JPH0231012B2 - - Google Patents

Info

Publication number
JPH0231012B2
JPH0231012B2 JP61049268A JP4926886A JPH0231012B2 JP H0231012 B2 JPH0231012 B2 JP H0231012B2 JP 61049268 A JP61049268 A JP 61049268A JP 4926886 A JP4926886 A JP 4926886A JP H0231012 B2 JPH0231012 B2 JP H0231012B2
Authority
JP
Japan
Prior art keywords
mold
glass
carbon film
shape
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61049268A
Other languages
Japanese (ja)
Other versions
JPS62207726A (en
Inventor
Shinichiro Hirota
Takaharu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP4926886A priority Critical patent/JPS62207726A/en
Publication of JPS62207726A publication Critical patent/JPS62207726A/en
Publication of JPH0231012B2 publication Critical patent/JPH0231012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加圧成形後に精密研磨加工を要しな
いプレスレンズの製造方法に関する。このプレス
レンズは、精密加工された型の表面がレンズ表面
に転写されることから、球面レンズはもとより、
非球面レンズが製造可能であり、広範囲のレンズ
に利用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a press lens that does not require precision polishing after pressure molding. This press lens uses a precision-processed mold surface that is transferred to the lens surface, so it can be used not only for spherical lenses but also for
Aspheric lenses can be manufactured and used in a wide range of lenses.

〔従来の技術〕[Conventional technology]

従来のプレスレンズの製造方法としては、各種
提案されているが、いずれも型の表面の酸化を防
止するために、非酸化性雰囲気中で行われてい
る。例えば、米国特許第4139677号では、非酸化
性雰囲気中で、SiC又はSi3N4の表面層を有する
型にガラスを置いて、このガラスを軟化状態にす
るまで型と共に加熱して、この型で軟化状態のガ
ラスを成形加工する方法を提案している。
Various conventional press lens manufacturing methods have been proposed, but all of them are carried out in a non-oxidizing atmosphere in order to prevent the surface of the mold from oxidizing. For example, in U.S. Pat. No. 4,139,677, glass is placed in a mold with a surface layer of SiC or Si 3 N 4 in a non-oxidizing atmosphere, heated together with the mold until it is in a softened state, and the mold is heated. proposed a method for molding glass in a softened state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、非酸化性雰囲気として中性ガス
の代表例である窒素ガスを使用した場合、この窒
素ガス中に数ppm程度のわずかな量の酸素が存在
しており、このような微量の酸素によつても型表
面上に酸化膜が形成されて、加圧成形時において
軟化状態のガラスが型表面に融着しやすい問題点
があつた。
However, when nitrogen gas, which is a typical example of a neutral gas, is used as a non-oxidizing atmosphere, a small amount of oxygen (approximately a few ppm) is present in this nitrogen gas, and this trace amount of oxygen However, there was a problem in that an oxide film was formed on the mold surface, and the softened glass easily fused to the mold surface during pressure molding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のプレスレンズの製造方法は、上記問題
点を解決するためになされたものであり、第1番
目の発明は、レンズの仕上り形状の基礎をなす形
状を有するガラスと型との相互に対向する両表面
のうち少なくとも一方の表面に炭素膜を形成し、
次に、前記炭素膜を介して前記ガラスをその軟化
状態で前記型により加圧成形することを特徴と
し、第2番目の発明は、レンズの仕上り形状の基
礎をなす形状を有するガラスの表面に炭素膜を形
成し、前記炭素膜を介して前記ガラスをその軟化
状態で前記型により加圧成形し、次に、前記炭素
膜を酸化処理により除去することを特徴とする。
The press lens manufacturing method of the present invention has been made to solve the above-mentioned problems, and the first invention is that a mold and a glass having a shape that forms the basis of the finished shape of the lens are mutually opposed to each other. forming a carbon film on at least one of the two surfaces,
Next, the glass is pressure-molded by the mold in a softened state through the carbon film, and the second invention is characterized in that the glass surface has a shape that forms the basis of the finished shape of the lens. The present invention is characterized in that a carbon film is formed, the glass is pressure-molded in a softened state through the carbon film using the mold, and then the carbon film is removed by oxidation treatment.

