JPH0240967B2 - GASUROEIGENNOKENCHIHOHO - Google Patents

GASUROEIGENNOKENCHIHOHO

Info

Publication number
JPH0240967B2
JPH0240967B2 JP27871584A JP27871584A JPH0240967B2 JP H0240967 B2 JPH0240967 B2 JP H0240967B2 JP 27871584 A JP27871584 A JP 27871584A JP 27871584 A JP27871584 A JP 27871584A JP H0240967 B2 JPH0240967 B2 JP H0240967B2
Authority
JP
Japan
Prior art keywords
gas concentration
gas
leak source
points
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27871584A
Other languages
Japanese (ja)
Other versions
JPS61155932A (en
Inventor
Katsutomo Hanakuma
Kenichi Moritomo
Hiromitsu Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP27871584A priority Critical patent/JPH0240967B2/en
Publication of JPS61155932A publication Critical patent/JPS61155932A/en
Publication of JPH0240967B2 publication Critical patent/JPH0240967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ガス漏洩源の検知方法に係り、特に
化学プラント施設等において危険性ガスが漏洩し
た場合に、その漏洩源の探索に利用できる。 [背景技術とその問題点] 化学プラント施設等では、可撓性ガスや毒性ガ
ス等の危険性ガスが漏洩した場合、迅速にガス漏
洩源を発見して安全対策を施し、二次災害の発生
を未然に防止しなければならない。 ところが、従来はガス漏洩源を探索するのに適
切な手段がないため、人間の嗅覚を頼りに探索し
たり、多人数によつてガス検知を行いながら探索
する等していた。 しかしながら、このような方法により迅速によ
り適確にガス漏洩源を発見しなければならないと
いう要求に対しては満足できるものではなかつ
た。 [発明の目的] ここに、本発明の目的は、上記要求に応え、ガ
ス漏洩源を迅速かつ適確に検知し得るガス漏洩源
の検知方法を提供することにある。 [問題点を解決するための手段および作用] そのため、第1の発明では、無風または無風に
近い状態におけるガス漏洩源の検知方法であつ
て、漏洩ガスが拡散している区域内において異な
る少なくとも3以上の地点におけるガス濃度をそ
れぞれ検出し、これらガス濃度データ群の中から
最もガス濃度が高い3つの地点を特定し、この最
高ガス濃度地点と他の2つの地点との間における
仮想漏洩源をそれぞれ求め、この各仮想漏洩源を
通り、かつ最高ガス濃度地点と他の2つの地点と
を結ぶ直線に対して直交する垂線が互いに交差す
る位置を求め、この位置を漏洩源として推定す
る、ことを特徴としている。 また、第2の発明では、風がある状態における
ガス漏洩源の検知方法であつて、漏洩ガスが拡散
している区域内において異なる少なくとも3以上
の地点におけるガス濃度または異なる少なくとも
3以上の領域におけるそれぞれの平均ガス濃度を
検出し、これらガス濃度データ群または平均ガス
濃度データ群の中から最もガス濃度が高くかつ風
向に沿つて並ぶ3つの地点または領域を特定し、
この最高ガス濃度地点または領域と次に高い第2
の地点または領域との距離を求め、この距離を
L、最高のガス濃度地点または領域と推定漏洩源
との距離をX、最高ガス濃度地点または領域のガ
ス濃度をC1、第2のガス濃度地点または領域の
ガス濃度をC2、濃度減衰定数をBとしたとき、 X:(L−X)=C1 1/B:C2 1/B および、 X:(L+X)=C1 1/B:C2 1/B の少なくとも一方の式から前記距離Xを求め、こ
のXから漏洩源を推定する、ことを特徴としてい
る。 [実施例] まず、第1の発明の検知方法の一実施例を第1
図について説明する。本検知方法では、まず、漏
洩ガスが拡散している区域Z内において、異なる
少なくとも3以上の地点におけるガス濃度をそれ
ぞれ測定する。この場合、ガス濃度測定地点の選
択は、予め決められたマトリツクスの各交点位置
が好ましいが、任意に選択した複数地点でもよ
い。 続いて、これらガス濃度データ群の中からガス
濃度が高い3つの地点、例えば3つの地点P1
P2,P3を特定する。通常、ガス漏洩が無い状態
では各地点のガス濃度はいずれも零かそれに近い
値を示す。しかし、一旦ガスの漏洩が発生した場
合、拡散ガス濃度は漏洩源からの距離をx、濃度
減衰定数をBとすると、X-Bに比例して減衰する
ことが知られており、各地点におけるガス濃度は
漏洩源に近い程高い値を示す。ちなみに、漏洩ガ
スの漏洩量および風速に対する距離xによる濃度
減衰定数Bは次表の通りである。
[Industrial Application Field] The present invention relates to a method for detecting a gas leak source, and can be used in particular to search for the leak source when a hazardous gas leaks in a chemical plant facility or the like. [Background technology and its problems] In chemical plant facilities, etc., when dangerous gases such as flexible gases or toxic gases leak, the source of the gas leakage is quickly discovered and safety measures are taken to prevent secondary disasters from occurring. must be prevented from occurring. However, in the past, there was no appropriate means to search for the source of a gas leak, so the search was conducted by relying on the human sense of smell, or by multiple people performing gas detection. However, this method has not been able to satisfy the need to quickly and accurately discover the source of the gas leak. [Object of the Invention] An object of the present invention is to provide a gas leak source detection method that can quickly and accurately detect the gas leak source in response to the above-mentioned requirements. [Means and effects for solving the problem] Therefore, the first invention provides a method for detecting a gas leak source in a state of no wind or near no wind, which detects at least three different sources within an area where leaked gas is diffused. Detect the gas concentration at each of the above points, identify the three points with the highest gas concentration from these gas concentration data groups, and identify the virtual leak source between this highest gas concentration point and the other two points. Find the positions where perpendicular lines passing through each virtual leak source and perpendicular to the straight line connecting the highest gas concentration point and the other two points intersect with each other, and estimate this position as the leak source. It is characterized by Further, a second invention provides a method for detecting a gas leak source in a windy state, which detects gas concentrations at at least three or more different points within an area where leaked gas is diffused or at least three or more different regions. detect each average gas concentration, identify three points or areas with the highest gas concentration and lined up along the wind direction from these gas concentration data groups or average gas concentration data groups,
This highest gas concentration point or area and the second highest
Find the distance to the point or area, and take this distance as L, the distance between the point or area of the highest gas concentration and the estimated leak source as When the gas concentration at a point or area is C 2 and the concentration decay constant is B, X: (L-X) = C 1 1/B : C 2 1/B and X: ( L + The distance X is obtained from at least one equation of B :C 2 1/B , and the leak source is estimated from this X. [Example] First, an example of the detection method of the first invention will be described in the first example.
The diagram will be explained. In this detection method, first, the gas concentration is measured at at least three different points within the zone Z where the leaked gas is diffused. In this case, the selection of gas concentration measurement points is preferably at each intersection of a predetermined matrix, but a plurality of arbitrarily selected points may be used. Next, from among these gas concentration data groups, three points with high gas concentrations are selected, for example, three points P 1 ,
Identify P 2 and P 3 . Normally, when there is no gas leak, the gas concentration at each point is at or close to zero. However, once a gas leak occurs, it is known that the diffused gas concentration attenuates in proportion to X - B, where x is the distance from the leak source and B is the concentration attenuation constant. The gas concentration shows a higher value closer to the leak source. Incidentally, the concentration attenuation constant B depending on the distance x with respect to the amount of leaked gas and the wind speed is shown in the following table.

