JPH0239708B2 - - Google Patents

Info

Publication number
JPH0239708B2
JPH0239708B2 JP58207844A JP20784483A JPH0239708B2 JP H0239708 B2 JPH0239708 B2 JP H0239708B2 JP 58207844 A JP58207844 A JP 58207844A JP 20784483 A JP20784483 A JP 20784483A JP H0239708 B2 JPH0239708 B2 JP H0239708B2
Authority
JP
Japan
Prior art keywords
pressure
degree
superheat
temperature
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58207844A
Other languages
Japanese (ja)
Other versions
JPS6099974A (en
Inventor
Megumi Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20784483A priority Critical patent/JPS6099974A/en
Publication of JPS6099974A publication Critical patent/JPS6099974A/en
Publication of JPH0239708B2 publication Critical patent/JPH0239708B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は熱電式膨張弁、可逆電磁比例弁、パル
ス式電動弁等減圧機構を備えた電動弁を具備して
なる冷凍装置の過熱度測定方法に関する。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to the degree of superheating of a refrigeration system equipped with an electric valve equipped with a pressure reducing mechanism such as a thermoelectric expansion valve, a reversible electromagnetic proportional valve, and a pulse type electric valve. Regarding measurement methods.

(ロ) 従来技術 温度式膨張弁による過熱度制御の方法として
は、利用側熱交換器の蒸発圧力の圧力損失で、過
熱度の受ける影響が設定値より測定値が或る偏差
例えば1deg以内若しくは等しい場合には、過熱
度制御に差し支えない圧力損失なので内部均圧式
の温度式膨張弁を用いるが、1deg以上の場合に
は、圧力損失分丈過熱度が大きくなり過熱度の目
標値が定まらないため外部均圧式の温度式膨張弁
を用いる方法をとつている。上記偏差が或る幅以
上になると、過熱度の測定値が設定値+圧力損失
値となり、サクシヨンガスの過熱・対数平均温度
の上昇が発生するため、外部均圧式のもので圧力
損失を補正する必要が生じた。
(B) Prior art As a method for controlling the degree of superheating using a thermostatic expansion valve, the degree of superheating is affected by the pressure loss of the evaporation pressure of the heat exchanger on the user side, and the degree of superheating is affected by the deviation of the measured value from the set value, for example, within 1 degree or less. If the pressure loss is equal, an internal pressure equalization temperature type expansion valve is used because the pressure loss does not affect superheat control, but if it is 1 degree or more, the pressure loss and superheat become large and the target value of superheat cannot be determined. Therefore, a method using an external pressure-equalizing temperature-type expansion valve is used. If the above deviation exceeds a certain range, the measured value of the degree of superheat will be the set value + the pressure loss value, and the suction gas will be overheated and the logarithmic average temperature will rise, so it is necessary to correct the pressure loss with an external pressure equalization type. occurred.

この温度式膨張弁は減圧能力が同じであつても
過熱度の測定値が異なるために、内部均圧式か外
部均圧式かの何れかを選択して使い分けなければ
ならず、しかも測定値が圧力で算出されるため
に、この圧力を温度に換算して目標値を得る作業
を強いられる欠点が生じた。
Even if these temperature-type expansion valves have the same pressure reduction capacity, the measured value of the degree of superheat is different. Therefore, it is necessary to select and use either an internal pressure equalization type or an external pressure equalization type, and what is more, the measured value is the pressure Since the pressure is calculated as follows, there is a drawback that it is necessary to convert this pressure into temperature to obtain the target value.

(ハ) 発明の目的 本発明は冷凍装置の利用側熱交換器の蒸発圧力
の圧力損失分で温度でもつて表わし、制御すべき
過熱度を算出することを目的とする。
(c) Purpose of the Invention The purpose of the present invention is to calculate the degree of superheat to be controlled by expressing the pressure loss of the evaporation pressure of the heat exchanger on the user side of a refrigeration system in terms of temperature.

(ニ) 発明の構成 目標値となる過熱度を、圧力損失がある場合の
サクシヨン温度から圧力損失が過熱度制御に影響
を与えない場合の蒸発温度を減算して測定する過
熱度の測定方法。
(d) Structure of the Invention A method for measuring the degree of superheat in which the target value of the degree of superheat is measured by subtracting the evaporation temperature in the case where the pressure loss does not affect the degree of superheat control from the suction temperature in the case where there is a pressure loss.