ここで、「レンズの仕上り形状の基礎をなす形
状」とは、加圧成形前のガラスの予備成形された
形状であつて、この予備成形の形状が、その後の
加圧成形によつてレンズを所望の仕上り形状にす
ることのできる基礎的な形状であり、例えば、仕
上り形状が凸又は凹のレンズである場合、容積が
ほぼ等しい円板状、円柱状、球面状又は球形状で
あり、好ましくは仕上り形状とほぼ近似した形状
である。
Here, the "shape that forms the basis of the finished shape of the lens" refers to the preformed shape of the glass before pressure forming, and the shape of this preform is the shape that forms the basis of the lens through subsequent pressure forming. It is a basic shape that can be made into a desired finished shape. For example, when the finished shape is a convex or concave lens, it is preferably a disk shape, a cylinder shape, a spherical shape, or a spherical shape with approximately equal volume. is a shape that is almost similar to the finished shape.

次に、「炭素膜」の厚さの実用範囲は、50〜
5000Å(好ましくは100〜1000Å)であり、50Å
未満であると、均一な膜の形成が困難になり、こ
の炭素膜形成の効果が減少し、5000Åを越える
と、加圧成形による面精度が低下する。この炭素
膜の成膜方法としては、真空蒸着法、スパツタリ
ング法、又はイオンプレーデイング法等が挙げら
れる。
Next, the practical range of the thickness of the "carbon film" is 50 ~
5000 Å (preferably 100-1000 Å) and 50 Å
If it is less than 5,000 Å, it will be difficult to form a uniform film and the effect of forming the carbon film will be reduced, and if it exceeds 5000 Å, the surface precision due to pressure molding will deteriorate. Examples of the method for forming this carbon film include a vacuum evaporation method, a sputtering method, and an ion plating method.

次に、「型」は被成形ガラスと対向する表面層
が重要であり、気孔等の欠陥がなく、緻密で鏡面
状に精密加工することができ、加熱に対して硬度
及び強度を有する等の型としての一般的要件を具
備しているものであれば、本発明では型の母材と
その表面層の材料において特に限定する必要がな
く、例えば、炭化ケイ素、炭化ケイ素と炭素の混
合物、窒化ケイ素、モリブデン、400系列のステ
ンレス鋼、無電解ニツケル、ベリリウム−ニツケ
ル合金、ホウ化チタン、貴金属(白金、ロジウ
ム、金等)、及びSiO2−Al2O3−CaO−MgO−
ZnO−PbO系ガラス(転移温度730℃、熱膨張係
数43×10-7/℃のような転移温度が上記「ガラ
ス」のそれよりも高い多成分系ガラス等の広範囲
の材料が使用可能である。
Next, the surface layer of the "mold" facing the glass to be formed is important; it has no defects such as pores, can be precisely processed into a dense mirror-like surface, and has hardness and strength against heating. In the present invention, there is no need to particularly limit the material of the mold base material and its surface layer as long as it meets the general requirements for a mold. For example, silicon carbide, a mixture of silicon carbide and carbon, nitride Silicon, molybdenum, 400 series stainless steel, electroless nickel, beryllium-nickel alloy, titanium boride, precious metals (platinum, rhodium, gold, etc.), and SiO 2 −Al 2 O 3 −CaO−MgO−
A wide range of materials can be used, including ZnO-PbO glass (multi-component glass with a transition temperature of 730°C and a coefficient of thermal expansion of 43×10 -7 /°C, which has a higher transition temperature than that of the above-mentioned "glass"). .

次に、「前記ガラスをその軟化状態で前記型に
より加圧成形する」とは、加圧成形時における要
件であり、加圧成形前においては被成形物と型と
をそれぞれ独立して加熱しておいてもよい。ま
た、被成形物と型の両温度は、同一でもよいし、
異なつていてもよい。
Next, "press-forming the glass in a softened state using the mold" is a requirement during pressure-forming, and before pressure-forming, the object to be molded and the mold must be heated independently. You can leave it there. Furthermore, the temperature of both the molded object and the mold may be the same, or
They can be different.

次に、「加圧成形」の圧力は、型の表面形状が
被成形物に転写するのに充分な圧力であればよ
い。
Next, the pressure for "pressure molding" may be sufficient as long as the surface shape of the mold is transferred to the object to be molded.

