JPH024093B2 - - Google Patents

Info

Publication number
JPH024093B2
JPH024093B2 JP55142462A JP14246280A JPH024093B2 JP H024093 B2 JPH024093 B2 JP H024093B2 JP 55142462 A JP55142462 A JP 55142462A JP 14246280 A JP14246280 A JP 14246280A JP H024093 B2 JPH024093 B2 JP H024093B2
Authority
JP
Japan
Prior art keywords
gas
cathode
temperature
getter
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55142462A
Other languages
Japanese (ja)
Other versions
JPS5767260A (en
Inventor
Yoshio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14246280A priority Critical patent/JPS5767260A/en
Publication of JPS5767260A publication Critical patent/JPS5767260A/en
Publication of JPH024093B2 publication Critical patent/JPH024093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels

Description

【発明の詳細な説明】 本発明は陰極線管の製造方法に関し、特に陰極
線管のベーキング及びガス抜きに対し作業工程を
改善して特性の向上をはかることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cathode ray tube, and in particular, an object of the present invention is to improve the process of baking and degassing the cathode ray tube to improve its characteristics.

陰極線管の製造に際しては、図に示すとおりパ
ネル1の内面にけい光面2を形成し、このパネル
1内面の所定の個所に導電性被膜5が被覆形成さ
れたフアンネル3とを封着して外囲器を形成
し、この外囲器のネツク部7に少なくとも1個の
電子銃6を配設して、ガラスステム8に支持され
たマウント構体9をネツク部7内に気密に封止す
る。
When manufacturing a cathode ray tube, as shown in the figure, a fluorescent surface 2 is formed on the inner surface of a panel 1, and a funnel 3 having a conductive coating 5 formed thereon is sealed at a predetermined location on the inner surface of the panel 1. An envelope 4 is formed, at least one electron gun 6 is disposed in a neck portion 7 of the envelope, and a mount structure 9 supported by a glass stem 8 is hermetically sealed within the neck portion 7. do.

次に、ステムに連なるガラス排気細管10を通
して真空排気装置によりかなり低い圧力になるま
で排気し、この排気中に約350℃〜450℃の温度で
ベーキングする。次いで排気細管を封止すなわち
チツプオフする。従来の製造方法では、前記排気
およびベーキング工程の終了近く、かつチツプオ
フするに先だつて、マウント構体を高周波加熱等
により加熱してガス抜きが行われる。一方陰極構
体も陰極ヒータに通電して加熱し、陰極の被覆材
料を分解してガス抜きが行われる。このように加
熱ガス抜きしたのちにチツプオフされ、管は真空
封止される。次に管内に配設されているゲツタ1
1をフラツシユさせて、管壁にゲツタ膜を被着形
成し、管内の高真空化をはかる。その後エージン
グなど所定の工程を経て製品としての陰極線管が
得られる。
Next, the tube is evacuated to a fairly low pressure by a vacuum evacuation device through the glass evacuation capillary 10 connected to the stem, and baked at a temperature of approximately 350° C. to 450° C. during this evacuation. The exhaust capillary is then sealed or tipped off. In conventional manufacturing methods, near the end of the evacuation and baking steps and prior to chip-off, the mount structure is heated by high frequency heating or the like to degas it. On the other hand, the cathode assembly is also heated by supplying electricity to the cathode heater to decompose the cathode coating material and degas it. After heating and degassing in this manner, the tube is tipped off and vacuum sealed. Next, getter 1 installed in the pipe
1 is flashed to form a getter film on the tube wall, thereby creating a high vacuum inside the tube. Thereafter, a cathode ray tube as a product is obtained through predetermined processes such as aging.

このようにして正常な動作特性をもつ陰極線管
が得られるが、動作特性を有効に安定化して長寿
命化をはかるため、前記各処理条件及びそれらの
組みあわせなどが検討されて改善がはかられてい
る。たとえば排気中のマウント構体を加熱するに
際し、その加熱温度、加熱時間、加熱個所など、
又陰極構体の加熱温度、加熱時間など、さらにそ
れら2つの処理のくみあわせなどの検討がされて
いる。さらに以後の工程の電子銃のエージング方
法などにも種々検討が行われ、管特性の向上がは
かられている。
In this way, a cathode ray tube with normal operating characteristics can be obtained, but in order to effectively stabilize the operating characteristics and extend the lifespan, the above-mentioned processing conditions and their combinations have been studied and improvements have been made. It is. For example, when heating the mount structure during exhaust, the heating temperature, heating time, heating location, etc.
Also, the heating temperature and heating time of the cathode structure, as well as the combination of these two treatments, are being studied. Furthermore, various studies have been conducted on the aging method of the electron gun in subsequent steps, and efforts are being made to improve tube characteristics.

