JPH02309209A - Apparatus for measuring wavy condition of road surface - Google Patents

Apparatus for measuring wavy condition of road surface

Info

Publication number
JPH02309209A
JPH02309209A JP12867289A JP12867289A JPH02309209A JP H02309209 A JPH02309209 A JP H02309209A JP 12867289 A JP12867289 A JP 12867289A JP 12867289 A JP12867289 A JP 12867289A JP H02309209 A JPH02309209 A JP H02309209A
Authority
JP
Japan
Prior art keywords
distance
road surface
ultrasonic sensor
ultrasonic
duct body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12867289A
Other languages
Japanese (ja)
Inventor
Junjiro Nogami
野神 順次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP12867289A priority Critical patent/JPH02309209A/en
Publication of JPH02309209A publication Critical patent/JPH02309209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Road Repair (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To determine wavy condition of a road bed with an accurate measurement of a distance from the road bed by arranging a first ultrasonic sensor facing an opening, a second ultrasonic sensor disposed within a duct body and the like to operate a computing means by outputs of the first and second ultrasonic sensors. CONSTITUTION:This apparatus is provided with a duct body 11 with one end thereof opened facing a road surface, a first ultrasonic sensor 15 facing the open part thereof, a reflector body 12 arranged within the duct body 11, a second ultrasonic sensor 16 disposed within the duct body separated at a predetermined distance from the reflector body, a computing means 18 and the like. The computing means 18 receives outputs from the first and second ultrasonic sensors 15 and 16 to calculate a first distance based on a predetermined distance, first and second time. Based on the first distance, wavy condition of the road surface is determined. This enables measuring of a distance to the road surface without being affected by an atmosphere in which the ultrasonic sensors 15 and 16 are disposed while allowing accurate determination of the wavy condition of the road surface.

Description

【発明の詳細な説明】 (産業上の利用9寿) 本発明は路面のうねり状態を計111IJするための計
測装置に関し、特に、道路の舗装を行うアスファルトフ
ィニッシャ−等に用いられる路面うねり状態計測装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (9 years of industrial application) The present invention relates to a measuring device for measuring a total of 111 IJ of undulations on a road surface, and particularly to a measuring device for measuring undulations on a road surface used in an asphalt finisher for paving roads. Regarding equipment.

(従来の技術) 一般に、アスファルトフィニッシャ−等の敷きならし装
置で道路等の舗装を行う際には予め定められた厚さく設
計値)に実際の舗装厚が維持されているかを確認する必
要がある。この確認に当たっては、実際の舗装厚の舗装
厚をRF測するばかりでなくアスファルトフィニッシャ
−の進行方向の路盤(路面)のうねり状態(路盤凹凸状
態)を計測する必要がある。
(Prior art) Generally, when paving roads, etc. with a leveling device such as an asphalt finisher, it is necessary to confirm whether the actual pavement thickness is maintained at a predetermined thickness (design value). be. For this confirmation, it is necessary not only to perform RF measurement of the actual pavement thickness, but also to measure the undulations (roadbed unevenness) of the roadbed (road surface) in the direction of movement of the asphalt finisher.

従来、路盤のうねり状態を計測する際には、光学式セン
サをアスファルトフィニッシャ−に取す付けて、路盤と
光学式センサとの距離を検出しこの距離の変動によって
路盤のうねり状態を求めることが行われている。
Conventionally, when measuring the undulation state of the roadbed, it was possible to attach an optical sensor to the asphalt finisher, detect the distance between the roadbed and the optical sensor, and determine the undulation state of the roadbed from changes in this distance. It is being done.

また、同様に超音波センサをアスファルトフィニッシャ
−に取り付けて、超音波センサによって、路盤と超音波
センサとの距離を検出しこの距離の変動によって路盤の
うねり状態を求めることも行われている。
Additionally, an ultrasonic sensor is similarly attached to an asphalt finisher, the distance between the roadbed and the ultrasonic sensor is detected by the ultrasonic sensor, and the undulation state of the roadbed is determined from fluctuations in this distance.