さらに、本願発明のプレスレンズの製造に用い
られる型は、型表面に施こされた炭素膜が磨耗や
酸化によつて部分的に損耗し成形型として不良と
なつた場合に於いても、残存する炭素膜は酸化処
理によつて成形面の曲面を損わず除膜が容易に行
え、その後真空蒸着法、スパツタリング法等によ
り単に再成膜することのみによつて容易に成形型
として再生することができる。
Furthermore, the mold used for manufacturing the press lens of the present invention has no residual carbon even if the carbon film applied to the mold surface is partially worn out due to wear or oxidation and becomes defective as a mold. The carbon film can be easily removed by oxidation treatment without damaging the curved surface of the molding surface, and then it can be easily regenerated as a mold by simply re-forming the film using vacuum evaporation, sputtering, etc. be able to.

〔作用〕[Effect]

本発明によれば、ガラスをその軟化状態で型に
より加圧成形する際、ガラスと型との間に炭素膜
が介在していることから、軟化状態のガラスと型
との融着を防止する。
According to the present invention, when glass is pressure-molded using a mold in its softened state, since a carbon film is interposed between the glass and the mold, fusion between the softened glass and the mold is prevented. .

〔実施例 1〕 ガラスの素材としてアルカリ硼珪酸塩光学ガラ
ス(BK7)(転移温度;555℃)を第1図に示す
ように円板状のガラス1(直径;9.7mm、厚さ;
2.5mm)に予備成形し、この円板状のガラス1の
上下面に真空蒸着法により炭素膜2(厚さ;400
Å)を形成して、これを加圧成形の対象の被成形
物3とする。
[Example 1] As a glass material, alkali borosilicate optical glass (BK7) (transition temperature: 555°C) was used as a disk-shaped glass 1 (diameter: 9.7 mm, thickness:
A carbon film 2 (thickness: 400 mm) is preformed to a thickness of 2.5 mm) on the top and bottom surfaces of this disc-shaped glass 1 by vacuum evaporation.
) is formed, and this is used as the molded object 3 to be pressure molded.

本実施例で使用する加圧成形機は第2図に示す
ように、凸球面状に精密鏡面加工された型表面を
有する上型4(材料:炭化タングステン)と下型
5(材料:炭化タングステン)、内周面が精密鏡
面加工された案内型6(材料:炭化タングステ
ン)とを具備し、上型4が上下移動して、その外
周面が案内型6の内周面と摺動し、下型5の外周
面が案内型6の内周面と摺動支持され、上記型
4,5,6は支持台8(材料:ステンレス鋼)に
より支持されている。押し棒7(材料:ステンレ
ス鋼)は上型4の上面まで降下して荷重を加え
る。そして、以上の型構造体はシリカチユーブ9
内に収容され、このシリカチユーブ9の外周に誘
導加熱コイル10を配設し、下型5内に埋設した
熱電対11により温度測定して、誘導加熱コイル
10の温度制御を行う。
As shown in Fig. 2, the pressure molding machine used in this example consists of an upper mold 4 (material: tungsten carbide) and a lower mold 5 (material: tungsten carbide) each having a convex spherical mold surface precisely mirror-finished. ), and a guide mold 6 (material: tungsten carbide) whose inner peripheral surface is precision mirror-finished, the upper mold 4 moves up and down, and its outer peripheral surface slides on the inner peripheral surface of the guide mold 6, The outer peripheral surface of the lower mold 5 is slidably supported on the inner peripheral surface of the guide mold 6, and the molds 4, 5, and 6 are supported by a support stand 8 (material: stainless steel). The push rod 7 (material: stainless steel) descends to the upper surface of the upper mold 4 and applies a load. The above mold structure is a silica tube 9
An induction heating coil 10 is disposed around the outer periphery of the silica tube 9, and the temperature of the induction heating coil 10 is controlled by measuring the temperature with a thermocouple 11 embedded in the lower mold 5.