しかしながらこれら各種の処理操作における排
気中および排気後の管内残留ガス、吸蔵ガスの処
理方法については未だ十分でなく、すなわちガス
抜きおよび放出ガスの再吸着については不充分で
あつて、改善の余地があつた。このことについて
さらに述べると、前記外囲器としてのバルブは
350゜〜450℃の温度に加熱してガス抜きされるが、
ベーキング炉の構造上一般に前記の温度に加熱さ
れるのはバルブの中央部であつて、フアンネルそ
してネツク部と開口部の方になるにしたがつて温
度が低下し、前記排気細管部では40゜〜50℃も低
く、チツプオフ部は加熱コイルのケースで覆われ
ているのでさらに温度が低下し、ガス抜きが不十
分となる。ところが排気後チツプオフされるとき
は、そのガラス溶融部近辺が約800℃に上昇し、
その際多量のガス放出がされたまま真空封止され
ることになる。またゲツタとゲツタ容器について
は、ゲツタフラツシユ時に1000℃をこえる高温に
達するので、外囲器と同じ程度の温度処理ではゲ
ツタとゲツタ容器からのガス放出は大量のものと
なる。このようにガス抜きについては未だ改善の
余地があつた。
However, in these various processing operations, the methods for treating residual gas and occluded gas in the pipes during and after exhaustion are still insufficient.In other words, degassing and re-adsorption of emitted gas are insufficient, and there is still room for improvement. It was hot. To further explain this, the valve as the envelope is
It is heated to a temperature of 350° to 450°C to degas it,
Due to the structure of the baking oven, the central part of the valve is generally heated to the above temperature, and the temperature decreases as it approaches the funnel, neck, and opening, and the temperature decreases to 40° at the exhaust tube. The temperature is as low as ~50°C, and since the tip-off section is covered by the case of the heating coil, the temperature drops even further, making degassing insufficient. However, when the glass is chipped off after exhaust, the temperature near the glass melting area rises to approximately 800℃.
At that time, it will be vacuum sealed with a large amount of gas being released. Furthermore, the gettuter and gettuta container reach high temperatures of over 1000°C during the gettuta flashing, so if the gettuta and gettuta container are treated at the same temperature as the envelope, a large amount of gas will be released from the gettuta and gettuta container. As described above, there was still room for improvement in degassing.

又、放出ガスの再吸着防止が不十分な点につい
ては、ネツク部にマウント構体を封入するに先だ
つパネルとフアンネルの高温封着後のバルブ温度
低下になるバルブや導電性被膜のガス吸着および
ネツク部へ封入されたマウント構体へのガス吸着
がおこるが、これらについては安定化ガスN2
スの置換によつて一応対処されている。しかし排
気サイクル終了近くで行なわれるマウント構体加
熱によるガス抜き時及び陰極構体加熱によるガス
抜き時には、排気細管部の温度は約200℃以下で
あり、又、陰極構体加熱時にはマウント構体の陰
極構体以外の部分はその大部分が約250℃以下で
あつて、このように温度の下がつた状態でガス抜
きを行つても、管内に放出されたガスが排気細管
やマウント構体等へ再吸着することは免れ得な
い。さらにチツプオフされるときには、そのチツ
プオフされる部分の排気中のガス抜きが十分でな
い上に大量のガスが再吸着した上で約800℃程度
の高温に加熱されてガス放出が行われることにな
り、この放出ガスが排気されないままにチツプオ
フされ、ほとんどの放出ガスが管内に封じ込めら
れることになる。
In addition, regarding the insufficient prevention of re-adsorption of emitted gas, the temperature of the valve and conductive coating decreases after high-temperature sealing of the panel and funnel prior to enclosing the mount structure in the neck part. Gas adsorption to the mount structure enclosed in the mount structure occurs, but this has been dealt with by replacing the stabilizing gas with N 2 gas. However, when degassing by heating the mount structure and degassing by heating the cathode structure near the end of the exhaust cycle, the temperature of the exhaust capillary part is approximately 200°C or less, and when heating the cathode structure, the temperature of the mount structure other than the cathode structure is Most of the temperature is below about 250°C, and even if degassing is performed at this low temperature, the gas released into the pipe will not be re-adsorbed into the exhaust thin pipe or the mount structure. I can't escape it. Furthermore, when being chipped off, gas in the exhaust gas from the chipped off part is not sufficiently vented, and a large amount of gas is re-adsorbed and then heated to a high temperature of approximately 800°C, causing gas release. This released gas is chipped off without being exhausted, and most of the released gas is confined within the pipe.

