluorine, and 3 is a 5000-layer wet oxide film that does not contain fluorine. , 4 shows a 500-thick dry oxide film containing fluorine, and 5 shows a 500-thick dry+wet oxide film containing fluorine according to an embodiment of the present invention.

1と4を比較するとすでに知られているように、弗素を
含むドライ酸化膜の界面準位の発生量が、弗素を含まな
いドライ酸化膜の約1/1oになっている。5の弗素を
含むドライ+ウェット酸化膜は、4の弗素を含むドライ
酸化膜に比べて、やや界面準位の量が多くなっているが
、これは、ウェット酸化によって、酸化膜中に水素や水
酸基が導入されたためと考えられる。しかし、2,3の
ドライ+ウェット酸化膜、ウェット酸化膜に比較すると
本発明の方法によって形成した。5の酸化膜の信頼性の
高さが極めて著るしいことが明らかとなる。
Comparing No. 1 and No. 4, as already known, the amount of interface states generated in a dry oxide film containing fluorine is about 1/1 of that of a dry oxide film not containing fluorine. The dry + wet oxide film containing fluorine in No. 5 has a slightly larger amount of interface states than the dry oxide film containing fluorine in No. 4, but this is because wet oxidation causes hydrogen and wet oxide in the oxide film. This is thought to be due to the introduction of hydroxyl groups. However, compared to the dry+wet oxide films and wet oxide films of 2 and 3, the results were formed by the method of the present invention. It is clear that the reliability of the oxide film No. 5 is extremely high.

なお、本実施例において、ドライ酸化+ウェット酸化と
いうやや複雑な酸化工程を用いたが、このドライ酸化工
程を省略して、直接ウェット酸化中に弗素を導入しても
、まったく同等の効果が得られた。このドライ+ウェッ
ト法によって本発明を応用するさいには、通常ゲート絶
縁膜として用いる薄いドライ酸化膜にも弗素を導入する
ことによって、高信頼性のデバイスが形成できるためで
ある。
In this example, a somewhat complicated oxidation process of dry oxidation + wet oxidation was used, but even if this dry oxidation process was omitted and fluorine was directly introduced during wet oxidation, exactly the same effect could be obtained. It was done. This is because when the present invention is applied by this dry+wet method, a highly reliable device can be formed by introducing fluorine into a thin dry oxide film normally used as a gate insulating film.

(実施例2) 上記の実施例1に比べてさらに制御性の良いFの酸化膜
中への導入法の一つにNFa酸化法がある。
(Example 2) One of the methods for introducing F into the oxide film with better controllability than in Example 1 is the NFa oxidation method.

この方法において、ウェット酸化の初期にN F aガ
スの02中での濃度が0.05% となるようにして、
流し、このN F aガスの4入を行なっている時間を
変えて、酸化膜中のFの量を調節した。
In this method, the concentration of NFa gas in O2 is set to 0.05% at the initial stage of wet oxidation,
The amount of F in the oxide film was adjusted by changing the time during which the NFa gas was introduced into the oxide film.

第2図は、ホットキャリア注入によって発生した界面準
位の密度(ミツドギャップより高エネルギー側にあるピ
ークの高さ)を、NFaガス導入時間の関数として示し
たものである。界面準位密度は、NFa導入時間が10
0秒以下で著しく減少する。また、この界面準位の少な
い領域は、NF3ガス感度(%)とNFa導入時間の積
が5%X秒以下に現れることがさらに一般的に明らかと
なった。
FIG. 2 shows the density of interface states (the height of the peak on the higher energy side than the mid-gap) generated by hot carrier injection as a function of the NFa gas introduction time. The interface state density is determined by the NFa introduction time of 10
It decreases significantly in less than 0 seconds. Furthermore, it has become more generally clear that this region with few interface states appears when the product of NF3 gas sensitivity (%) and NFa introduction time is 5%X seconds or less.

