JPH0234433B2 - - Google Patents

Info

Publication number
JPH0234433B2
JPH0234433B2 JP58241210A JP24121083A JPH0234433B2 JP H0234433 B2 JPH0234433 B2 JP H0234433B2 JP 58241210 A JP58241210 A JP 58241210A JP 24121083 A JP24121083 A JP 24121083A JP H0234433 B2 JPH0234433 B2 JP H0234433B2
Authority
JP
Japan
Prior art keywords
cadmium
battery
electrode plate
paste
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58241210A
Other languages
Japanese (ja)
Other versions
JPS60131764A (en
Inventor
Tsukane Ito
Tokuyuki Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58241210A priority Critical patent/JPS60131764A/en
Priority to US06/680,817 priority patent/US4614696A/en
Publication of JPS60131764A publication Critical patent/JPS60131764A/en
Publication of JPH0234433B2 publication Critical patent/JPH0234433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明はペースト式カドミウム陰極板を備えた
密閉型アルカリ蓄電池に関するものであり、特に
酸素ガス吸収能力の向上及び陰極からの水素ガス
発生の減少が行なわれた陰極板に関する。 (ロ) 従来技術 ペースト式カドミウム陰極板は、焼結式カドミ
ウム陰極板に比し製造工程が簡単であり、製造コ
ストが安く、高エネルギー密度が得られる等優れ
た利点を有する反面、極板の電子伝導性に劣るた
め過充電により陽極板から発生する酸素ガス吸収
能力が悪く、密閉型電池に使用すると内部ガス圧
が上昇し易いという欠点があつた。このカドミウ
ム陰極板による酸素ガス吸収反応は次式で示され
る。 Cd+1/2O2+H2O→Cd(OH)2 …(1) つまり気、液、固3相界面における反応であ
り、金属カドミウムと酸素ガスが多く接触する程
反応は活発である。焼結式極板では基体となるニ
ツケル焼結体の導電マトリツクスが存在するため
充電反応はこの導電マトリツクスを通して極板全
体に均一に進行し、極板表面近傍にも金属カドミ
ウムが生成し易い。ところがペースト式極板は活
物質層の導電性が低く、充電反応は芯体近傍から
極板表面に向つて徐々に進行するため、金属カド
ミウムは導電芯体から離れた極板表面近傍に生成
され難くなつている。したがつて、酸素ガスは通
気性の悪い極板表面層を通過して初めて吸収され
ることになり、酸素ガス吸収能力が低くなる。 また、陰極板は満充電となつた後過充電がかけ
られると水素発生電位に到達し、水素を発生し始
める。即ちこれは水の電解反応であつて次式の反
応が起こつている。 2H2O+2e-→20H-+H2↑ …(2) こうて発生する水素は酸素とは異なり電池内で
消費することができないものであり、この水素の
発生を抑えるために陰極板は一般に容量を陽極板
容量より大と設定して電池に組み込まれる。しか
しながら、ペースト式カドミウム陰極板は前述の
様にその導電性の低さから極板内に於ける完全充
電状態の領域が芯体近傍に偏在することになり、
急速充電を行なつた場合には、陰極板全体が完全
充電状態になる前に前記偏在する完全充電状態の
領域が水素発生電位に到達して局部的な水素の発
生が始まる。 これら酸素吸収能力の低さ及び水素発生は、極
板作成後に化成を行なうことで相当緩和されるこ
とが公知となつているが、充放電を繰り返すうち
にこの効果も消失してゆき充分とはいえない。し
たがつて、低コスト化をはかるために化成を行な
わないペースト式電極はもちろんのこと化成を行
なつたペースト式電極に於いても5時間充電また
は1時間充電といつた急速充電用電池への適用は
困難であつた。 (ハ) 発明の目的 本発明はかかる点に鑑み陰極板の酸素ガス吸収
能力を向上せしめると共に急速充電時の陰極板か
らの水素ガス発生を抑制することで急速充電性能
が大巾に向上した密閉型アルカリ蓄電池を提供せ
しめんとするものである。 (ニ) 発明の構成 本発明の密閉型アルカリ蓄電池に用いられる陰
極板は、炭素繊維からなる導電マトリツクスを有
するペースト状カドミウム活物質層表面に炭素粉
末からなる導電層が配されたものである。 (ホ) 実施例 本発明の一実施例を比較例と共に以下に示し説
明する。 実施例 主活物質たる酸化カドミウム粉末90重量部と予
備充電量を形成せしめるべく添加される金属カド
ミウム粉末10重量部からなる混合物に、ポリエチ
レン繊維1.5重量部、炭素繊維(直径7〜8ミク
ロン、長さ1.5mmの2000℃で焼成されたグラフア
イト系カーボン繊維)1.0重量部及びメチルセル
ロースと水を加えて混練してペースト状となし、
このペーストを極板芯体の両面に塗着、乾燥後、
水100重量部、アセチレンブラツク5重量部及び
ポリビニルアルコール7重量部よりなる懸濁液に
浸漬した後乾燥してカドミウム極板とする。この
カドミウム極板を未化成の状態で周知の焼結式ニ
ツケル極板及びナイロン不織布セパレータと組み
合わせ、比重1.26の苛性カリ電解液を添加して公
称容量1200mAHの密閉型ニツケル−カドミウム
電池を作成した。この電池をAとする。 比較例 1 酸化カドミウム粉末90重量部と金属カドミウム
粉末10重量部からなる混合物にポリエチレン繊維
3重量部及びメチルセルロースと水を加えて混練
してペースト状とし、このペーストを極板芯体の
両面に塗着、乾燥してカドミウム極板とする。こ
のカドミウム極板を用い他は実施例と同一の密閉
型ニツケル−カドミウム電池を作成した。この電
池をBとする。 比較例 2 比較例1に於いて、ポリエチレン繊維の添加を
1.5重量部に変更し、更に実施例と同一の炭素繊
維を1.0重量部添加し、その他は比較例1と同一
で密閉型ニツケル−カドミウム電池を作成した。
この電池をCとする。 比較例 3 比較例1に於いて、ペーストを極板芯体の両面