このように種々の個所からの放出ガスが管内に
残留することになるが、排気後外囲器の温度が低
下するにしたがつて、外囲器及びマウント構体は
低下した温度における飽和吸着量まで残留ガスを
吸着し、見掛け上管内浮遊ガスは少くなり管内は
良好な状態となる。しかしながらこのように外囲
器やマウント構体に吸蔵されたガスは陰極線管を
動作させると、マウント構体など温度上昇して、
徐々に吸着ガスを放出する。このように残留ガス
の処理が不十分であるので、ゲツタフラツシユさ
せた後もガス放出が行われ、ゲツタが十分に効果
を示さないのと同じ結果となる。それとともに、
このような放出ガスは活性化ガスであることが多
いので、熱分解後の陰極材料には非常に有害であ
る。たとえば酸化物陰極材料は熱分解後の動作時
には約700゜〜800℃の温度になるが、陰極温度が
約400℃以下の状態でもH2Oガスの10-3Torr程度
の雰囲気でガス被毒を受け、たとえば2H2O+
BaO→Ba(OH)2が形成される。このBa(OH)2
約80℃の低融点であるので、低温加熱で簡単に溶
融して結晶の粗大化を起こし、結局陰極材料の性
能を劣化させる。この現象は前記マウント構体加
熱時や陰極構体加熱時に10-3Torr〜数Torr程度
の雰囲気を形成する場合によく起こる。
In this way, gases released from various locations will remain in the pipe, but as the temperature of the envelope decreases after exhaust, the envelope and mount structure will absorb up to the saturated adsorption amount at the lowered temperature. The remaining gas is adsorbed, and the amount of gas floating inside the pipe appears to be reduced, leaving the inside of the pipe in good condition. However, when the cathode ray tube is operated, the gas stored in the envelope and mount structure rises in temperature, causing the mount structure to rise in temperature.
Gradually releases adsorbed gas. Since the treatment of the residual gas is thus insufficient, gas is released even after the getter is flushed, resulting in the same result as the getter not being sufficiently effective. Along with that,
Such released gases are often activated gases and are therefore very harmful to the cathode material after pyrolysis. For example, oxide cathode materials reach a temperature of about 700° to 800°C during operation after thermal decomposition, but even when the cathode temperature is below about 400°C, gas poisoning can occur in an atmosphere of H 2 O gas at about 10 -3 Torr. For example, 2H 2 O+
BaO→Ba(OH) 2 is formed. This Ba(OH) 2 has a low melting point of about 80°C, so it easily melts when heated at low temperatures, causing coarse crystals and ultimately deteriorating the performance of the cathode material. This phenomenon often occurs when an atmosphere of about 10 -3 Torr to several Torr is formed when heating the mount structure or the cathode structure.

本発明はこれらの点に鑑みなされたものであつ
て、陰極線管の製造にあたり、ベーキングならび
にガス抜き作業工程を改良して、管特性の向上を
はかる陰極線管の製造方法を提供することにあ
る。すなわち陰極構体の熱分解を行わずにチツプ
オフし、次いでゲツタフラツシユしたのちに陰極
構体の熱分解処理を行うことを特徴とするもので
ある。
The present invention has been made in view of these points, and it is an object of the present invention to provide a method for manufacturing a cathode ray tube, which improves the baking and degassing steps and improves the tube characteristics. That is, the method is characterized in that the cathode assembly is chipped off without being thermally decomposed, then getter flushed, and then the cathode assembly is thermally decomposed.

以下本発明の実施例について説明する。パネル
とフアンネルとを封着したのち外囲器であるバル
ブの内壁所定の位置に導電性被膜を形成し、次い
でネツク部内にマウント構体を封入する。真空ポ
ンプにて排気し、その排気中にバルブを約380゜〜
450℃でベーキングし、ガス抜きを行う。次いで
封入されているマウント構体を高周波加熱して約
10分間ガス抜きを行つたのち、ステムの排気細管
部分を約800℃に加熱してチツプオフする。この
ように封止した後管内に配設されたゲツタをフラ
ツシユし、管内壁にゲツタ膜を形成する。次に陰
極ヒータを通電することにより陰極構体を加熱し
て熱分解処理を行う。このときマウント構体は
200℃以上に加熱しておけば一層効果があがる。
以後所定の工程を経て製品とする。
Examples of the present invention will be described below. After the panel and the funnel are sealed together, a conductive film is formed at a predetermined position on the inner wall of the bulb, which is the envelope, and then the mount structure is enclosed within the neck portion. Exhaust with a vacuum pump, and rotate the valve approximately 380 degrees during the exhaust.
Bake at 450℃ and degas. Next, the enclosed mount structure is heated with high frequency to approximately
After degassing for 10 minutes, heat the exhaust tube part of the stem to about 800℃ and tip it off. After sealing in this manner, the getter disposed inside the tube is flashed to form a getter film on the inner wall of the tube. Next, the cathode heater is energized to heat the cathode assembly and perform thermal decomposition treatment. At this time, the mount structure is
It will be even more effective if heated to 200℃ or higher.
Thereafter, it is made into a product through predetermined processes.