【表】 いま、気象条件が無風または無風に近い状態、
例えば風速が2m/sec未満の状態において、各
地点P1,P2,P3で測定されたガス濃度をC1,C2
C3(C1>C2>C3)とすると、まずこれらの地点の
中から最もガス濃度が高い地点P1を特定し、こ
の最高ガス濃度地点P1と他の2つの地点P2,P3
との間における仮想漏洩源Q1,Q2を求める。 地点P1〜P2間における仮想漏洩源Q1を求める
には、地点P1,P2間の距離L1を求め、かつ地点
P1から仮想漏洩源Q1までの距離をX1とすると、 C1∝X1−B→X∝1C1 -1/B C2∝(L−X1-B→(L−X1)∝C2 -1/B ∴X1:(L−X1)=C1 -1/B:C2 -1/B =1/C1 1/B:1/C2 1/B =C2 1/B:C1 1/B 従つて、 X1:(L−X1)=C2 1/B:C1 1/B ……(1A) の関係からX1を求める。このようにして仮想漏
洩源Q1を求めた後、この仮想漏洩源Q1を通りか
つ地点P1,P2を結ぶ直線に対して直交する垂線
を描く。 同様にして、地点P1〜P3間における仮想漏洩
源Q2を求めるには、地点P1,P3間の距離L2を求
め、かつ地点P1から仮想漏洩源Q2までの距離を
X2として、 X2:(L2−X2)=C3 1/B:C1 1/B の関係からX2を求める。このようにして仮想漏
洩源Q2を求めた後、この仮想漏洩源Q2を通りか
つ地点P1,P3を結ぶ直線に対して直交する垂線
を描く。 これにより、両垂線が交差した位置Qを求め、
これを漏洩源として推定するものである。 ここで、厳密にいうと、漏洩源は式(1A)お
よび式(1B)をともに満足する点であり、この
ような点は式(1A)の軌跡(仮想漏洩源Q1に直
交する曲線)と式(1B)の軌跡(仮想漏洩源Q2
に直交する曲線)との交点となる。しかし、∠
P2P1P3が鋭角の場合など、漏洩源が直線P2P1
よびP1P3に近いならば、式(1A)および式
(1B)をともに満足する点は各仮想漏洩源Q1
Q2から引いた垂線の交点として近似することが
でき、より迅速かつ容易な推定作業が行える。 従つて、本検知方法では、漏洩ガスが拡散して
いる区域内の少なくとも3以上の地点のガス濃度
を測定し、かつ最高ガス濃度地点から他の2地点
までの距離を求めれば、漏洩源を推定できるた
め、漏洩源の探索を迅速にかつ容易に行うことが
できる。 なお、本検知方法では、仮想漏洩源Q1,Q2
での距離X1,X2を定めるに当つて、最高ガス濃
度地点P1を基準としたが、基準点は他の2点で
もよい。 以上説明した検知方法では、無風または無風に
近い状態を前提としているため、風速が所定値、
例えば2m/sec以上ある状態では正確な漏洩源
の探索は困難である。このような状態下での探索
を可能にしたのが第2の発明である。 次に、第2の発明の検知方法の一実施例を第2
図について説明する。本検知方法では、漏洩ガス
が拡散している区域内において、異なる少なくと
も3以上の領域における平均ガス濃度を測定す
る。この場合、予め決められたマトリツクスの各
交点位置におけるガス濃度を測定し、これらの各
交点が囲む範囲を1つの領域としてその領域の平
均ガス濃度を算出してもよいが、例えば任意に決
めた3以上の各領域内の1または数地点でガス濃
度を測定し、これらを平均化して各領域の平均ガ
ス濃度を算出してもよい。 続いて、これら平均ガス濃度データ群の中から
平均ガス濃度が最も高くかつ風向に沿つて並ぶ3
つの領域、例えば3つの領域A1,A2,A3を特定
する。この場合、領域A1,A3では2つの測定地
点P11,P12,P31,P32があるため、これらの測定
ガス濃度を平均化して求めるが、領域A2では1
つの測定地点P21しかないため、ここの測定ガス
濃度を領域A2の平均ガス濃度としている。 次に、これら3つの領域A1,A2,A3の中から
平均ガス濃度(ここでは213とする。)
が最も高い領域A2と次に高い領域A1とを特定す
る。 ここで、漏洩ガスは風によつて流されるが、漏
洩源は最高平均ガス濃度領域A2の近傍であると
推定される。この際、風が強ければ、漏洩源Qは
領域A2の風上側つまり領域A3側であると推定さ
れる。一方、風が弱ければ、漏洩源Qは領域A2
の風上側のほか、領域A2の風下側つまり領域A1
側であることも推定される(第2図参照)。 このうち、領域A1側の漏洩源Qに対しては、
最高平均ガス濃度領域A2と次に高い平均ガス濃
度領域A1との距離Lを求め、ここで領域A2と推
定漏洩源Qとの距離をXとすると領域A1から推
定漏洩源Qまでの距離は(L−X)となるから、 1∝(L−X)- B→(L−X)∝1 -1/B 2∝X-B →X∝2 -1/B ∴X:(L−X)=2 -1/B1 -1/B =1/2 1/B:1/1 1/B1 1/B2 1/B 従つて、 X:(L−X)=1 1/B2 1/B ……(2A) の関係から距離Xを求め、このXから漏洩源Qを
定める。 一方、領域A3側の漏洩源Qに対しては、最高
平均ガス濃度領域A2と次に平均ガス濃度領域A1
との距離Lを求め、ここで領域A2と推定漏洩源
Qとの距離をXとすると領域A1から推定漏洩源
Qまでの距離は(L+X)となるから、 1∝(L+X)-B→(L+X)∝1 -1/B 2∝X-B →X∝2 -1/B ∴X:(L+X)=2 -1/B1 -1/B =1/2 1/B:1/1 1/B1 1/B2 1/B 従つて、 X:(L+X)=1 1/B2 1/B ……(2B) の関係から距離Xを求め、このXから漏洩源Qを
定める。 このように、漏洩源Qは、風速等の条件に応じ
て前述した手法の何れかを採用することで、その
位置を定められることになる。 従つて、本検知方法では、少なくとも3以上の
領域における平均ガス濃度を測定し、かつ最高ガ
ス濃度領域から次に高い平均ガス濃度領域までの
距離を求めれば、風速が所定以上の場合でも、漏
洩源を推定できるため、漏洩源の探索を迅速にか
つ容易に行なうことができる。 なお、本検知方法では、少なくとも3以上の領
域における平均ガス濃度を求めるようにしたが、
異なる3つの地点のガス濃度を測定するようにし
てもよい。 次に、これらの検知方法によつて化学プラント
施設におけるガス漏洩源の探索を自動的に行う検
知シシテムを、第3図について説明する。同図に
おいて、111〜11oは化学プラント施設内の異
なる位置に散在して設置された複数のガス検知
器、12は化学プラント施設内の風向および風速
を計測する風力計で、これらによつて検知された
信号は、A/D変換器13でデジタル信号に変換
された後、インターフエイス回路14を通じて中
央処理装置(以下、CPUという。)15へ取込ま
れる。 CPUは、キーボード16より入力された各種
定数を記憶装置17へ記憶させた後、前記インタ
ーフエイス回路14を通じて与えられるデータを
基に漏洩源を演算し、その結果をCRT表示装置
18およびプリンタ19へ出力する。 即ち、第4図のフローチヤートに示す如く、所
定サンプル間隔毎に風力計12からの風速および
風向データ、ガス検知器111〜11oからのガス
濃度データを取込み、続いてこれらを平均化処理
した後、風速が2m/sec未満であるか否かを判
断する。ここで、風速が2m/sec未満の場合に
は、漏洩源推定処理()の手法(前記第1図で
述べた検知方法と同様であるが、具体的には第5
図のフローチヤート参照)により漏洩源を推測し
た後、それをCRT表示装置18またはプリンタ
19へ出力させる。また、風速が2m/sec以上
の場合には、漏洩源推測処理()の手法(前記
第2図で述べた検知方法と同様であるが、具体的
には第6図のフローチヤート参照)により漏洩源
を推測した後、それをCRT表示装置18または
プリンタ19へ出力させる。 次に、本システムによつて化学プラント施設に
おけるガス漏洩源を実際に推測した一例について
述べる。 第7図はエチレン製造装置を示している。同図
において、前工程からの原料が流量調整弁21を
通つて蒸留塔22へ供給されている。蒸留塔22
の塔頂から抜出された製品つまりエチレンは、コ
ンデンサ23を通つてレシーバタンク24へ送ら
れる。レシーバタンク24へ蓄えられた製品は、
リフラツクスポンプ25により、塔頂温度検出器
26からの指令によつて開度調整される流量調整
弁27を通つて蒸留塔22の頂部へ還流される一
方、タンク24の液面レベル検出器28からの指
令によつて開度調整される流量調整弁29を通つ
て貯蔵タンクへ送られる。また、蒸留塔22の塔
底より抜出された副製品つまりエタンは、リボイ
ラ30、ベーパライザ31およびスーパーヒータ
32を経た後、蒸留塔22の液面レベル検出器3
3によつて開度調整される流量調整弁34を通つ
て排出される。 いま、図に示すようなエチレン精留塔におい
て、リフラツクスポンプ25のメカニカルシール
部より、突然、液化エチレンガスが漏れ出した。
そのときの気象条件は、風向が東向、風速が1
m/sec、気温が19℃であつた。また、漏洩源の
リフラツクスポンプ25は、吸込圧10Kg/cm2G、
吐出圧16Kg/cm2Gで、かつ取扱い流体が液体エチ
レンであるため、メカニカルシール部より噴出し
たエチレンはたちまち蒸発拡散し、漏洩発生から
3分後には第8図に示すように、リフラツクスポ