(ホ) 発明の実施例 第1図に示す1は冷蔵庫、エアコン等冷凍、空
調機器に使用される冷凍装置で、冷媒圧縮機2、
熱源側熱交換器3、減圧機構を備えた電動弁4、
送風機5によつて強制通風されるプレートフイン
型の利用側熱交換器6等を配管によつて環状接続
することにより構成され、例えばR22の冷媒を封
入し、この冷媒の圧縮、凝縮液化、減圧、蒸発気
化させる周知の冷凍サイクルを形成する。7は冷
媒の蒸発温度ETを検出するセンサー、8は冷媒
のサクシヨン温度STを検出するセンサーで、こ
の両センサーからの温度信号を図示ない制御器本
体に送り、この本体からの制御信号Gによつて電
動弁4の開閉度の調整を図る。
(e) Embodiments of the invention Reference numeral 1 shown in FIG.
A heat source side heat exchanger 3, an electric valve 4 equipped with a pressure reduction mechanism,
It is constructed by connecting a plate-fin type user-side heat exchanger 6, etc., which are forcedly ventilated by a blower 5, in a ring through piping, and seals a refrigerant of, for example, R22, and compresses, condenses, liquefies, and depressurizes this refrigerant. , forming the well-known refrigeration cycle of evaporation. 7 is a sensor that detects the evaporation temperature ET of the refrigerant, and 8 is a sensor that detects the suction temperature ST of the refrigerant.The temperature signals from these two sensors are sent to the controller main body (not shown), and the control signal G from this main body is used. Then, the degree of opening and closing of the electric valve 4 is adjusted.

上記電動弁は特公昭58−7869号公報で紹介され
た「電気加熱手段を有するバイメタル式熱応動
弁」及び月刊紙「冷凍」の第56巻第641号(昭和
56年3月号)の第60頁〜第64頁に紹介された「熱
電式膨張弁」であり、前記制御信号を通電部とな
る加熱装置に印加してバイメタルを変位させ、弁
体を上下方向に作動せさめるものである。
The electric valve mentioned above is the ``bimetallic heat-responsive valve with electric heating means'' introduced in Japanese Patent Publication No. 58-7869, and the monthly newspaper ``Refrigeration'', Volume 56, No. 641 (Showa
This is a "thermoelectric expansion valve" introduced on pages 60 to 64 of the March 1956 issue, and the control signal is applied to the heating device that serves as the energized part to displace the bimetal and move the valve body up and down. It operates in the direction.

第2図は上記冷凍装置におけるモリエル線図を
示す。第2図において、9は飽和蒸気線、10は
飽和液線、11は臨界点、A〜C1は圧力P1及び
温度ETを有する等圧線12で表わされる蒸発気
化過程、C1〜D1は等エントロピイ線13で表わ
される圧縮過程、D1〜Eは等圧線14で表わさ
れる凝縮液化過程、E〜Aは等エンタルピイ15
で表わされる減圧過程で、この圧力エンタルピイ
線図は蒸発圧力P1に圧力損失が殆んど生じない、
又生じたとしても過熱度制御に影響を与えない理
想的なものである。この圧力エンタルピイに於け
る過熱度SH11 1の幅で表わされる。尚、1
6〜19は等温線であり、理想的なサクシヨン温
度STは等温線19上の点C1で表わされる。
FIG. 2 shows a Mollier diagram for the above-mentioned refrigeration system. In FIG. 2, 9 is a saturated vapor line, 10 is a saturated liquid line, 11 is a critical point, A to C 1 are isobaric lines 12 having pressure P 1 and temperature ET, and C 1 to D 1 are evaporation processes represented by isobar lines 12. The compression process is represented by the isentropic line 13, the condensation and liquefaction process is represented by the isobaric line 14, and the isenthalpy line 15 is represented by E - A.
In the depressurization process expressed by , this pressure enthalpy diagram shows that there is almost no pressure loss at the evaporation pressure P
Moreover, even if it occurs, it is ideal because it does not affect superheat degree control. The degree of superheat SH 1 at this pressure enthalpy is expressed by a width of 1 1 . Furthermore, 1
6 to 19 are isothermal lines, and the ideal suction temperature ST is represented by point C1 on isothermal line 19.