本実施例では、NFaは、ウェット酸化中に導入したが
、このN F sはドライ酸化中に導入して、さらにウ
ェット酸化工程を導入してもまったく同等の効果が得ら
れる。
In this example, NFa was introduced during wet oxidation, but the same effect can be obtained by introducing N F s during dry oxidation and then further introducing a wet oxidation step.

上記の2つの実施例1と2において、酸化膜中にFを導
入する方法について述べたが、はとんど同等な効果が塩
素(Cl)を導入することによっても得られた。以下、
WN単に説明する。
In the above two Examples 1 and 2, the method of introducing F into the oxide film was described, but almost the same effect was obtained by introducing chlorine (Cl). below,
WN I will simply explain.

ウェットあるいは、ドライ酸化中にトリクロルエタンC
xHsCla(通称TCA)を導入するさいには、02
中のTCAの濃度と導入時間との積が。
Trichloroethane C during wet or dry oxidation
When introducing xHsCla (commonly known as TCA), 02
The product of the concentration of TCA in the medium and the introduction time.

1000℃の酸化温度においては、30%・秒以下で界
面準位の著しい減少が認められた。
At an oxidation temperature of 1000° C., a significant decrease in interface states was observed within 30%·sec.

また、HClガス導入によってClを酸化膜中に導入す
るさいには、02中のHClの濃度とこのHClガスの
酸化炉中への導入時間との積が10%・秒以下とするこ
とによって著しい界面準位の低下が実現する。なお1本
実施例中で示した酸化は大気圧下で行った。
In addition, when introducing Cl into the oxide film by introducing HCl gas, it is possible to make a significant A reduction in the interface state is achieved. Note that the oxidation shown in this example was performed under atmospheric pressure.

また、本実施例と同様な効果は、F、Clの代りに同じ
ハロゲン族のBr、Iを用いても期待できる。
Further, the same effect as in this example can be expected even if Br and I of the same halogen group are used instead of F and Cl.

なお1本発明によって、界面準位の減少効果のみではな
く、さらに、絶縁膜中の固定電荷も少なくすることがで
きた。
Note that according to the present invention, not only the interface state can be reduced, but also fixed charges in the insulating film can be reduced.

また、本実施例において、ホットキャリア法によって5
iOz/Si  系の信頼性の評価を行ったが、まった
く同等な効果が、X線、電子線照射による界面準位の発
生過程においても確認された。
In addition, in this example, 5
The reliability of the iOz/Si 2 system was evaluated, and exactly the same effect was confirmed in the generation process of interface states by X-ray and electron beam irradiation.

また1本実施例において、ウェット酸化は水蒸気を含む
酸素による酸化法を用いた結果を示したが、本発明の実
施例とまったく同等の効果が、H2と02を酸化炉に導
入して酸化を行なうパイロジェニック酸化法においても
確認された。
In addition, in this example, wet oxidation was performed using an oxidation method using oxygen containing water vapor, but the same effect as in the example of the present invention can be obtained by introducing H2 and 02 into the oxidation furnace. It was also confirmed in the pyrogenic oxidation method.

(実施例3) 上記のウェット酸化膜にF、Clを導入する方法に加え
て、ここでは、乾燥酸素中で行なうシリコンの高圧酸化
においても実施例1,2と同様な改善効果があったので
照合する。
(Example 3) In addition to the above-mentioned method of introducing F and Cl into the wet oxide film, the same improvement effect as in Examples 1 and 2 was obtained by high-pressure oxidation of silicon in dry oxygen. Verify.

本発明の方法を用いたMOSゲート酸化膜は。A MOS gate oxide film using the method of the present invention is as follows.

Si基板の洗浄後に、この基板を2.5%の弗化水素酸
の水溶液に約5分間侵し、そのまま乾燥させた。この基
板を850℃の高圧酸素雰囲気(4−7気圧)中で酸化
した。この方法によって、約20nm−50nmの膜厚
の酸化膜が形成された。
After cleaning the Si substrate, the substrate was immersed in a 2.5% aqueous solution of hydrofluoric acid for about 5 minutes and then allowed to dry. This substrate was oxidized in a high pressure oxygen atmosphere (4-7 atm) at 850°C. By this method, an oxide film with a thickness of approximately 20 nm to 50 nm was formed.