ンプ25を中心に西へ20m、東へ11m、南北へ各
12mまで拡がつた。 漏洩ガスが拡散した区域には、ガス検知器11
11,1112,1113が配置されており、それぞれ
の検出ガス濃度は次の通りであつた。 検知器1112→25LEL% 検知器1111→32LEL% 検知器1113→49LEL% 本検知システムでは、まず、検知器1111〜1
13および風力計12によつて検知された信号
は、A/D変換器13でデジタル信号に変換され
た後、インターフエイス回路14を通じて中央処
理装置(以下、CPUという。)15へ取込まれ
る。 CPU15は、これらのデータを平均化処理し
た後、風速が2m/sec未満であるか否かを判断
する。この場合は、風速が2m/sec未満である
ため、漏洩源推測処理()の手法によつて漏洩
源を推定する。 漏洩源推測処理()では、まず3つの検知器
1111〜1113で測定されたガス濃度のうち、最
高ガス濃度の地点、つまり検知器1113位置が特
定される。 続いて、検知器1113,1111間における仮想
漏洩源Q1が求められる。ここでは、検知器11
13,1111間の距離L1が18mであるから、これと
検知器1113,1111の測定濃度を前記式(1A)
に代入してX1を求めると、X1=7.8mが求められ
る。ただし、濃度減衰定数Bは、エチレンの場合
0.75である。これにより、検知器1113からX1
れた仮想漏洩源Q1を通り、検知器1111,1113
間を結ぶ直線に対して直交する垂線が求められ
る。 次に、検知器1113,1112間における仮想漏
洩源Q2が求められる。ここでは、検知器1113
1112間の距離L2が24mであるから、これと検知
器1113,1112の測定濃度を前記式(1B)に代
入してX2を求めると、X2=9.1mが求められる。
ただし、濃度減衰定数Bは前記と同様である。こ
れにより、検知器1113からX2離れた仮想漏洩源
Q2を通り、検知器1113,1112間を結ぶ直線に
対して直交する垂線が求められる(第9図参照)。 最後に、両垂線が互いに交差する位置が求めら
れた後、これらのデータがCRT表示装置18へ
出力される。 推定結果は、第10図に示す如く、実際の漏洩
箇所より僅か北西寄りとなつたが、略満足できる
結果である。 従つて、本システムでは、あらゆる気象条件の
下でも、漏洩源を自動的に検知できる利点があ
る。そのため、化学プラントのエマージエンシー
対策に有効である。 なお、本システムにおいて、ガス検知器を予め
決められたマトリツクス(例えば、間隔が20m)
の各交点に配置するようにすれば、より高精度に
漏洩源を検知することができる。 [発明の効果] 以上の通り、本発明によれば、漏洩源を迅速か
つ適確に探索できるガス漏洩源の検知方法を提供
できる。
[Table] Current weather conditions are no wind or near no wind.
For example, when the wind speed is less than 2 m/sec, the gas concentrations measured at each point P 1 , P 2 , P 3 are calculated as C 1 , C 2 ,
Assuming that C 3 (C 1 > C 2 > C 3 ), first identify the point P 1 with the highest gas concentration among these points, and then identify this highest gas concentration point P 1 and the other two points P 2 , P3
Find the virtual leakage sources Q 1 and Q 2 between To find the virtual leak source Q 1 between points P 1 and P 2 , find the distance L 1 between points P 1 and P 2 , and
If the distance from P 1 to the virtual leakage source Q 1 is X 1 , then C 1 ∝X 1 −B→X∝ 1 C 1 -1/B C 2 ∝(L−X 1 ) −B1 )∝C 2 - 1/B ∴X 1 : (L-X 1 ) = C 1 -1/B : C 2 -1/B = 1/C 1 1/B : 1/C 2 1/B = C 2 1/B : C 1 1/B Therefore, X 1 is determined from the relationship: X 1 :(L−X 1 )=C 2 1/B :C 1 1/B (1A). After finding the virtual leak source Q 1 in this way, a perpendicular line is drawn that passes through the virtual leak source Q 1 and is orthogonal to the straight line connecting the points P 1 and P 2 . Similarly, to find the virtual leak source Q 2 between points P 1 to P 3 , find the distance L 2 between points P 1 and P 3 , and then calculate the distance from point P 1 to the virtual leak source Q 2.
As X 2 , find X 2 from the relationship: X 2 :(L 2 −X 2 )=C 3 1/B :C 1 1/B . After finding the virtual leak source Q 2 in this way, a perpendicular line is drawn that passes through the virtual leak source Q 2 and is orthogonal to the straight line connecting the points P 1 and P 3 . By this, find the position Q where both perpendicular lines intersect,
This is assumed to be the leak source. Here, strictly speaking, a leak source is a point that satisfies both formula (1A) and formula (1B), and such a point is the locus of formula (1A) (a curve orthogonal to the virtual leak source Q 1 ). and the trajectory of equation (1B) (virtual leakage source Q 2
(curve perpendicular to ). However, ∠
If the leakage sources are close to the straight lines P 2 P 1 and P 1 P 3 , such as when P 2 P 1 P 3 is an acute angle, the points that satisfy both Equation (1A) and Equation (1B) are each virtual leakage source Q 1 ,
It can be approximated as the intersection of perpendicular lines drawn from Q 2 , making estimation easier and faster. Therefore, in this detection method, the source of the leak can be located by measuring the gas concentration at at least three points within the area where the leaked gas is spreading, and by determining the distances from the highest gas concentration point to the other two points. Since it can be estimated, the leak source can be searched for quickly and easily. In addition, in this detection method, when determining the distances X 1 and X 2 to the virtual leak sources Q 1 and Q 2 , the highest gas concentration point P 1 was used as the reference point, but the reference point may also be two other points. . The detection method explained above assumes no wind or near no wind, so if the wind speed is at a predetermined value or