然し乍ら、冷凍装置1においては冷媒の種類、
蒸発温度、配管の長さ等によつて蒸発圧力に圧力
損失が生じ、その圧力が降下するのが一般的であ
り、この時のサクシヨン温度STをセンサー8だ
けで検出することが従来難しかつた。
However, in the refrigeration system 1, the type of refrigerant,
Pressure loss occurs in the evaporation pressure due to the evaporation temperature, the length of the piping, etc., and the pressure generally decreases. Conventionally, it has been difficult to detect the suction temperature ST at this time using only the sensor 8. .

即ち、上記圧力損失による圧力降下は利用側熱
交換器6の入口点Aから冷媒圧縮機2の入口点
C2にかけて発生し、P2の圧力を有する蒸発圧力
12′となる。この場合の過熱度SH22 2の幅
で表わされ、等温線18上の点C2は、圧力損失
のない場合の等温線19の左側、即ち温度の低い
側に来る。ここで、圧力P2と等温線19との交
点をC3とすれば、この2つの等温線19,18
の温度差C3−C2が圧力損失の温度換算値ΔPに等
しい。即ち、点C2におけるサクシヨン温度ST′に
は圧力損失相当分の誤差が含まれてしまうことに
なる。従つて、蒸発圧力P2においては過熱度SH2
を補正する必要がある。
That is, the pressure drop due to the pressure loss is from the inlet point A of the user side heat exchanger 6 to the inlet point of the refrigerant compressor 2.
C 2 , resulting in an evaporation pressure of 12' having a pressure of P 2 . The degree of superheat SH 2 in this case is expressed by a width of 2 2 , and point C 2 on the isothermal line 18 is on the left side of the isothermal line 19 in the case of no pressure loss, that is, on the lower temperature side. Here, if the intersection of pressure P 2 and isothermal line 19 is C 3 , then these two isothermal lines 19 and 18
The temperature difference C 3 − C 2 is equal to the temperature conversion value ΔP of pressure loss. That is, the suction temperature ST' at point C2 includes an error equivalent to the pressure loss. Therefore, at evaporation pressure P 2 , superheat degree SH 2
need to be corrected.

尚、20は蒸発圧力P2の変化に伴ないC2〜D2
に移項する等エントロピイ線である。
In addition, 20 is C 2 to D 2 as the evaporation pressure P 2 changes.
It is an isentropic line that transfers to .

上述した如く利用側熱交換器6の圧力損失は、
冷媒の種別や使用する膨張弁等の種類により異な
ることが起因する。正確な過熱度を測定するに
は、利用側熱交換器6の場合、蒸発圧力の測定が
不可欠であることに加えて、圧力損失の大きさを
定量化する必要がある。
As mentioned above, the pressure loss of the user side heat exchanger 6 is:
This is due to differences depending on the type of refrigerant and the type of expansion valve used. In order to accurately measure the degree of superheating, in the case of the utilization side heat exchanger 6, it is essential to measure the evaporation pressure, and it is also necessary to quantify the magnitude of the pressure loss.

然し乍ら、現実の冷媒過熱度制御においては、
圧力損失の温度換算値ΔPが1deg未満である場合
には、これを無視しても制御に支障のない範囲で
あると考えられている。
However, in actual refrigerant superheat control,
When the temperature-converted value ΔP of pressure loss is less than 1 degree, it is considered to be within a range where control is not affected even if it is ignored.

実際の過熱度制御は以下の如く行なわれる。 Actual superheat degree control is performed as follows.

即ち、制御の目標値(設定過熱度)を5degと
すると、過熱度の設定値と測定値との間に生じる
偏差DEVは、次式で与えられ、これを無くす様
に制御を行なう。
That is, when the target value (set degree of superheat) of control is set to 5 degrees, the deviation DEV occurring between the set value of the degree of superheat and the measured value is given by the following equation, and control is performed to eliminate this.

DEV=SH−5 =(ST−ET)−5 ={(ST′+ΔP)−ET}−5 =(ST′−ET)+ΔP−5 ST′:圧力損失がある場合のサクシヨン温度。DEV=SH-5 =(ST-ET)-5 = {(ST′+ΔP)−ET}−5 =(ST′−ET)+ΔP−5 ST′: Suction temperature when there is pressure loss.