(発明が解決しよ、うとする課題) ところで、上述のように光学式センサを用いた場合、一
般に路盤は光反射率が悪く、さらに、路盤から巻き上が
る粉塵等によって光が遮られる場合があり、その結果、
正確に路盤との距離が計測できず、路盤のうねり状態が
正確に求められないという問題点がある。
(Problem to be solved by the invention) By the way, when an optical sensor is used as described above, the roadbed generally has poor light reflectance, and furthermore, the light may be blocked by dust etc. rolled up from the roadbed. ,the result,
There is a problem that the distance to the roadbed cannot be accurately measured and the undulation state of the roadbed cannot be accurately determined.

また、超音波センサを用いた場合には、超音波センサ自
体が周囲の雰囲気、特に、温度、圧力、及び湿度の影響
を受けて音速が変化する。超音波センサの場合、超音波
センサ及び路盤間における超音波の往復時間によって路
盤との距離を求めているから、正確に路盤との距離が計
WJできず、路盤のうねり状態が正確に求められないと
いう問題点がある。
Furthermore, when an ultrasonic sensor is used, the speed of sound changes as the ultrasonic sensor itself is influenced by the surrounding atmosphere, particularly temperature, pressure, and humidity. In the case of ultrasonic sensors, the distance to the roadbed is determined by the round trip time of ultrasonic waves between the ultrasonic sensor and the roadbed, so it is not possible to accurately measure the distance to the roadbed, and the undulation state of the roadbed cannot be accurately determined. The problem is that there is no.

本発明の目的は正確に路盤との距離を計測することがで
き、その結果として路盤のうねり状態を正確に求めるこ
とができる路面うねり状態検出装置を提供することにあ
る。
An object of the present invention is to provide a road surface undulation state detection device that can accurately measure the distance to the roadbed and, as a result, accurately determine the undulation state of the roadbed.

(課題を解決するための手段) 本発明によれば、路面のうねり状態を計測する際に用い
られ、該路面に面した一端部が開口されたダクト体と、
前記開口部に面した第1の超音波センサと、前記ダクト
体内に設けられた反射板体と、該反射板体に対向して該
反射板体から予め定められた距離離れて前記ダクト体内
に配設された第2の超音波センサと、前記第1及び第2
の超音波センサを駆動するための駆動手段と、前記ダク
ト体内に通風するためのファンと、前記第1及び第2の
超音波センサからの出力を受け、前記第1の超音波セン
サと前記路面との間の第1の距離を超音波が伝搬するの
に要する第1の時間を求めるとともに前記予め定められ
た距離超音波が伝搬するのに要する第2の時間を求め、
前記予め定められた距離、前記第1の時間、及び前記第
2の時間に基づいて前記第1の距離を算出する演算手段
とを有し、該第1の距離に基づいて前記路面のうねり状
態を求めるようにしたことを特徴とする路面うねり状態
計測装置が得られる。
(Means for Solving the Problems) According to the present invention, a duct body is used when measuring the undulation state of a road surface and has an open end facing the road surface;
a first ultrasonic sensor facing the opening, a reflector body provided within the duct body, and a first ultrasonic sensor facing the reflector body and located within the duct body at a predetermined distance from the reflector body. a second ultrasonic sensor disposed;
a driving means for driving the ultrasonic sensor; a fan for ventilation in the duct body; Determining a first time required for the ultrasonic wave to propagate a first distance between and determining a second time required for the ultrasonic wave to propagate the predetermined distance;
calculation means for calculating the first distance based on the predetermined distance, the first time, and the second time, and calculating the undulation state of the road surface based on the first distance. A road surface undulation condition measuring device is obtained, which is characterized in that it calculates the following.