次に、前述した被成形物3を上・下型4,5内
に置き、N2ガス雰囲気にして、誘導加熱コイル
10により極4,5,6と共に被成形物3を670
℃(ガラス1の粘度が108.7ポアズに相当する温度
であつて、軟化状態のガラスにする)に加熱した
状態で、押し棒7を降下して上型4に荷重を加え
て加圧成形する(圧力;50Kg/cm2、加圧時間;60
秒)。その際、加圧成形物は、型との間で炭素膜
が介在していることから、型との融着を防止して
いる。
Next, the above-mentioned workpiece 3 is placed in the upper and lower molds 4 and 5, and in an N2 gas atmosphere, the workpiece 3 together with the poles 4, 5, 6 is heated to 670°C by the induction heating coil 10.
℃ (at a temperature corresponding to the viscosity of the glass 1 of 108.7 poise, making the glass in a softened state), the push rod 7 is lowered and a load is applied to the upper mold 4 to perform pressure forming. (Pressure: 50Kg/cm 2 , pressurization time: 60
seconds). At this time, the press-molded product is prevented from being fused to the mold because a carbon film is interposed between it and the mold.

次に、押し棒7の圧力を除去して型4,5,6
内に加圧成形物を包囲したまま、内部ガラス1の
転移温度(555℃)まで徐冷し、しかる後、急冷
して、加圧成形物を取り出す。この加圧成形物の
表面には前述した炭素膜が付着されているので、
ガラス1の転移温度付近(例:555℃)でアニー
ルして酸化処理することにより、この炭素膜を
CO又はCO2にガス化させて除去し、仕上り形状
に成形されたレンズを得る。このレンズは、直径
10mmの両凹球面レンズであつて、上・下型4,5
の表面の凸球面形状と対応した凹球面形状がその
まま転写されて、高面精度を得ており、また、透
過率や屈折率などの光学的品質を良好に維持して
いることが認められた。
Next, the pressure of the push rod 7 is removed and the molds 4, 5, 6 are removed.
While enclosing the press-molded product inside the glass, it is slowly cooled to the transition temperature (555° C.) of the inner glass 1, then rapidly cooled, and the press-molded product is taken out. Since the above-mentioned carbon film is attached to the surface of this pressure-molded product,
By annealing and oxidizing near the transition temperature of Glass 1 (e.g. 555°C), this carbon film is
Gasify and remove CO or CO 2 to obtain a lens molded into the finished shape. This lens has a diameter
It is a 10mm biconcave spherical lens with upper and lower molds 4 and 5.
It was confirmed that the concave spherical shape corresponding to the convex spherical shape of the surface was transferred as is, achieving high surface accuracy and maintaining good optical quality such as transmittance and refractive index. .

〔実施例 2〕 ガラスの素材としてバリウム硼珪酸塩系光学ガ
ラスFK15(転移温度;655℃)を第3図に示すよ
うに球状のガラス12(直径;6.3mm)に予備成
形し、これを被成形物とする。
[Example 2] As a glass material, barium borosilicate optical glass FK15 (transition temperature: 655°C) was preformed into a spherical glass 12 (diameter: 6.3 mm) as shown in Fig. 3, and this was covered. Make it into a molded product.

本実施例で使用する加圧成形機は実施例1のも
のと基本的に同一であるが、本実施例では、球状
のガラス12から両凸球面レンズを製作すること
から、上型4′と下型5′のそれぞれの型表面が凹
球面状に精密鏡面加工され、更に、この上・下型
4′,5′の表面に炭素膜13(厚さ:700Å)が
真空蒸着法により形成されている点だけ相違して
いる。
The pressure molding machine used in this example is basically the same as that in Example 1, but in this example, since a biconvex spherical lens is manufactured from spherical glass 12, the upper mold 4' and The surface of each of the lower molds 5' is precision mirror-finished into a concave spherical shape, and a carbon film 13 (thickness: 700 Å) is formed on the surfaces of the upper and lower molds 4', 5' by vacuum evaporation. The only difference is that

次に、球状のガラス12を上・下型4′,5′内
に置き、2%H2+98%N2ガス雰囲気にして、誘
導加熱コイル10により型4′,5′,6と共にガ
ラス12を743℃(ガラス12の粘度が108.7ポア
ズに相当する温度であつて、軟化状態のガラスに
する。)に加熱した状態で、押し棒7を降下して、
上型4′に荷重を加えて加圧成形する(圧力;50
Kg/cm2、加圧時間;60秒)。その際、加圧成形物
は、型表面の炭素膜の存在により、型との融着を
防止している。
Next, the spherical glass 12 is placed in the upper and lower molds 4', 5', and in a 2% H 2 + 98% N 2 gas atmosphere, the glass 12 is heated together with the molds 4', 5', 6 by the induction heating coil 10. While heating the glass to 743°C (a temperature corresponding to the viscosity of the glass 12 of 108.7 poise, making it a softened glass), the push rod 7 is lowered,
Pressure is formed by applying a load to the upper mold 4' (pressure: 50
Kg/cm 2 , pressurization time: 60 seconds). At this time, the pressure-molded product is prevented from being fused to the mold due to the presence of a carbon film on the mold surface.