に塗着、乾燥後、水100重量部、アセチレンブラ
ツク5重量部及びポリビニルアルコール7重量部
よりなる懸濁液に浸漬した後乾燥してカドミウム
極板とする。このカドミウム極板を用いその他は
実施例と同一で密閉型アルカリ蓄電池を作成し
た。この電池をDとする。 以上の様にして作成した電池A,B,C,Dに
ついて3時間率電流(400mA)にて0℃で18時
間の過充電を行ない充電末期の内部ガス圧の測定
を行なうと共に、その後1.0C相当抵抗で放電した
後の内部ガス圧を測定した。表1にその結果を示
す。データはいずれも電池を5個ずつ測定し、そ
の平均値で表わしている。また、過充電末期の内
部ガス圧は電池内で発生する酸素ガス及び水素ガ
スによるものであり、残存内部ガス圧は、放電時
に酸素ガスが電池内で消費されてしまうため水素
ガスのみによるものである。
(a) Field of industrial application The present invention relates to a sealed alkaline storage battery equipped with a paste-type cadmium cathode plate, and in particular to a cathode plate that has improved oxygen gas absorption capacity and reduced hydrogen gas generation from the cathode. Regarding. (b) Prior art Paste-type cadmium cathode plates have superior advantages such as a simpler manufacturing process, lower manufacturing costs, and higher energy density than sintered cadmium cathode plates. Due to poor electron conductivity, the ability to absorb oxygen gas generated from the anode plate due to overcharging is poor, and when used in a sealed battery, the internal gas pressure tends to increase. The oxygen gas absorption reaction by this cadmium cathode plate is expressed by the following equation. Cd+1/2O 2 +H 2 O→Cd(OH) 2 ...(1) In other words, it is a reaction at the gas, liquid, and solid three-phase interface, and the more metal cadmium and oxygen gas come into contact, the more active the reaction is. Since a sintered electrode plate has a conductive matrix of nickel sintered body serving as a base, the charging reaction proceeds uniformly over the entire electrode plate through this conductive matrix, and metal cadmium is likely to be generated near the surface of the electrode plate. However, in paste-type electrode plates, the active material layer has low conductivity, and the charging reaction progresses gradually from near the core to the plate surface, so metallic cadmium is generated near the plate surface, away from the conductive core. It's getting difficult. Therefore, oxygen gas is absorbed only after passing through the electrode plate surface layer, which has poor air permeability, resulting in a low oxygen gas absorption capacity. Further, when the cathode plate is overcharged after being fully charged, it reaches a hydrogen generation potential and begins to generate hydrogen. That is, this is an electrolytic reaction of water, and the following reaction occurs. 2H 2 O+2e - →20H - +H 2 ↑ ...(2) Unlike oxygen, the hydrogen generated in this way cannot be consumed within the battery, and in order to suppress the generation of hydrogen, the capacity of the cathode plate is generally reduced. It is set to be larger than the capacity of the anode plate and is incorporated into the battery. However, as mentioned above, the paste-type cadmium cathode plate has low conductivity, so the fully charged region within the plate is unevenly distributed near the core.