(作用) 本発明では、駆動手段で第1及び第2の超音波センサを
駆動する。第1の超音波センサからの超音波は路面で反
射して第1の超音波センサで受信される。一方、第2の
超音波センサからの超音波は反射板体で反射して第2の
超音波センサで受信される。第1及び第2の超音波セン
サからの出力は演算手段に与えられる′。演算手段は第
1の超音波センサから超音波が送出され反射波を受ける
までの時間(第1の時間(1+ ))を求めるとともに
第2の超音波センサから超音波が送出され反射波を受け
るまでの時間(第2の時間(t2))を求める。第2の
超音波センサと反射板体との距離(Lo)は予め定めら
れており、演算手段は予め定められた距離(Lo)、第
1の時間(tl)、及−び第2の時間(t2)に基づい
て第1の超音波センサから路面までの距離、つまり、第
1の距離(L)を求める。例えば、 L−(2Lo /12)/l + /2によって第1の
距離(L)を求める。
(Operation) In the present invention, the first and second ultrasonic sensors are driven by the driving means. The ultrasonic waves from the first ultrasonic sensor are reflected on the road surface and received by the first ultrasonic sensor. On the other hand, the ultrasonic waves from the second ultrasonic sensor are reflected by the reflection plate and received by the second ultrasonic sensor. Outputs from the first and second ultrasonic sensors are given to arithmetic means. The calculation means calculates the time (first time (1+)) from when the ultrasonic wave is sent out from the first ultrasonic sensor until it receives the reflected wave, and also when the ultrasonic wave is sent out from the second ultrasonic sensor and receives the reflected wave. The time until (second time (t2)) is calculated. The distance (Lo) between the second ultrasonic sensor and the reflection plate body is predetermined, and the calculation means calculates the predetermined distance (Lo), the first time (tl), and the second time. (t2), the distance from the first ultrasonic sensor to the road surface, that is, the first distance (L) is determined. For example, the first distance (L) is determined by L-(2Lo/12)/l + /2.

第1及び第2の超音波センサはダクト体に収納され、し
かもダクト体内はファンによって通風されているから、
第1及び第2の超音波センサは同一の雰囲気中に置かれ
ることになる。
The first and second ultrasonic sensors are housed in the duct body, and the inside of the duct body is ventilated by a fan.
The first and second ultrasonic sensors will be placed in the same atmosphere.

このようにして、実質的に第1の超音波センサによる誤
差は第2の超音波センサによって補正されることになる
In this way, the error caused by the first ultrasonic sensor is substantially corrected by the second ultrasonic sensor.

(実施例) 以下本発明について実施例によって説明する。(Example) The present invention will be explained below with reference to Examples.

第1図を参照して、一端部が開口されたダクト体11が
開口面を下側にして路面(路盤)の上方に配置されてい
る。ダクト体11の内壁にはその中央部において左方向
に延びる反射板12が設けられている。反射板12の下
側近傍には第1の取付板13aが形成されており、反射
板12に対向して反射板12の上方には所定の距離をお
いて第2の取付板13bが形成されている。第1の取付
板13a左端には下方に延びる板体13cが取り付けら
れ、第2の取付板13bの左端には下方に延びる板体1
3dが取り付けられている。ダクト体11の上端には通
風口14aが形成されており、ファン14の駆動によっ
て通風口14aからダクト体11に空気が送り込まれる
Referring to FIG. 1, a duct body 11 having one end opened is placed above a road surface (roadbed) with the opening surface facing downward. A reflecting plate 12 is provided on the inner wall of the duct body 11 at the center thereof and extending to the left. A first mounting plate 13a is formed near the bottom of the reflecting plate 12, and a second mounting plate 13b is formed at a predetermined distance above the reflecting plate 12, facing the reflecting plate 12. ing. A plate body 13c extending downward is attached to the left end of the first mounting plate 13a, and a plate body 13c extending downward is attached to the left end of the second mounting plate 13b.
3d is attached. A ventilation port 14a is formed at the upper end of the duct body 11, and air is sent into the duct body 11 from the ventilation port 14a when the fan 14 is driven.

第1の取付板13aには第1の超音波センサ(計all
J用超音波センサ)15を構成する発振素子15a及び
受信素子15bが配設され、第2の取付板13bの下面
には第2の超音波センサ(校正用超音波センサ)16を
構成する発振素子16a及び受信素子16bが配設され
ている。そして、発振素子16a及び受信素子16bと
反射板12は予め定められた距離(Lo )をおいて対
向している。これら発振素子15a及び16aは発振増
幅装置17の発振部に接続され、受信素子15b及び1
6bは発振増幅装置17の増幅部に接続されている。そ
して、発振増幅装置1はマイクロコンピュータで構成さ
れる制御演算装置18に接続されている。
The first mounting plate 13a has a first ultrasonic sensor (all
An oscillating element 15a and a receiving element 15b constituting the J ultrasonic sensor) 15 are arranged, and the oscillating element 15a constituting the second ultrasonic sensor (calibration ultrasonic sensor) 16 is provided on the lower surface of the second mounting plate 13b. An element 16a and a receiving element 16b are provided. The oscillating element 16a, the receiving element 16b, and the reflecting plate 12 face each other at a predetermined distance (Lo). These oscillation elements 15a and 16a are connected to an oscillation section of an oscillation amplifier 17, and reception elements 15b and 1
6b is connected to the amplification section of the oscillation amplification device 17. The oscillation amplification device 1 is connected to a control calculation device 18 composed of a microcomputer.