この方法によって形成した酸化膜のホットキャリア注入
または放射線照射による界面準位の発生量は、従来の高
圧酸化膜に比べて約1/10以下であった。
The amount of interface states generated by hot carrier injection or radiation irradiation in the oxide film formed by this method was about 1/10 or less compared to a conventional high-pressure oxide film.

これと同様な高圧酸化膜の改善効果は、実施例1と2に
示した。F、Clの導入条件下でも得られた。
Similar improvement effects of the high-pressure oxide film were shown in Examples 1 and 2. It was also obtained under conditions where F and Cl were introduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アイソレーション等に用いられる厚い
2酸化シリコン中の界面準位の発生量を従来法によって
形成した2酸化シリコンの1/10程度以下ば減らすこ
とができる。これによって、酸化シリコンとSiの界面
に発生する界面準位、固定電荷によって生ずる表面リー
クを防ぎ。
According to the present invention, the amount of interface states generated in thick silicon dioxide used for isolation etc. can be reduced to about 1/10 of that of silicon dioxide formed by conventional methods. This prevents surface leakage caused by interface states and fixed charges generated at the interface between silicon oxide and Si.

高信頼性(例えば、Xi、 fIi子線などによるラジ
エーション、ホットキャリヤ注入に対する)のMOSデ
バイスを形成できる。
A highly reliable MOS device (for example, against radiation caused by Xi, fIi, etc., and hot carrier injection) can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例と従来例におけるホットキ
ャリア注入によって発生した界面準位のエネルギー分布
を示す図、第2図は、ホットキャリア注入によって発生
した界面準位密度のN F aガス導入時間依存性を示
す図である。 1・・・従来法によるドライ酸化膜、2・・・従来法に
よるドライ+ウェット酸化膜、3・・・従来法によるウ
ェット酸化膜、4・・・弗素を含むドライ酸化膜、5・
・・弗素を含むドライ+ウェット酸化膜(本発明)。 鴇 口 B−Eη<ev) 第 図 Fl 導入時間(#)
FIG. 1 is a diagram showing the energy distribution of interface states generated by hot carrier injection in an embodiment of the present invention and a conventional example, and FIG. 2 is a diagram showing the energy distribution of interface states generated by hot carrier injection. It is a figure showing gas introduction time dependence. 1... Dry oxide film by conventional method, 2... Dry+wet oxide film by conventional method, 3... Wet oxide film by conventional method, 4... Dry oxide film containing fluorine, 5...
...Dry + wet oxide film containing fluorine (this invention). Tokiguchi B-Eη<ev) Figure Fl Introduction time (#)

Claims (1)