When rapid charging is performed, the unevenly distributed fully charged regions reach the hydrogen generation potential and local hydrogen generation begins before the entire cathode plate becomes fully charged. It is known that the low oxygen absorption capacity and hydrogen generation can be considerably alleviated by chemical formation after the electrode plate is made, but this effect also disappears with repeated charging and discharging, so it is not sufficient. I can't say that. Therefore, in order to reduce costs, not only paste-type electrodes that do not undergo chemical conversion, but also paste-type electrodes that undergo chemical conversion, it is necessary to charge quickly for 5 hours or 1 hour. Application was difficult. (c) Purpose of the Invention In view of the above, the present invention provides a sealed structure that greatly improves rapid charging performance by improving the oxygen gas absorption capacity of the cathode plate and suppressing the generation of hydrogen gas from the cathode plate during rapid charging. The purpose is to provide a type alkaline storage battery. (d) Structure of the Invention The cathode plate used in the sealed alkaline storage battery of the present invention has a conductive layer made of carbon powder disposed on the surface of a pasty cadmium active material layer having a conductive matrix made of carbon fibers. (E) Example An example of the present invention will be shown and explained below along with a comparative example. Example 1.5 parts by weight of polyethylene fibers and carbon fibers (diameter 7 to 8 microns, long Add 1.0 parts by weight of graphite carbon fiber (1.5 mm in diameter and fired at 2000℃), methylcellulose and water and knead to form a paste.
Apply this paste to both sides of the electrode plate core, and after drying,
It is immersed in a suspension consisting of 100 parts by weight of water, 5 parts by weight of acetylene black and 7 parts by weight of polyvinyl alcohol, and then dried to obtain a cadmium electrode plate. This cadmium electrode plate was combined in an unformed state with a well-known sintered nickel electrode plate and a nylon nonwoven separator, and a caustic potassium electrolyte with a specific gravity of 1.26 was added to produce a sealed nickel-cadmium battery with a nominal capacity of 1200 mAH. This battery is called A. Comparative Example 1 A mixture of 90 parts by weight of cadmium oxide powder and 10 parts by weight of metal cadmium powder was mixed with 3 parts by weight of polyethylene fibers, methylcellulose, and water to form a paste, and this paste was applied to both sides of the electrode plate core. It is then dried to form a cadmium electrode plate. Using this cadmium electrode plate, a sealed nickel-cadmium battery was produced which was otherwise the same as in the example. This battery is called B. Comparative Example 2 In Comparative Example 1, adding polyethylene fiber
The amount was changed to 1.5 parts by weight, and 1.0 parts by weight of the same carbon fiber as in Example was added, and the other conditions were the same as in Comparative Example 1 to prepare a sealed nickel-cadmium battery.