路面のうねり状態を計測する際には、制御演算装置18
から計測指令が発振増幅装置17に与えられる。これに
よって発振増幅装置17はスイッチ部17aで交互に発
振素子15a及び16aを切り替えて発振素子15a及
び16aに高周波信号を与える。高周波信号によって発
振素子15a及び16aから超音波が送出され、発振素
子15aからの超音波(以下第1の超音波という)は路
面19で反射して反射波(以下第1の反射波という)と
して受信素子15bで受信され、第1の受信信号として
出力される。同様にして、発振素子16aからの超音波
(以下第2の超音波という)は反射板12で反射して反
射波(以下第2の反射波という)として受信素子16b
で受信され、第2の受信信号として出力される。受信素
子1、5 b及び16bは発振素子15a及び16aに
連動して交互に切り替えられ、これによって第1及び第
2の受信信号は発振増幅装置17で増幅されて、制御演
算装置18に与えられる。制御演算装置18は第1の受
信信号を受けると、第1の超音波が発射されてから第1
の反射波を受けるまでの時間(t、)を求める。ここで
、所定の温度、圧力、及び湿度における音速をV。とす
ると、第1の超音波センサ15と路面19との距離(L
)は、 L−(Vo t 1)/2 − (1)で表される。と
ころが、音速v(、は温度(T)、圧力(P)、及び湿
度(H)の関数として、VOmfcT、p、H)で表せ
るから温度(T)、圧力(P)、及び湿度(H)が変化
すると音速Voが変化してしまい、距離(L)を正確に
算出することができなくなってしまう。
When measuring the undulation state of the road surface, the control calculation device 18
A measurement command is given to the oscillation amplifier 17 from the oscillation amplifier 17 . As a result, the oscillation amplifying device 17 alternately switches between the oscillation elements 15a and 16a using the switch section 17a, and provides high-frequency signals to the oscillation elements 15a and 16a. Ultrasonic waves are sent out from the oscillation elements 15a and 16a in response to a high-frequency signal, and the ultrasonic waves from the oscillation element 15a (hereinafter referred to as first ultrasonic waves) are reflected by the road surface 19 as reflected waves (hereinafter referred to as first reflected waves). It is received by the receiving element 15b and output as a first received signal. Similarly, the ultrasonic waves from the oscillating element 16a (hereinafter referred to as second ultrasonic waves) are reflected by the reflecting plate 12 and are transmitted to the receiving element 16b as reflected waves (hereinafter referred to as second reflected waves).
and output as the second received signal. The receiving elements 1, 5b and 16b are alternately switched in conjunction with the oscillating elements 15a and 16a, whereby the first and second received signals are amplified by the oscillation amplifier 17 and given to the control calculation device 18. . When the control calculation device 18 receives the first reception signal, the control calculation device 18 transmits the first ultrasonic wave after the first ultrasonic wave is emitted.
Find the time (t,) until receiving the reflected wave. Here, the speed of sound at a given temperature, pressure, and humidity is V. Then, the distance between the first ultrasonic sensor 15 and the road surface 19 (L
) is expressed as L-(Vot 1)/2-(1). However, since the sound velocity v (, can be expressed as VOmfcT, p, H) as a function of temperature (T), pressure (P), and humidity (H), temperature (T), pressure (P), and humidity (H) If this changes, the sound speed Vo will change, making it impossible to accurately calculate the distance (L).