【特許請求の範囲】 1、微量のハロゲン原子をSi基板の乾燥酸化法によつ
て形成されたSiO_2との界面に含む半導体装置を、
水蒸気を含む酸素雰囲気中または、パイロジエニツク雰
囲気中、または高圧の酸素中で酸化することを特徴とす
る半導体装置の製造方法。 2、上記の半導体装置の製造方法において、ハロゲン原
子はFであり、該F原子は、上記乾式酸化の前に上記S
i基板を弗化水素酸の水溶液を塗布し乾燥させた後に、
乾燥酸素雰囲気中で該Si基板を酸化することにより導
入することを特徴とする請求項第1項記載の半導体装置
の製造方法。 3、上記の半導体装置の製造方法において、ハロゲン原
子はFであり、該F原子は、上記乾燥酸化中に、NF_
3ガスのO_2ガス中での濃度(%)と該NF_3ガス
の導入時間の積が、5%・秒以下の条件で導入されるこ
とを特徴とする請求項第1項記載の半導体装置の製造方
法。 4、上記の半導体装置の製造方法において、ハロゲン原
子はClであり、上記乾式酸化中に、トリクロルエタン
(TCA)ガスのO_2ガス中の濃度と該TCAガスの
導入時間の積が、30%・秒以下で導入することを特徴
とする請求項第1項記載の半導体装置の製造方法。 5、ハロゲン原子はClであり、上記乾燥酸化中に、O
_2ガス中HClの濃度と該HClの導入時間の積が1
0%・秒以下であることを特徴とする請求項第1項記載
の半導体装置の製造方法。 6、Si基板を酸化する前の該Si基板の表面にハロゲ
ン原子を吸着させるか、もしくは、酸化中に微量のハロ
ゲン原子を酸化炉中に導入し、該Si基板を水蒸気を含
む酸素雰囲気中又は、パイロジエニツク雰囲気中で酸化
することを特徴とする半導体装置の製造方法。 7、上記ハロゲン原子はFであり、該F原子はSi基板
表面に弗化水素酸の水溶液を塗布し、乾燥させることに
より吸着させることを特徴とする請求項第6項記載の半
導体装置の製造方法。 8、上記ハロゲン原子はFであり、該F原子量は、上記
の水蒸気を含む酸素中のNF_3ガス濃度(%)と導入
時間の積が5%・秒以下であることを特徴とする請求項
第6項記載の半導体装置の製造方法。 9、上記ハロゲン原子はClであり、上記の水蒸気を含
む酸素中に、トリクロルエタン(TCA)ガスのO_2
ガス中での濃度と該TCAガスの導入時間との積が30
%・秒以下で導入することを特徴とする請求項第6項記
載の半導体装置の製造方法。 10、上記ハロゲン原子はClであり、上記の水蒸気を
含む酸素中に、O_2ガス中のHCl濃度(%)と該H
Clの導入時間との積が10%・秒以下であることを特
徴とする請求項第6項記載の半導体装置の製造方法。
[Claims] 1. A semiconductor device containing a trace amount of halogen atoms at the interface with SiO_2 formed by dry oxidation of a Si substrate,
A method for manufacturing a semiconductor device, characterized in that oxidation is carried out in an oxygen atmosphere containing water vapor, in a pyrogenic atmosphere, or in high-pressure oxygen. 2. In the above method for manufacturing a semiconductor device, the halogen atom is F, and the F atom is added to the S before the dry oxidation.
After applying an aqueous solution of hydrofluoric acid to the i-board and drying it,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the introduction is performed by oxidizing the Si substrate in a dry oxygen atmosphere. 3. In the above method for manufacturing a semiconductor device, the halogen atom is F, and the F atom is converted into NF_
2. Manufacturing the semiconductor device according to claim 1, wherein the product of the concentration (%) of the three gases in O_2 gas and the introduction time of the NF_3 gas is 5% seconds or less. Method. 4. In the above method for manufacturing a semiconductor device, the halogen atom is Cl, and during the dry oxidation, the product of the concentration of trichloroethane (TCA) gas in O_2 gas and the introduction time of the TCA gas is 30%. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the introduction is performed in seconds or less. 5. The halogen atom is Cl, and during the above dry oxidation, O
_2 The product of the concentration of HCl in the gas and the introduction time of the HCl is 1
2. The method of manufacturing a semiconductor device according to claim 1, wherein the time is 0%·sec or less. 6. Adsorb halogen atoms onto the surface of the Si substrate before oxidizing the Si substrate, or introduce a trace amount of halogen atoms into an oxidation furnace during oxidation, and place the Si substrate in an oxygen atmosphere containing water vapor or , a method for manufacturing a semiconductor device characterized by oxidizing it in a pyrogenic atmosphere. 7. Manufacturing the semiconductor device according to claim 6, wherein the halogen atom is F, and the F atom is adsorbed by applying an aqueous solution of hydrofluoric acid to the surface of the Si substrate and drying it. Method. 8. The halogen atom is F, and the atomic weight of F is such that the product of the NF_3 gas concentration (%) in the water vapor-containing oxygen and the introduction time is 5% seconds or less. 6. A method for manufacturing a semiconductor device according to item 6. 9. The halogen atom is Cl, and O_2 of trichloroethane (TCA) gas is added to the oxygen containing water vapor.
The product of the concentration in the gas and the introduction time of the TCA gas is 30
7. The method of manufacturing a semiconductor device according to claim 6, wherein the introduction is performed at a rate of less than %.sec. 10. The above halogen atom is Cl, and in the above oxygen containing water vapor, the HCl concentration (%) in O_2 gas and the H
7. The method of manufacturing a semiconductor device according to claim 6, wherein the product with the introduction time of Cl is 10%·sec or less.
JP19271688A 1988-08-03 1988-08-03 Manufacture of semiconductor device Pending JPH0242725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19271688A JPH0242725A (en) 1988-08-03 1988-08-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19271688A JPH0242725A (en) 1988-08-03 1988-08-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0242725A true JPH0242725A (en) 1990-02-13