This battery is called C. Comparative Example 3 In Comparative Example 1, the paste was applied to both sides of the electrode plate core, dried, and then immersed in a suspension consisting of 100 parts by weight of water, 5 parts by weight of acetylene black, and 7 parts by weight of polyvinyl alcohol. It is dried to form a cadmium electrode plate. A sealed alkaline storage battery was fabricated using this cadmium electrode plate and otherwise the same as in the example. This battery is designated as D. Batteries A, B, C, and D created as described above were overcharged at 0°C for 18 hours at a 3-hour rate current (400mA), and the internal gas pressure at the end of charging was measured, and then at 1.0C. The internal gas pressure was measured after discharging at a corresponding resistance. Table 1 shows the results. All data are measured on five batteries and expressed as the average value. In addition, the internal gas pressure at the end of overcharging is due to oxygen gas and hydrogen gas generated within the battery, and the residual internal gas pressure is due only to hydrogen gas because oxygen gas is consumed within the battery during discharge. be.

【表】 表1より明らかな様に本発明電池Aは従来のペ
ースト式カドミウム陰極板を用いた電池Bに比
し、過充電した後の内部ガス圧及び放電した後の
内部ガス圧が共に大巾に改善され、また比較電池
C及びDと比較しても良好な結果が得られている
ことがわかる。これは本発明の陰極板は活物質層
内部に炭素繊維のマトリツクスが形成されている
ため、極板内の導電性が高められ、早期に極板内
で部分的に水素発生電位に到達することが抑制さ
れて水素ガス発生量が減少したこと、及び活物質
層表面に炭素粉末による導電層を有しているの
で、活物質層内部の炭素繊維または充電生成物で
ある金属カドミウムを介して導電芯体と炭素粉末
よりなる導電層とが部分的に電気的接続された状
態に於いても前記導電層を介して活物質層の表面
に金属カドミウムが生成されるため、酸素ガス吸
収能力が大巾に向上したこをによるものである。 表2は電池A及びDについて3時間率電流にて
0℃で5時間の過充電を行なつた後の内部ガス圧
及び抵抗放電を行なつた後の内部ガス圧を示すも
のである。
[Table] As is clear from Table 1, the battery A of the present invention has higher internal gas pressure after overcharging and higher internal gas pressure after discharging than battery B using a conventional paste-type cadmium cathode plate. It can be seen that the results have been greatly improved, and even better results have been obtained compared to comparative batteries C and D. This is because the cathode plate of the present invention has a carbon fiber matrix formed inside the active material layer, so the conductivity within the electrode plate is increased, and the hydrogen generation potential is partially reached within the electrode plate at an early stage. In addition, since the active material layer has a conductive layer made of carbon powder on the surface of the active material layer, conduction occurs through the carbon fibers inside the active material layer or the metal cadmium that is a charging product. Even when the core body and the conductive layer made of carbon powder are partially electrically connected, metal cadmium is generated on the surface of the active material layer through the conductive layer, so the oxygen gas absorption capacity is high. This is due to the fact that it has been greatly improved. Table 2 shows the internal gas pressures for batteries A and D after overcharging for 5 hours at 0°C at a 3 hour rate current and after resistive discharge.