次に、押し棒7の圧力を除去して、型4′,
5′,6内に加圧成形物を包囲したまま、このガ
ラス12の転移温度(655℃)まで徐冷した後、
急冷して、加圧成形物が仕上り形状に成形された
両凸球面レンズ(直径;8.0mm、中心肉厚;2.7
mm)のレンズとなつて取り出される。このレンズ
は、上・下型4′,5′の表面(正確には、この表
面に形成された炭素膜13の表面)形状と対応し
た凸球面形状がそのまま転写されて高面精度を得
ており、光学的品質も良好であつた。
Next, the pressure of the push rod 7 is removed and the molds 4',
After slowly cooling the glass 12 to the transition temperature (655°C) while surrounding the press-formed product in 5' and 6,
Biconvex spherical lens (diameter: 8.0 mm, center thickness: 2.7
mm) lens. This lens has a convex spherical shape that corresponds to the surface shape of the upper and lower molds 4' and 5' (more precisely, the surface of the carbon film 13 formed on these surfaces), and has a high surface precision. The optical quality was also good.

以上の実施例において、炭素膜をガラスの表面
と型の表面にそれぞれ別々に形成したものを挙げ
たが、両表面に形成してもよいし、また型におい
て上・下型のみならず、案内型の内周面に形成し
てもよい。
In the above embodiments, the carbon film was formed separately on the surface of the glass and the surface of the mold, but it may be formed on both surfaces, and the carbon film may be formed not only on the upper and lower molds but also on the guide. It may be formed on the inner peripheral surface of the mold.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、ガラスと型表面
との間に炭素膜を介在して、ガラスを軟化温度で
型により加圧成形していることから、加圧成形時
の型との融着を防止することができる。また、型
材料として高価な材料の使用を必要とせず、広範
囲な型材料から適宜選定することができる。さら
に、炭素膜が磨耗や酸化によつて型として不良に
なつた場合に於いても、高価な型の成形曲面を損
わずに容易に膜の再生が可能であり、経済的に優
れた効果を有する。
As described above, according to the present invention, since the carbon film is interposed between the glass and the mold surface and the glass is pressure-molded by the mold at a softening temperature, fusion with the mold during pressure-forming is reduced. It is possible to prevent wear. Further, it is not necessary to use expensive materials as mold materials, and it is possible to appropriately select mold materials from a wide range of materials. Furthermore, even if the carbon film becomes defective as a mold due to abrasion or oxidation, it can be easily regenerated without damaging the molding surface of the expensive mold, resulting in an economically superior effect. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1による被成形物を示
す断面図、第2図は本発明の実施例1による加圧
成形機を示す断面図、第3図は本発明の実施例2
による被成形物を示す断面図、及び第4図は本発
明の実施例2による加圧成形機を示す断面図であ
る。 1,12……ガラス、2,13……炭素膜、
4,4′……上型、5,5′……下型、6……案内
型。
FIG. 1 is a cross-sectional view showing a molded article according to Example 1 of the present invention, FIG. 2 is a cross-sectional view showing a pressure molding machine according to Example 1 of the present invention, and FIG. 3 is a cross-sectional view showing a press molding machine according to Example 1 of the present invention.
and FIG. 4 is a cross-sectional view showing a pressure molding machine according to Example 2 of the present invention. 1,12...Glass, 2,13...Carbon film,
4, 4'... Upper mold, 5, 5'... Lower mold, 6... Guide mold.