このようにチツプオフ前に陰極構体の熱分解処
理を行わず、チツプオフ後のゲツタフラツシユ処
理により、チツプオフにより管内に封じこめられ
た残留放出ガスを吸着させて管内を良好な雰囲気
にしてのちに陰極構体の熱分解処理が行われる。
この時熱分解により陰極から放出されるガス及び
陰極構体に吸蔵されていたガスは放出されてゲツ
タフラツシユ膜に吸着される。したがつて、この
陰極線管を動作させると、陰極構体は昇温する
が、本発明では従来のものに比し吸蔵ガスが少
く、したがつて放出ガスが少く、ガス抜き、ガス
の再吸着が著しく改善され、管特性の向上に寄与
できる。
In this way, the cathode assembly is not subjected to thermal decomposition treatment before chip-off, but the getter flush treatment after chip-off adsorbs the residual released gas that was trapped in the tube during chip-off, creating a good atmosphere inside the tube, and then removing the cathode assembly. Pyrolysis treatment is performed.
At this time, the gas released from the cathode due to thermal decomposition and the gas occluded in the cathode structure are released and adsorbed by the getterflash film. Therefore, when this cathode ray tube is operated, the temperature of the cathode structure rises, but in the present invention, compared to the conventional one, there is less occluded gas, and therefore less gas is released, and gas degassing and gas re-adsorption are prevented. This is a significant improvement and can contribute to improving tube properties.

なお前記のような陰極構体の熱分解処理の後に
第2のゲツタフラツシユする工程を備えると一層
効果的である。このように第1、第2のゲツタフ
ラツシユ処理を行うときには、第1のゲツタ膜上
に第2のゲツタ膜が形成されることになるので管
内はきわめて良好な真空状態となり、陰極線管の
管特性を一層改善することになる。この場合各ゲ
ツタのフラツシユ容量は、第2ゲツタを使用する
場合には、第2ゲツタは陰極構体の熱分解処理時
の放出ガスのみを吸着する程度のものでよく、チ
ツプオフ工程後にゲツタフラツシユする第1ゲツ
タのフラツシユ容量の方を多くする方が好まし
い。なお陰極の熱分解時の放出ガスを吸着するた
めに配設されるゲツタは外囲器のネツク部のマウ
ント構体に近いパネル側の上部近傍に設けるのが
望ましい。このときマウント構体を200℃以上の
温度で加熱しながらゲツタフラツシユを行えばフ
ラツシユゲツタの特性上マウント構体表面上には
ゲツタ膜の形成はなく、必要なネツク部にゲツタ
膜を形成できる。また陰極構体を400℃以上の温
度で加熱しながらゲツタフラツシユすれば前記と
同じような効果を示す。さらにマウント構体と陰
極構体の両方を加熱しながらゲツタフラツシユさ
せてもよい。このようにして放出ガスのマウント
構体への再吸着を防止することができる。
Note that it is more effective if a second getter flushing step is provided after the thermal decomposition treatment of the cathode assembly as described above. When performing the first and second getter flush processes in this way, the second getter film is formed on the first getter film, creating an extremely good vacuum condition inside the tube, which improves the tube characteristics of the cathode ray tube. It will be further improved. In this case, the flash capacity of each getter is such that when a second getter is used, the second getter only needs to adsorb the gas released during the thermal decomposition treatment of the cathode assembly, and the first getter flashes after the chip-off process. It is preferable to increase the flash capacity of the getter. It is preferable that the getter, which is provided to adsorb the gas released during thermal decomposition of the cathode, be provided near the top of the neck of the envelope on the panel side near the mounting structure. At this time, if the getter flash is performed while heating the mount structure at a temperature of 200° C. or higher, no getter film will be formed on the surface of the mount structure due to the characteristics of the flash getter, and the getter film can be formed at the necessary neck portions. Further, if the cathode structure is heated to a temperature of 400° C. or higher while getter flushing is performed, the same effect as described above can be obtained. Furthermore, the getter flash may be performed while heating both the mount structure and the cathode structure. In this way, re-adsorption of the released gas to the mount structure can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