ET:圧力損失が過熱度制御に影響を与えない場
合の蒸発温度。
ET: Evaporation temperature when pressure drop does not affect superheat control.

ST:利用側熱交換器の理想的なサクシヨン温度。
ST=ST′+ΔP ΔP:利用側熱交換器での圧力損失を温度換算し
た値。
ST: Ideal suction temperature of the heat exchanger on the user side.
ST=ST'+ΔP ΔP: Value obtained by converting the pressure loss in the heat exchanger on the user side into temperature.

上記制御において、補正の必要が必要とされる
のは、ΔPの値が1degを越える場合であり、ΔPの
値が1degを下回る場合は無視する。
In the above control, correction is required when the value of ΔP exceeds 1 degree, and is ignored when the value of ΔP is less than 1 degree.

ΔP<1degのとき、例えばΔP=0、ST′=−
2.5、ET=−7とすると、 (イ) DEV={−2.5−(−7)}+0−5 =4.5−5 =0.5 ΔP≧1degのとき、例えばΔP=1.5、ST′=−
3.5、ET=−7とすると (ロ) DEV={−3.5−(−7)}+1.5−5 =5.0−5 =0 尚、ΔPを用いる補正は第3図矢印の如くマイ
クロコンピユータ等からなる制御器に入力する。
又、上記(イ)(ロ)で示したΔPの数値は予じめプログ
ラムに格納されている。
When ΔP<1deg, for example, ΔP=0, ST'=-
2.5, ET=-7, (a) DEV={-2.5-(-7)}+0-5 =4.5-5 =0.5 When ΔP≧1deg, for example, ΔP=1.5, ST'=-
3.5, assuming ET=-7 (b) DEV={-3.5-(-7)}+1.5-5 =5.0-5 =0 In addition, correction using ΔP is performed from a microcomputer, etc. as shown by the arrow in Figure 3. input to the controller.
Further, the numerical values of ΔP shown in (a) and (b) above are stored in the program in advance.

又、温度信号変換時に下記の如くΔPを
キヤンセルする方法としては V(ET)+ΔP V(ST)−ΔP V(SH)−ΔP 〔V:温度信号の電圧値(測定値SHMで変換)〕 等、第3図に示す方法が考えられる。
Also, the method to cancel ΔP when converting a temperature signal is as follows: V (ET) + ΔP V (ST) - ΔP V (SH) - ΔP [V: voltage value of temperature signal (converted using measured value SH M )] The method shown in FIG. 3 can be considered.

(ヘ) 効果 以上の如く本発明は目標値となる過熱度を、圧
力損失がある場合のサクシヨン温度から圧力損失
が過熱度制御に影響を与えない場合の蒸発温度を
減算して測定するので、下記に列挙する効果を奏
する。
(F) Effect As described above, the present invention measures the target superheat degree by subtracting the evaporation temperature when pressure loss does not affect superheat control from the suction temperature when there is pressure loss. It produces the effects listed below.

蒸発圧力の圧力損失を温度でもつて測定で
き、過熱度の目標値の算出を極めて簡単に行な
えると共に、過熱度の補正が容易となり、適切
な過熱度制御が可能となつた。
The pressure loss of evaporation pressure can be measured with respect to temperature, and the target value of the degree of superheat can be calculated extremely easily, and the degree of superheat can be easily corrected, making it possible to control the degree of superheat appropriately.

温度式膨張弁における内部均圧式、外部均圧
式の区別をすることがないので、電動弁の利用
範囲が広くなり、取扱い易くなつた。
Since there is no need to distinguish between internal pressure equalization type and external pressure equalization type in temperature type expansion valves, the electric valve can be used in a wider range of applications and is easier to handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明過熱度の測定方法にかゝる冷凍
装置の冷媒回路図、第2図は冷凍装置における測
定過熱度と圧力損失とを示すモリエル線図、第3
図は圧力降下の温度換算値のキヤンセルを説明す
るブロツク図である。
Figure 1 is a refrigerant circuit diagram of a refrigeration system according to the method for measuring the degree of superheat of the present invention, Figure 2 is a Mollier diagram showing the measured degree of superheat and pressure loss in the refrigeration system, and Figure 3 is a diagram showing the measured superheat degree and pressure loss in the refrigeration system.
The figure is a block diagram illustrating the cancellation of the temperature conversion value of pressure drop.