ところで、本発明では、制御演算装置18は第2の受信
信号を受けると、第2の超音波が発射されてから第2の
反射波を受けるまでの時間(t 2 )を求める。前述
のように第2の超音波センサ16と反射板12との距離
は予めり。と定められているから、 Lo = (Vo  t2)/2 − (2)と表せる
。第(1)式及び第(2)式から距離(L)は、 L= (2Lo /12)t+ /2 、− (3)で
表される。第(3)式から明らかなように距離(L)は
音速V。に依存しなくなる。
By the way, in the present invention, upon receiving the second reception signal, the control calculation device 18 determines the time (t 2 ) from when the second ultrasonic wave is emitted until when the second reflected wave is received. As described above, the distance between the second ultrasonic sensor 16 and the reflection plate 12 is determined in advance. Therefore, it can be expressed as Lo = (Vot2)/2 - (2). From equations (1) and (2), the distance (L) is expressed as L=(2Lo/12)t+/2, - (3). As is clear from equation (3), the distance (L) is the speed of sound V. no longer depends on.

制御演算装置18は第(3)式に基づいて距離(L)を
求め、算出距離として表示装置18aに表示する。
The control calculation device 18 calculates the distance (L) based on equation (3) and displays it on the display device 18a as the calculated distance.

距11i1 (L)を計測する際には、ファン14が駆
動され、通風口14aから実線矢印で示すように空気が
ダクト体11内に流入される。この結果、第1及び第2
の超音波センサ15及び16は同一の雰囲気(同一の温
度、圧力、及び湿度)に置かれることになる。従って、
ダクト体11内において音速の相違はなくなる。
When measuring the distance 11i1 (L), the fan 14 is driven, and air flows into the duct body 11 from the ventilation opening 14a as shown by the solid arrow. As a result, the first and second
The ultrasonic sensors 15 and 16 will be placed in the same atmosphere (same temperature, pressure, and humidity). Therefore,
There is no difference in sound speed within the duct body 11.

上述のダクト体11をアスファルトフィニッシャ−に取
り付ければ、アスファルトフィニッシャ−の走行に応じ
て距離(L)が計測され、これによって、路面19のう
ねり状態を把握することができる。
When the above-described duct body 11 is attached to an asphalt finisher, the distance (L) is measured as the asphalt finisher travels, and thereby the undulation state of the road surface 19 can be grasped.

(発明の効果) 以上説明したように、本発明では超音波センサの配置さ
れた雰囲気に影響されることなく、路面までの距離を計
測することができ、従って、正確に路面までの距離を計
測することができる。この結果、路面のうねり、状態を
正確に把握することができる。
(Effects of the Invention) As explained above, in the present invention, the distance to the road surface can be measured without being affected by the atmosphere in which the ultrasonic sensor is placed, and therefore the distance to the road surface can be accurately measured. can do. As a result, it is possible to accurately grasp the undulations and conditions of the road surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による路面うねり状態計測装置の一実施
例を示す図である。 11・・・ダクト体、12・・・反射板、13・・・取
付板、14・・・ファン、15・・・第1の超音波セン
サ、16・・・第2の超音波センサ、17・・・発振増
幅装置、18・・・制御演算装置。
FIG. 1 is a diagram showing an embodiment of a road surface undulation state measuring device according to the present invention. DESCRIPTION OF SYMBOLS 11... Duct body, 12... Reflection plate, 13... Mounting plate, 14... Fan, 15... First ultrasonic sensor, 16... Second ultrasonic sensor, 17 ...Oscillation amplifier device, 18...Control calculation device.

Claims (1)