図は陰極線管の一部切欠いて示す正面図であ
る。 1……パネル、2……けい光面、3……フアン
ネル、5……導電性被膜、7……フアンネルのネ
ツク部、9……マウント構体、10……排気細
管、11……ゲツタ。
The figure is a partially cutaway front view of the cathode ray tube. DESCRIPTION OF SYMBOLS 1... Panel, 2... Fluorescent surface, 3... Funnel, 5... Conductive coating, 7... Funnel neck, 9... Mount structure, 10... Exhaust tube, 11... Getter.

【特許請求の範囲】[Claims]

1 三個以上の電極を互に対向させて、二個以上
の電極間隙部によつてインライン型主電子レンズ
を形成する多段集束電子レンズの受像画面側に位
置する最終段の対向二電極の開口径Dのみを開孔
相互距離Sに対してD/S≧0.88となるように大
口径化し、これ以外の対向面電極開口はD/S≦
0.84と小口径にしたことを特徴とするカラー受像
管用電子銃構体。
1 Opening of the final stage of two opposing electrodes located on the image receiving screen side of a multi-stage focusing electron lens in which three or more electrodes are made to face each other and two or more electrode gaps form an in-line main electron lens. Only the diameter D is made large so that D/S≧0.88 with respect to the mutual distance S of the holes, and the other electrode openings on the opposing surface are set such that D/S≦
Electron gun structure for color picture tubes characterized by its small diameter of 0.84.

Claims (1)

200℃以上または陰極構体を400℃以上または両方
を加熱しながらゲツタフラツシユすることを特徴
とする特許請求の範囲第1項または第2項記載の
陰極線管の製造方法。
3. The method for manufacturing a cathode ray tube according to claim 1, wherein the getter flash is carried out while heating the cathode structure to 200° C. or higher, or heating the cathode assembly to 400° C. or higher, or both.
JP14246280A 1980-10-14 1980-10-14 Production of cathode-ray tube Granted JPS5767260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14246280A JPS5767260A (en) 1980-10-14 1980-10-14 Production of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14246280A JPS5767260A (en) 1980-10-14 1980-10-14 Production of cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS5767260A JPS5767260A (en) 1982-04-23
JPH024093B2 true JPH024093B2 (en) 1990-01-26

Family

ID=15315872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14246280A Granted JPS5767260A (en) 1980-10-14 1980-10-14 Production of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS5767260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484889U (en) * 1990-11-30 1992-07-23

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301447A (en) * 1987-05-29 1988-12-08 Nec Kansai Ltd Manufacture of electron tube
JP2001035367A (en) 1999-07-21 2001-02-09 Mitsubishi Electric Corp Manufacture of cathode-ray tube and cathode-ray tube manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484889U (en) * 1990-11-30 1992-07-23

Also Published As

Publication number Publication date
JPS5767260A (en) 1982-04-23

Similar Documents

Publication Publication Date Title
US3132278A (en) Iodine cycle incandescent lamps
US4457731A (en) Cathode ray tube processing
JPH024093B2 (en)
US3728004A (en) Method of employing mercury-dispensing getters in fluorescent lamps
US4213663A (en) Wet carbon-dioxide treatment of partially-completed CRT
KR920004637B1 (en) Method manufacturing color crt
US3218113A (en) Method for fabricating discharge device
US2456968A (en) Process for outgassing photocells containing antimony
US2342550A (en) Method of activating cathodes
US1861637A (en) Production of alkali metal tubes
US3800180A (en) Halogen incandescent lamp containing bromine and phosphorus
US4209726A (en) Low-pressure sodium vapor discharge lamp
US1659207A (en) Method of cleaning up residual gases
JPS6363101B2 (en)
US3160454A (en) Method of manufacture of iodine cycle incandescent lamps
KR19990007014A (en) Method of manufacturing cathode ray tube
JP3076701B2 (en) Manufacturing method of fluorescent lamp
JPH026185B2 (en)
JPS60232635A (en) Manufacture of cathode-ray tube
JPS59103246A (en) Manufacturing process for cathode-ray tube
JPH1173885A (en) Manufacture of cathode ray tube
JPS58152340A (en) Manufacturing method of low pressure mercury-vapor discharge lamp
JPH10269944A (en) Manufacture of flat fluorescent lamp
JPS6043619B2 (en) Cathode ray tube manufacturing method
JPS6347102B2 (en)