For example, it is difficult to accurately search for the source of leakage when the velocity is 2 m/sec or more. The second invention makes it possible to search under such conditions. Next, an embodiment of the detection method of the second invention will be described in the second embodiment.
The diagram will be explained. In this detection method, the average gas concentration in at least three different regions is measured within the area where the leaked gas is diffused. In this case, the gas concentration at each intersection of a predetermined matrix may be measured, and the range surrounded by each of these intersections may be regarded as one region, and the average gas concentration in that region may be calculated. The gas concentration may be measured at one or several points in each of three or more regions and averaged to calculate the average gas concentration in each region. Next, from among these average gas concentration data groups, 3 that have the highest average gas concentration and are arranged along the wind direction are selected.
For example, three areas A 1 , A 2 , and A 3 are identified. In this case, since there are two measurement points P 11 , P 12 , P 31 , and P 32 in areas A 1 and A 3 , these measured gas concentrations are averaged to obtain the concentration, but in area A 2 , 1
Since there is only one measurement point P21 , the measured gas concentration at this point is taken as the average gas concentration in area A2 . Next, calculate the average gas concentration among these three regions A 1 , A 2 , and A 3 (here, 2 > 1 > 3 ).
Identify the area A 2 with the highest value and the area A 1 with the next highest value. Here, the leaked gas is blown away by the wind, and the leak source is estimated to be near the highest average gas concentration region A2 . At this time, if the wind is strong, the leak source Q is estimated to be on the windward side of area A2 , that is, on the area A3 side. On the other hand, if the wind is weak, the leak source Q is in area A 2
In addition to the windward side of area A 2 , the leeward side of area A 1
It is also presumed to be on the side (see Figure 2). Of these, for the leak source Q on the area A 1 side,
Find the distance L between the highest average gas concentration area A 2 and the next highest average gas concentration area A 1 , and let the distance between area A 2 and the estimated leak source Q be X, then from area A 1 to the estimated leak source Q. The distance is (L-X), so 1 ∝(L-X) - B →(L-X)∝ 1 -1/B 2 ∝X -B →X∝ 2 -1/B ∴X: ( L-X) = 2 -1/B : 1 -1/B = 1/2 1/B : 1/1 1/B = 1 1/B : 2 1/B Therefore, X: (L-X) = 1 1/B : 2 1/B ...(2A) Find the distance X from the relationship, and determine the leak source Q from this X. On the other hand, for the leak source Q on the area A 3 side, the highest average gas concentration area A 2 and then the average gas concentration area A 1
Find the distance L from area A 2 to the estimated leak source Q, and let the distance between area A 2 and the estimated leak source Q be X. Since the distance from area A 1 to the estimated leak source Q is (L + X), 1 ∝ (L + X) -B ( L + _ _ _ _ _ _ _ _ / 1 1/B = 1 1/B : 2 1/B Therefore, X: (L + X) = 1 1/B : 2 1/B ... (2B) From the relationship, find the distance Determine the source Q. In this way, the location of the leak source Q can be determined by employing any of the methods described above depending on conditions such as wind speed. Therefore, in this detection method, by measuring the average gas concentration in at least three regions and determining the distance from the highest gas concentration region to the next highest average gas concentration region, leakage can be detected even if the wind speed is higher than a predetermined value. Since the leak source can be estimated, the leak source can be searched for quickly and easily. In addition, in this detection method, the average gas concentration in at least three or more regions is determined, but