【表】 電池A及びDは共に放電後の内部ガス圧が0
Kg/cm2であり、水素ガスの発生がなく、また酸素
ガスによる内部ガス圧の上昇も僅かである。水素
ガス発生に関しては、表1の結果を考慮すると、
極端な過充電によつてひき起こされることがわか
る。 また図面は電池A,B,C,Dの0℃、3時間
率充電に於ける過充電時間と内部ガス圧との関係
を示すものであり、電池Aは電池B,C,Dに比
し優れていることが良くわかる。 本発明では、活物質層内部のマトリツクス及び
活物質層表面の導電層に炭素を用いたが、炭素に
代る導電性物質として金属を用いた場合には以下
の様な問題点が生じる。 活物質層内部のマトリツクスとして金属繊維
を用いる場合には、ペースト混練時に金属繊維
を均一に分散させることが困難である。 金属カドミウムを用いた場合には、金属カド
ミウムが直接充放電反応に関与し、導電性の低
い水酸化カドミウムとなるため、その効果を持
続することができない。 アルミニウム、亜鉛、錫、鉛、銅等を用いた
場合には、アルカリ電解液中に溶出するためそ
の効果を失う。加えて、亜鉛は充放電反応によ
り陰極表面に針状結晶を形成し電池内部短絡を
引き起こし電池寿命の低下をもたらし、鉛は極
板容量の劣化を促進させ、また銅はCu2+←→
Cu3+の反応により電池の自己放電を促進させ
る。 鉄、ニツケル、コバルト、白金等を用いた場
合には、水素過電圧が小さいため過充電時に陰
極より著しい水素ガス発生を引き起こし、密閉
化された電池内部の系を破壊するに至る。 金、銀、その他産出量の少ない金属は、炭素
粉末に比べると非常に高価であり、実用に供す
ることが困難である。 その他非金属元素に近い金属や導電性金属酸
化物と呼ばれる物質も、電導度が小さく効果が
少ない事、または高価である事などにより有効
ではない。 これに対して炭素は(1)アルカリ電解液中で安
定、(2)充放電反応に関与せず、電池特性に何ら影
響をもたらさない、(3)水素過電圧の低下による著
しい水素ガス発生を引き起こさない、(4)廉価であ
るという特徴を兼ね備えており、金属を用いた場
合に比し優れ効果的な材料といえる。 活物質層内部に添加される炭素は、粉末状であ
る場合に比し繊維状である場合の方が極板内の導
電性が良好であり、また炭素繊維は導電材として
の働きに加え若干の補強効果をも有するため、補
強用樹脂繊維の添加量を減少せしめ活物質充填量
の減少を抑えて極板全体の導電性を向上させるこ
とも可能である。 (ヘ) 発明の効果 本発明の密閉型アルカリ蓄電池に用いた陰極板
は炭素繊維からなる導電マトリツクスを有するペ
ースト状カドミウム活物質層の表面に、炭素粉末
の導電層を設けたものであるから、化成を行なう
ことなしに容易な方法で且つ廉価に酸素ガス吸収
能力を向上させ、水素ガス発生を抑制させること
ができ、急速充電性能が大巾に向上した密閉型ア
ルカリ蓄電池を提供せしめることが可能となり、
その工業的利用価値大なるものである。
[Table] Both batteries A and D have an internal gas pressure of 0 after discharge.
Kg/cm 2 , no hydrogen gas is generated, and the internal gas pressure increases only slightly due to oxygen gas. Regarding hydrogen gas generation, considering the results in Table 1,
It can be seen that this is caused by extreme overcharging. The drawing also shows the relationship between overcharging time and internal gas pressure for batteries A, B, C, and D during 3-hour rate charging at 0°C. It is clear that it is excellent. In the present invention, carbon is used for the matrix inside the active material layer and the conductive layer on the surface of the active material layer, but when metal is used as a conductive material instead of carbon, the following problems arise. When using metal fibers as a matrix inside the active material layer, it is difficult to uniformly disperse the metal fibers during paste kneading. When metal cadmium is used, the effect cannot be sustained because the metal cadmium directly participates in charge/discharge reactions and becomes cadmium hydroxide with low conductivity. When aluminum, zinc, tin, lead, copper, etc. are used, the effect is lost because they dissolve into the alkaline electrolyte. In addition, zinc forms needle-shaped crystals on the cathode surface through charge-discharge reactions, causing internal short circuits and shortening battery life, while lead accelerates deterioration of electrode plate capacity, and copper causes Cu 2+ ←→
The reaction of Cu 3+ promotes battery self-discharge. When iron, nickel, cobalt, platinum, etc. are used, the hydrogen overvoltage is small, which causes significant hydrogen gas to be generated from the cathode during overcharging, leading to destruction of the sealed battery internal system. Gold, silver, and other metals that are produced in small amounts are much more expensive than carbon powder, making it difficult to put them into practical use. Other metals that are close to non-metallic elements and substances called conductive metal oxides are also not effective because they have low conductivity, are less effective, or are expensive. On the other hand, carbon is (1) stable in alkaline electrolyte, (2) does not participate in charge/discharge reactions and has no effect on battery characteristics, and (3) does not cause significant hydrogen gas generation due to reduction in hydrogen overvoltage. (4) It has the characteristics of being inexpensive, and can be said to be a superior and more effective material compared to metals. When the carbon added inside the active material layer is in the form of fibers, the conductivity within the electrode plate is better than when it is in the form of powder, and in addition to acting as a conductive material, carbon fibers also have some Since it