Claims (1)

【特許請求の範囲】 1 電動弁でもつて減圧した液冷媒を利用側熱交
換器に供給する冷凍装置において、冷媒の蒸発圧
力に、過熱度制御に影響を与える圧力損失が発生
した場合に、演算に用いる過熱度SHを、 SH=ST−ET =ST′+ΔP−ET =ST′−ET+ΔP [ST′:圧力損失がある場合のサクシヨン温度。 ET:圧力損失が過熱度制御に影響を与えない場
合の蒸発温度。 ST:利用側熱交換器の理想的なサクシヨン温度。
ST=ST′+ΔP ΔP:利用側熱交換器での圧力損失を温度換算し
た値。] の式で算出してなる過熱度の測定方法。
[Scope of Claims] 1. In a refrigeration system that supplies liquid refrigerant whose pressure has been reduced by an electric valve to a heat exchanger on the user side, when a pressure loss occurs in the evaporation pressure of the refrigerant that affects superheat degree control, calculation is performed. The degree of superheat SH used for is SH=ST-ET = ST'+ΔP-ET = ST'-ET+ΔP [ST': Suction temperature when there is pressure loss. ET: Evaporation temperature when pressure drop does not affect superheat control. ST: Ideal suction temperature of the heat exchanger on the user side.
ST=ST'+ΔP ΔP: Value obtained by converting the pressure loss in the heat exchanger on the user side into temperature. ] A method of measuring the degree of superheat calculated by the formula.
JP20784483A 1983-11-04 1983-11-04 Method of measuring degree of overheat Granted JPS6099974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20784483A JPS6099974A (en) 1983-11-04 1983-11-04 Method of measuring degree of overheat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20784483A JPS6099974A (en) 1983-11-04 1983-11-04 Method of measuring degree of overheat

Publications (2)

Publication Number Publication Date
JPS6099974A JPS6099974A (en) 1985-06-03
JPH0239708B2 true JPH0239708B2 (en) 1990-09-06

Family

ID=16546461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20784483A Granted JPS6099974A (en) 1983-11-04 1983-11-04 Method of measuring degree of overheat

Country Status (1)

Country Link
JP (1) JPS6099974A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902723B2 (en) * 2009-11-12 2012-03-21 三菱電機株式会社 Condensation pressure detection system and refrigeration cycle system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849880A (en) * 1981-09-18 1983-03-24 日立プラント建設株式会社 Refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849880A (en) * 1981-09-18 1983-03-24 日立プラント建設株式会社 Refrigerator

Also Published As

Publication number Publication date
JPS6099974A (en) 1985-06-03

Similar Documents

Publication Publication Date Title
US4617804A (en) Refrigerant flow control device
US5782103A (en) Control arrangement for the superheat temperature of at least one evaporation of a refrigeration system
US7290402B1 (en) Expansion valve control system and method and refrigeration unit employing the same
US5877476A (en) Apparatus and method for mass flow control of a working fluid
JPS6115057A (en) Measuring device for flow rate of refrigerant of refrigeration cycle
JPH0239708B2 (en)
JPH0575937B2 (en)
JP4840007B2 (en) Control device for refrigeration air conditioner
CN108362052B (en) Method for maintaining refrigerant flow rate while maintaining superheat
JPH0275858A (en) Refrigerating air conditioner
JP2646917B2 (en) Refrigeration equipment
JPH0723794B2 (en) Air conditioner
JPS6356465B2 (en)
JPH0524417B2 (en)
JP7432810B2 (en) Refrigeration cycle equipment
JPH02195155A (en) Air conditioner
JPH0228034B2 (en)
JPH0550666B2 (en)
JPH03170753A (en) Air conditioner
JPH0327252Y2 (en)
KR0156392B1 (en) Operating control methdo of an airconditioner
JPS60185075A (en) Controller for flow rate of refrigerant
JPH0777361A (en) Electrical expansion valve control device
JPS61250452A (en) Flow controller for refrigerant
JPS60251349A (en) Refrigerator