The gas concentration may be measured at three different points. Next, a detection system that automatically searches for gas leak sources in chemical plant facilities using these detection methods will be described with reference to FIG. In the figure, 11 1 to 11 o are multiple gas detectors installed at different locations within the chemical plant facility, and 12 is an anemometer that measures the wind direction and wind speed within the chemical plant facility. The detected signal is converted into a digital signal by an A/D converter 13, and then taken into a central processing unit (hereinafter referred to as CPU) 15 via an interface circuit 14. After storing various constants entered from the keyboard 16 in the storage device 17, the CPU calculates the source of leakage based on the data given through the interface circuit 14, and sends the results to the CRT display device 18 and printer 19. Output. That is, as shown in the flowchart of FIG. 4, wind speed and direction data from the anemometer 12 and gas concentration data from the gas detectors 11 1 to 11 o are acquired at predetermined sample intervals, and then these are averaged. After that, it is determined whether the wind speed is less than 2 m/sec. Here, if the wind speed is less than 2 m/sec, the method of leak source estimation processing () (which is the same as the detection method described in Fig. 1 above, but specifically,
After estimating the leakage source using the flowchart shown in the figure, the leakage source is outputted to the CRT display device 18 or printer 19. In addition, when the wind speed is 2 m/sec or more, the leak source estimation processing method () (same as the detection method described in Figure 2 above, but specifically refer to the flowchart in Figure 6) is used. After estimating the leak source, it is output to the CRT display device 18 or printer 19. Next, we will discuss an example in which the source of a gas leak in a chemical plant facility was actually estimated using this system. FIG. 7 shows an ethylene production device. In the figure, the raw material from the previous step is supplied to a distillation column 22 through a flow rate regulating valve 21. Distillation column 22
The product, ie, ethylene, extracted from the top of the column is sent to a receiver tank 24 through a condenser 23. The products stored in the receiver tank 24 are
The liquid is refluxed to the top of the distillation column 22 by the reflux pump 25 through a flow rate adjustment valve 27 whose opening is adjusted according to a command from the top temperature detector 26, while the liquid level detector 28 of the tank 24 The liquid is sent to the storage tank through a flow rate adjustment valve 29 whose opening degree is adjusted according to a command from the flow control valve 29. Further, the by-product, that is, ethane extracted from the bottom of the distillation column 22 passes through a reboiler 30, a vaporizer 31, and a super heater 32, and then passes through a liquid level detector 3 of the distillation column 22.
The liquid is discharged through a flow rate regulating valve 34 whose opening degree is adjusted by 3. Now, in the ethylene rectification column shown in the figure, liquefied ethylene gas suddenly leaked from the mechanical seal of the reflux pump 25.
The weather conditions at that time were that the wind direction was eastward and the wind speed was 1
m/sec, and the temperature was 19℃. In addition, the reflux pump 25, which is the leak source, has a suction pressure of 10 kg/cm 2 G,
Since the discharge pressure is 16 kg/cm 2 G and the fluid being handled is liquid ethylene, the ethylene ejected from the mechanical seal immediately evaporates and diffuses, and 3 minutes after the leak occurs, the reflux pump is released as shown in Figure 8. Centered on 25, 20m west, 11m east, north and south.