Claims (1)

【特許請求の範囲】 1 レンズの仕上り形状の基礎をなす形状を有す
るガラスと型との相互に対向する両表面のうち少
なくとも一方の表面に50〜5000Åの厚さの炭素膜
を形成し、次に、前記炭素膜を介して前記ガラス
をその軟化状態で前記型により加圧成形すること
を特徴とするプレスレンズの製造方法。 2 レンズの仕上り形状の基礎をなす形状を有す
るガラスの表面に50〜5000Åの厚さの炭素膜を形
成し、前記炭素膜を介して前記ガラスをその軟化
状態で前記型により加圧成形し、次に、前記炭素
膜を酸化処理により除去することを特徴とするプ
レスレンズの製造方法。
[Claims] 1. A carbon film having a thickness of 50 to 5000 Å is formed on at least one of the mutually opposing surfaces of the glass and the mold, which have a shape that forms the basis of the finished shape of the lens, and then A method for manufacturing a press lens, characterized in that the glass is pressure-molded in a softened state by the mold through the carbon film. 2. Forming a carbon film with a thickness of 50 to 5000 Å on the surface of a glass having a shape that forms the basis of the finished shape of the lens, and press-molding the glass in a softened state with the mold through the carbon film, Next, the method for manufacturing a press lens, characterized in that the carbon film is removed by oxidation treatment.
JP4926886A 1986-03-05 1986-03-05 Production of pressed lens Granted JPS62207726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4926886A JPS62207726A (en) 1986-03-05 1986-03-05 Production of pressed lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4926886A JPS62207726A (en) 1986-03-05 1986-03-05 Production of pressed lens

Publications (2)

Publication Number Publication Date
JPS62207726A JPS62207726A (en) 1987-09-12
JPH0231012B2 true JPH0231012B2 (en) 1990-07-11

Family

ID=12826087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4926886A Granted JPS62207726A (en) 1986-03-05 1986-03-05 Production of pressed lens

Country Status (1)

Country Link
JP (1) JPS62207726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091242A (en) * 2004-10-12 2009-04-30 Hoya Corp Optical glass, preform for precision press molding and its manufacturing method, and optical element and its manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483529A (en) * 1987-09-28 1989-03-29 Hoya Corp Production of glass forming mold
EP0581013B1 (en) * 1992-06-25 1998-11-25 Canon Kabushiki Kaisha Mold for forming optical element and method for producing the same
US5720791A (en) * 1994-08-03 1998-02-24 Minolta Co., Ltd. Method of producing an optical lens element
JP3821878B2 (en) * 1996-04-23 2006-09-13 フジノン株式会社 Release film forming method
US7140205B2 (en) 2002-03-14 2006-11-28 Hoya Corporation Method of manufacturing glass optical elements
JP5464904B2 (en) * 2009-05-18 2014-04-09 オリンパス株式会社 Optical element molding die, optical element molding method, and optical element manufacturing method
CN102659301B (en) * 2012-05-07 2014-03-12 常熟市金诺精工模具有限公司 Glassware cover die suitable for automatic production
JP6504933B2 (en) * 2015-06-23 2019-04-24 オリンパス株式会社 Optical element molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091242A (en) * 2004-10-12 2009-04-30 Hoya Corp Optical glass, preform for precision press molding and its manufacturing method, and optical element and its manufacturing method

Also Published As

Publication number Publication date
JPS62207726A (en) 1987-09-12

Similar Documents

Publication Publication Date Title
US4481023A (en) Process to mold precision glass articles
KR100714746B1 (en) Process for mass-producing optical elements
KR860001491B1 (en) Process for molding glass shapes of high precision
US4734118A (en) Process to mold precision glass articles
JPS632821A (en) Formation of glass optical element, mold therefor and manufacture of mold
KR900000622B1 (en) Method for forming of optical glass element
US4969944A (en) Process to mold precision glass articles
US5987922A (en) Manufacturing method for molded glass articles
US4854958A (en) Process to mold precision glass articles
JPH0231012B2 (en)
JP3763552B2 (en) Glass lens having glass coating layer and manufacturing method thereof
JPH021779B2 (en)
JPH021778B2 (en)
JP2001335334A (en) Optical element-forming mold
JPH021780B2 (en)
JPH021781B2 (en)
JPS61291427A (en) Molded lens and production thererof
JPS63103836A (en) Mold for molding optical glass element
CA2010925A1 (en) Molding apparatus and method
JPS62197326A (en) Production of press lens
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JP3185299B2 (en) Glass lens molding die and glass lens molding device
JP4256190B2 (en) Manufacturing method of glass optical element
JP2000053433A (en) Production of glass optical element
JPH0572336B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term