【特許請求の範囲】[Claims] 1、路面のうねり状態を計測する際に用いられ、該路面
に面した一端部が開口されたダクト体と、前記開口部に
面した第1の超音波センサと、前記ダクト体内に設けら
れた反射板体と、該反射板体に対向して該反射板体から
予め定められた距離離れて前記ダクト体内に配設された
第2の超音波センサと、前記第1及び第2の超音波セン
サを駆動するための駆動手段と、前記ダクト体内に通風
するためのファンと、前記第1及び第2の超音波センサ
からの出力を受け、前記第1の超音波センサと前記路面
との間の第1の距離を超音波が伝搬するのに要する第1
の時間を求めるとともに前記予め定められた距離超音波
が伝搬するのに要する第2の時間を求め、前記予め定め
られた距離、前記第1の時間、及び前記第2の時間に基
づいて前記第1の距離を算出する演算手段とを有し、該
第1の距離に基づいて前記路面のうねり状態を求めるよ
うにしたことを特徴とする路面うねり状態計測装置。
1. A duct body that is used to measure the undulation state of a road surface and has an opening at one end facing the road surface, a first ultrasonic sensor facing the opening, and a duct body provided within the duct body. a reflection plate body, a second ultrasonic sensor disposed in the duct body opposite to the reflection plate body at a predetermined distance from the reflection plate body, and the first and second ultrasonic waves a drive means for driving the sensor; a fan for circulating air into the duct body; and a drive means for receiving outputs from the first and second ultrasonic sensors, and between the first ultrasonic sensor and the road surface. The first distance required for the ultrasound to propagate the first distance of
and a second time required for the ultrasonic wave to propagate over the predetermined distance, and calculate the second time based on the predetermined distance, the first time, and the second time. 1. A road surface undulation condition measuring device, comprising: arithmetic means for calculating a first distance, and the road surface undulation condition is determined based on the first distance.
JP12867289A 1989-05-24 1989-05-24 Apparatus for measuring wavy condition of road surface Pending JPH02309209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12867289A JPH02309209A (en) 1989-05-24 1989-05-24 Apparatus for measuring wavy condition of road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12867289A JPH02309209A (en) 1989-05-24 1989-05-24 Apparatus for measuring wavy condition of road surface

Publications (1)

Publication Number Publication Date
JPH02309209A true JPH02309209A (en) 1990-12-25

Family

ID=14990592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12867289A Pending JPH02309209A (en) 1989-05-24 1989-05-24 Apparatus for measuring wavy condition of road surface

Country Status (1)

Country Link
JP (1) JPH02309209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246904A (en) * 2003-02-14 2004-09-02 Microsoft Corp Electronic stylus and method for judging tip position of stylus
US11952730B2 (en) 2018-08-01 2024-04-09 Sumitomo Construction Machinery Co., Ltd. Asphalt finisher and management device for road construction machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246904A (en) * 2003-02-14 2004-09-02 Microsoft Corp Electronic stylus and method for judging tip position of stylus
US9207813B2 (en) 2003-02-14 2015-12-08 Microsoft Technology Licensing, Llc Determining the location of the tip of an electronic stylus
US11952730B2 (en) 2018-08-01 2024-04-09 Sumitomo Construction Machinery Co., Ltd. Asphalt finisher and management device for road construction machine

Similar Documents

Publication Publication Date Title
US7710124B2 (en) Method and apparatus for detecting panel conditions
US6431001B1 (en) Obstacle detecting system having snow detecting function
JPH07198828A (en) Method and device for operating ultrasonic sensor
RU2692295C1 (en) Sensor, method of determining external factors and method of determining relative arrangement of sensor
JPH02309209A (en) Apparatus for measuring wavy condition of road surface
US5029194A (en) Method and apparatus for accurately measuring the distance to a surface
US7938006B2 (en) Non-contact ultrasound materials systems and measurement techniques
US6327890B1 (en) High precision ultrasonic chilled surface dew point hygrometry
JPH1048009A (en) Ultrasound temperature current meter
JP2944187B2 (en) Ultrasonic inclinometer
JP3050759B2 (en) Road condition detection method
KR100482226B1 (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
JPH05323044A (en) Snow fall measuring apparatus
KR101782509B1 (en) A Device for Measuring a Length Using Ultrasound
JPH08334321A (en) Ultrasonic distance-measuring apparatus
JP2972248B2 (en) Ultrasonic distance measuring device
JP2002195892A (en) Device and method for detecting space temperature by acoustic wave
JPH1082856A (en) Distance measuring equipment
JPH0625664B2 (en) Method and apparatus for detecting snow accretion thickness of vehicle
JPH06116908A (en) Ultrasonic wave type distance control device
JP2000180146A (en) Ultrasonic wave thickness measuring device
JPH06118167A (en) Method for controlling lateraal position of architectural machine or agricultural machine with respect to reference body
SU1525454A1 (en) Method of measuring thickness of strip materials
JP2567704Y2 (en) Ultrasonic lateral distance measuring device
JPH05133792A (en) Liquid level sensing device for pressure vessel