It spread to 12m. A gas detector 11 is installed in the area where the leaked gas has spread.
11 , 11 12 , and 11 13 were arranged, and the respective detected gas concentrations were as follows. Detector 11 12 →25LEL% Detector 11 11 →32LEL% Detector 11 13 →49LEL% In this detection system, first, detector 11 11 ~ 1
1 13 and the signals detected by the anemometer 12 are converted into digital signals by the A/D converter 13 and then taken into the central processing unit (hereinafter referred to as CPU) 15 through the interface circuit 14. . After averaging these data, the CPU 15 determines whether the wind speed is less than 2 m/sec. In this case, since the wind speed is less than 2 m/sec, the leak source is estimated by the leak source estimation process (). In the leak source estimation process ( ), first, the point of the highest gas concentration among the gas concentrations measured by the three detectors 11 11 to 11 13 , that is, the position of the detector 11 13 is specified. Subsequently, a virtual leak source Q 1 between the detectors 11 13 and 11 11 is determined. Here, the detector 11
Since the distance L 1 between 13 and 11 11 is 18 m, the measured concentration of this and detectors 11 13 and 11 11 can be calculated using the above formula (1A).
By substituting , X 1 is found, X 1 = 7.8m. However, the concentration decay constant B is
It is 0.75. As a result, the sensor 11 11 , 11 13 passes through the virtual leak source Q 1 which is X 1 away from the detector 11 13 .
Find the perpendicular line that is perpendicular to the straight line connecting the two. Next, the virtual leak source Q 2 between the detectors 11 13 and 11 12 is determined. Here, the detectors 11 13 ,
Since the distance L 2 between the detectors 11 12 is 24 m, when X 2 is obtained by substituting this and the measured concentration of the detectors 11 13 and 11 12 into the above equation (1B), X 2 = 9.1 m is obtained.
However, the concentration decay constant B is the same as above. This allows the virtual leak source to be located X 2 away from the detector 11 13 .
A perpendicular line passing through Q 2 and perpendicular to the straight line connecting the detectors 11 13 and 11 12 is found (see Figure 9). Finally, after the positions where both perpendicular lines intersect with each other are determined, these data are output to the CRT display device 18. As shown in FIG. 10, the estimated result was slightly to the northwest of the actual leakage location, but the result is generally satisfactory. Therefore, this system has the advantage of automatically detecting leak sources under all weather conditions. Therefore, it is effective as an emergency countermeasure for chemical plants. In addition, in this system, gas detectors are arranged in a predetermined matrix (for example, with an interval of 20 m).
By arranging the leakage source at each intersection, the leak source can be detected with higher accuracy. [Effects of the Invention] As described above, according to the present invention, it is possible to provide a gas leak source detection method that can quickly and accurately search for a leak source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の一実施例を示す説明図、
第2図は第2の発明の一実施例を示す説明図、第
3図は検知システムを示すブロツク図、第4図か
ら第6図はフローチヤート、第7図はエチレン精
留塔を示す系統図、第8図はプラント施設の平面
図、第9図は漏洩源の推定結果を示す図、第10
図は漏洩源の推定位置と実際の漏洩源位置とを示
す図である。
FIG. 1 is an explanatory diagram showing an embodiment of the first invention;
Fig. 2 is an explanatory diagram showing an embodiment of the second invention, Fig. 3 is a block diagram showing a detection system, Figs. 4 to 6 are flowcharts, and Fig. 7 is a system showing an ethylene rectification column. Figure 8 is a plan view of the plant facility, Figure 9 is a diagram showing the leak source estimation results, and Figure 10 is a diagram showing the estimation results of leak sources.
The figure is a diagram showing an estimated position of a leak source and an actual leak source position.