Family

ID=16295872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19271688A Pending JPH0242725A (en) 1988-08-03 1988-08-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0242725A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428265A (en) * 1990-05-23 1992-01-30 Seiko Instr Inc Semiconductor device and manufacture thereof
JPH0456223A (en) * 1990-06-25 1992-02-24 Matsushita Electron Corp Formation of silicon oxide film and thin film formation device
US5846888A (en) * 1996-09-27 1998-12-08 Micron Technology, Inc. Method for in-situ incorporation of desirable impurities into high pressure oxides
JP2000012864A (en) * 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2007158371A (en) * 2007-02-02 2007-06-21 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2014103175A (en) * 2012-11-16 2014-06-05 Fuji Electric Co Ltd Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428265A (en) * 1990-05-23 1992-01-30 Seiko Instr Inc Semiconductor device and manufacture thereof
JPH0456223A (en) * 1990-06-25 1992-02-24 Matsushita Electron Corp Formation of silicon oxide film and thin film formation device
US5846888A (en) * 1996-09-27 1998-12-08 Micron Technology, Inc. Method for in-situ incorporation of desirable impurities into high pressure oxides
JP2000012864A (en) * 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2007158371A (en) * 2007-02-02 2007-06-21 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2014103175A (en) * 2012-11-16 2014-06-05 Fuji Electric Co Ltd Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
Carter et al. Passivation and interface state density of SiO 2/HfO 2-based/polycrystalline-Si gate stacks
TWI250578B (en) Semiconductor device and manufacturing method therefor
US5880040A (en) Gate dielectric based on oxynitride grown in N2 O and annealed in NO
US6033998A (en) Method of forming variable thickness gate dielectrics
US4725560A (en) Silicon oxynitride storage node dielectric
US6603181B2 (en) MOS device having a passivated semiconductor-dielectric interface
US5814562A (en) Process for semiconductor device fabrication
EP0685115A1 (en) Semiconductor device comprising deuterium atoms
JP2007515078A (en) Method for forming a silicon oxynitride layer
Singh et al. Oxidation of silicon in the presence of chlorine and chlorine compounds
US6544908B1 (en) Ammonia gas passivation on nitride encapsulated devices
US6372581B1 (en) Process for nitriding the gate oxide layer of a semiconductor device and device obtained
JPH0242725A (en) Manufacture of semiconductor device
US5880031A (en) Method for vapor phase wafer cleaning
CN1656606A (en) Uv-enhanced oxy-nitridation of semiconductor substrates
JP4124675B2 (en) Method and apparatus for low-temperature oxidation of silicon wafer
Lo et al. Effects of post‐nitridation anneals on radiation hardness in rapid thermal nitrided gate oxides
JPH0770535B2 (en) Method for manufacturing semiconductor device
Choi et al. Cleaning of Si and properties of the HfO 2–Si interface
JP3210370B2 (en) Method of forming oxide film
JPH09260372A (en) Manufacture of insulating film of semiconductor device
JPH0794678A (en) Capacitor and formation thereof
US5175129A (en) Method of fabricating a semiconductor structure having an improved polysilicon layer
JP3090089B2 (en) Method for manufacturing semiconductor device
JPH03280471A (en) Manufacture of semiconductor device