also has a reinforcing effect, it is possible to reduce the amount of reinforcing resin fibers added, suppress a decrease in the amount of active material filled, and improve the electrical conductivity of the entire electrode plate. (F) Effects of the Invention The cathode plate used in the sealed alkaline storage battery of the present invention has a conductive layer of carbon powder provided on the surface of a pasty cadmium active material layer having a conductive matrix made of carbon fibers. It is possible to easily and inexpensively improve the oxygen gas absorption capacity without chemical formation, suppress hydrogen gas generation, and provide a sealed alkaline storage battery with greatly improved rapid charging performance. Then,
Its industrial utility value is great.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明電池Aと比較電池B乃至Dの過充
電時間と内部ガス圧との関係を示す図面である。
The drawing shows the relationship between overcharging time and internal gas pressure for the battery A of the present invention and comparative batteries B to D.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維からなる導電マトリツクスを有する
ペースト状カドミウム活物質層の表面に、炭素粉
末の導電層を設けてなる陰極板を備えた密閉型ア
ルカリ蓄電池。
1. A sealed alkaline storage battery comprising a cathode plate formed by providing a conductive layer of carbon powder on the surface of a paste-like cadmium active material layer having a conductive matrix made of carbon fibers.
JP58241210A 1983-12-20 1983-12-20 Sealed alkaline storage battery Granted JPS60131764A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58241210A JPS60131764A (en) 1983-12-20 1983-12-20 Sealed alkaline storage battery
US06/680,817 US4614696A (en) 1983-12-20 1984-12-12 Negative electrode plate for alkaline storage cells of sealed type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58241210A JPS60131764A (en) 1983-12-20 1983-12-20 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS60131764A JPS60131764A (en) 1985-07-13
JPH0234433B2 true JPH0234433B2 (en) 1990-08-03

Family

ID=17070833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58241210A Granted JPS60131764A (en) 1983-12-20 1983-12-20 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS60131764A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484575A (en) * 1987-09-25 1989-03-29 Shin Kobe Electric Machinery Anode plate for sealed nickel-cadmium storage battery
US5281495A (en) * 1992-02-28 1994-01-25 Sanyo Electric Co., Ltd. Alkaline storage cell having a negative electrode comprising a cadmium active material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150641A (en) * 1975-06-20 1976-12-24 Japan Storage Battery Co Ltd Zinc plate for sealed alkaline battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178922U (en) * 1974-12-19 1976-06-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150641A (en) * 1975-06-20 1976-12-24 Japan Storage Battery Co Ltd Zinc plate for sealed alkaline battery

Also Published As

Publication number Publication date
JPS60131764A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
WO2001059866A1 (en) Nickel hydroxide paste with pectin binder
JPH02239566A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH0568828B2 (en)
JPH0234433B2 (en)
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JPH0250585B2 (en)
JP2797554B2 (en) Nickel cadmium storage battery
JPH0234434B2 (en)
JPH0815077B2 (en) Sealed alkaline storage battery
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH0837022A (en) Alkaline storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH10275619A (en) Paste type cadmium electrode
JPH09245827A (en) Manufacture of alkaline storage battery
JPS6084768A (en) Alkaline zinc storage battery
JPS61206164A (en) Paste type cadmium anode for alkaline strorage battery
JPH05159800A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPS60258857A (en) Sealed type nickel-cadmium storage battery
JPH06223823A (en) Negative electrode plate for sealed type alkaline storage battery
JPH0763005B2 (en) Sealed alkaline storage battery
JPH0831314B2 (en) Sealed alkaline storage battery
JPH0795443B2 (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term