Claims (1)

【特許請求の範囲】 1 無風または無風に近い状態におけるガス漏洩
源の検知方法であつて、 漏洩ガスが拡散している区域内において異なる
少なくとも3以上の地点におけるガス濃度をそれ
ぞれ検出し、 これらガス濃度データ群の中から最もガス濃度
が高い3つの地点を特定し、 この最高ガス濃度地点と他の2つの地点との間
における仮想漏洩源をそれぞれ求め、 この各仮想漏洩源を通り、かつ最高ガス濃度地
点と他の2つの地点とを結ぶ直線に対して直交す
る垂線が互いに交叉する位置を求め、 この位置を漏洩源として推定する、 ことを特徴とするガス漏洩源の検知方法。 2 特許請求の範囲第1項において、前記仮想漏
洩源は、仮想漏洩源を挟む2地点の距離およびい
ずれか一方の地点から仮想漏洩源までの距離と、
各地点におけるガス濃度の濃度減衰定数乗との被
によつて求めることを特徴とするガス漏洩源の検
知方法。 3 風がある状態におけるガス漏洩源の検知方法
であつて、 漏洩ガスが拡散している区域内において異なる
少なくとも3以上の地点におけるガス濃度または
異なる少なくとも3以上の領域における平均ガス
濃度を検出し、 これらガス濃度データ群または平均ガス濃度デ
ータ群の中から最もガス濃度が高くかつ風向に沿
つて並ぶ3つの地点または領域を特定し、 この最高ガス濃度地点または領域と次に高い第
2のガス濃度地点または領域との距離を求め、 この距離をL、最高ガス濃度地点または領域と
推定漏洩源との距離をX、最高ガス濃度地点また
は領域のガス濃度をC1、第2のガス濃度地点ま
たは領域のガス濃度をC2、濃度減衰定数をBと
したとき、 X:(L−X)=C1 1/B:C2 1/B および X:(L−X)=C1 1/B:C2 1/B の少なくとも一方の式から前記距離Xを求め、こ
のXから漏洩源を推定する、 ことを特徴とするガス漏洩源の検知方法。
[Claims] 1. A method for detecting a gas leak source in windless or near windless conditions, which detects the gas concentration at at least three different points within an area where leaked gas is diffused, and Identify the three points with the highest gas concentration from the concentration data group, find each virtual leak source between this highest gas concentration point and the other two points, and find the highest gas concentration point that passes through each of these virtual leak sources and A method for detecting a gas leak source, comprising: determining a position where perpendicular lines intersect with each other perpendicular to a straight line connecting a gas concentration point and two other points, and estimating this position as a leak source. 2. In claim 1, the virtual leak source is defined by the distance between two points sandwiching the virtual leak source and the distance from either point to the virtual leak source,
A method for detecting a gas leak source, characterized in that the gas leakage source is determined by multiplying the gas concentration at each point by a concentration decay constant. 3. A method for detecting a gas leak source in the presence of wind, which detects the gas concentration at at least three or more different points or the average gas concentration at at least three or more different areas within an area where the leaked gas is diffused, From among these gas concentration data groups or average gas concentration data groups, three points or areas with the highest gas concentrations and lined up along the wind direction are identified, and the highest gas concentration points or areas and the second highest gas concentration are identified. Find the distance to the point or area, and calculate this distance as L, the distance between the highest gas concentration point or area and the estimated leak source as X, the gas concentration at the highest gas concentration point or area as C1 , and the second gas concentration point or area. When the gas concentration in the region is C 2 and the concentration decay constant is B, then X: (L-X) = C 1 1/B : C 2 1 /B and A method for detecting a gas leak source, characterized in that the distance X is determined from at least one formula of: C 2 1/B and the leak source is estimated from this X.
JP27871584A 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO Expired - Lifetime JPH0240967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27871584A JPH0240967B2 (en) 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27871584A JPH0240967B2 (en) 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO

Publications (2)

Publication Number Publication Date
JPS61155932A JPS61155932A (en) 1986-07-15
JPH0240967B2 true JPH0240967B2 (en) 1990-09-14

Family

ID=17601179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27871584A Expired - Lifetime JPH0240967B2 (en) 1984-12-28 1984-12-28 GASUROEIGENNOKENCHIHOHO

Country Status (1)

Country Link
JP (1) JPH0240967B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001725A1 (en) 2020-11-24 2022-05-25 Tatsuno Corporation Pipe joint
EP4027047A1 (en) 2021-01-06 2022-07-13 Tatsuno Corporation Safety joint
EP4030092A1 (en) 2021-01-14 2022-07-20 Tatsuno Corporation Safety joint
EP4030093A1 (en) 2021-01-14 2022-07-20 Tatsuno Corporation Safety joint

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797062B2 (en) * 1988-02-26 1995-10-18 理研計器株式会社 Gas leak area estimation device
JP2687466B2 (en) * 1988-08-09 1997-12-08 日揮株式会社 How to estimate the location of gas leaks
US9557240B1 (en) 2012-05-14 2017-01-31 Picarro, Inc. Gas detection systems and methods using search area indicators
US9599529B1 (en) 2012-12-22 2017-03-21 Picarro, Inc. Systems and methods for likelihood-based mapping of areas surveyed for gas leaks using mobile survey equipment
US9823231B1 (en) * 2014-06-30 2017-11-21 Picarro, Inc. Systems and methods for assembling a collection of peaks characterizing a gas leak source and selecting representative peaks for display
WO2016081928A1 (en) 2014-11-21 2016-05-26 Picarro, Inc. Gas detection systems and methods using measurement position uncertainty representations
US10386258B1 (en) 2015-04-30 2019-08-20 Picarro Inc. Systems and methods for detecting changes in emission rates of gas leaks in ensembles
US10948471B1 (en) 2017-06-01 2021-03-16 Picarro, Inc. Leak detection event aggregation and ranking systems and methods
US10962437B1 (en) 2017-06-27 2021-03-30 Picarro, Inc. Aggregate leak indicator display systems and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001725A1 (en) 2020-11-24 2022-05-25 Tatsuno Corporation Pipe joint
EP4027047A1 (en) 2021-01-06 2022-07-13 Tatsuno Corporation Safety joint
EP4253817A2 (en) 2021-01-06 2023-10-04 Tatsuno Corporation Safety joint
EP4030092A1 (en) 2021-01-14 2022-07-20 Tatsuno Corporation Safety joint
EP4030093A1 (en) 2021-01-14 2022-07-20 Tatsuno Corporation Safety joint
EP4273434A2 (en) 2021-01-14 2023-11-08 Tatsuno Corporation Safety joint

Also Published As

Publication number Publication date
JPS61155932A (en) 1986-07-15

Similar Documents

Publication Publication Date Title
JPH0240967B2 (en) GASUROEIGENNOKENCHIHOHO
KR960001998B1 (en) Leak detectio system
EP0545450B1 (en) Statistically detecting leakage of fluid from a conduit
KR100199383B1 (en) Improved method for steam generator water level measurement background of the invention
CN114321740A (en) Combustible gas leakage point positioning method and system and readable storage module
US5214412A (en) Leak detector method establishing two different threshold levels
US4357113A (en) Liquid container leakage detection method and system
JPH07120344A (en) Estimation of leakage area and leakage amount of gas
CN107219335A (en) Pipe jointer detection method based on multiple continuous wavelet transform
JPH02190733A (en) Method for predicting diffusion area of leakage gas
JP2687466B2 (en) How to estimate the location of gas leaks
JPH02190734A (en) Method for presuming gas leakage place and leakage quantity
JP2767088B2 (en) Estimation method of gaseous substance leakage point
JPH07181097A (en) Method for detecting new leak source under track leak gas atmosphere
JPH07198524A (en) Estimation method for gas leakage point and amount from gas concentration data
JP2996349B2 (en) Gas leak source detection device
KR950014860A (en) Atmospheric pressure detection system for engine control
JPH0843239A (en) Method for estimating area and amount of gas leakage taking obstacle into consideration
JPH0743241A (en) Method for monitoring gas leakage
JP2765456B2 (en) Pipeline leak detection method
JPH0797062B2 (en) Gas leak area estimation device
JPH0321841A (en) Gas leakage estimating device
KR101487262B1 (en) Device for air contamination detector and method thereof
EP0242363A1 (en) Method for leak detection in a pipeline system.
JPS60225916A (en) Pressure control device of distributing water pipe network