JPH0230696Y2 - - Google Patents

Info

Publication number
JPH0230696Y2
JPH0230696Y2 JP5980482U JP5980482U JPH0230696Y2 JP H0230696 Y2 JPH0230696 Y2 JP H0230696Y2 JP 5980482 U JP5980482 U JP 5980482U JP 5980482 U JP5980482 U JP 5980482U JP H0230696 Y2 JPH0230696 Y2 JP H0230696Y2
Authority
JP
Japan
Prior art keywords
fins
hydrophilic
hydrophobic
fin
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5980482U
Other languages
Japanese (ja)
Other versions
JPS58162467U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5980482U priority Critical patent/JPS58162467U/en
Publication of JPS58162467U publication Critical patent/JPS58162467U/en
Application granted granted Critical
Publication of JPH0230696Y2 publication Critical patent/JPH0230696Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、伝熱管にフインを嵌装するクロスフ
イン形式の熱交換器に関するものである。
[Detailed Description of the Invention] The present invention relates to a cross-fin type heat exchanger in which fins are fitted into heat transfer tubes.

上記形式の熱交換器を例えばヒートポンプ式空
気調和機の室外側熱交換器に使用すると、暖房運
転時に外気温が低いとフイン表面温度が0℃以下
となり、着霜を生ずるが、着霜が増えてくるとフ
イン間が目詰りし、フイン間を流通する空気流に
対する抵抗となつたり、空気とフインとの間の伝
熱を阻害することとなり、除霜のために暖房運転
を中断しなければならなくなるという問題があつ
た。
If the above type of heat exchanger is used as an outdoor heat exchanger in a heat pump air conditioner, for example, when the outside temperature is low during heating operation, the fin surface temperature will drop below 0°C, causing frost formation, but the frost formation will increase. If this occurs, the spaces between the fins become clogged, creating resistance to the airflow flowing between the fins and inhibiting heat transfer between the air and the fins, and heating operation must be interrupted for defrosting. There was a problem that it disappeared.

フイン表面に対する着霜は、空気中の水分がフ
イン表面で凍結して付着することによつて生じる
が、この着霜現象は、フイン表面の処理方法によ
つて異なることが既に知られている。
Frost formation on the fin surface occurs when moisture in the air freezes and adheres to the fin surface, but it is already known that this frost formation phenomenon differs depending on the method of treating the fin surface.

第1図には、親水性表面処理を施したフインで
の着霜および融霜の状態(符号Xで示す)と疎水
性表面処理を施したフインでの着霜および融霜の
状態(符号Yで示す)とを、横軸に時間tをと
り、縦軸に通風抵抗△Paをとつて描いたグラフ
が示されている。
Figure 1 shows the state of frosting and frosting on the fins with hydrophilic surface treatment (indicated by the symbol X) and the state of frosting and frosting on the fins with the hydrophobic surface treatment (indicated by the symbol Y). A graph is shown in which time t is plotted on the horizontal axis and ventilation resistance ΔPa is plotted on the vertical axis.

ここに親水性とは、相対的に表面張力が大きい
ものをさし、水が付着した時の接触角で40゜以下
のものをいい、疎水性とは、相対的に表面張力が
小さいものをさし、水が付着した時の接触角で約
100゜のものをいう。
Here, hydrophilic refers to a substance with a relatively large surface tension, and the contact angle when water is attached is 40° or less, and hydrophobic refers to a substance with a relatively small surface tension. The contact angle when water is attached is approximately
100°.

これによると、疎水性表面処理を施したフイン
表面では、親水性表面処理を施したフイン表面よ
り着霜時における霜成長は遅いが、除霜時に水が
滴状となりフイン間にまたがり落ちにくく、通風
抵抗の回復率が悪いという欠点をもつ。従つて、
除霜後の暖房運転時に滞留水滴が核となり、フイ
ン間にまたがつた霜の成長が見られ、ひいては通
風抵抗の増大をもたらす結果となる。
According to this, frost growth is slower on the fin surface with hydrophobic surface treatment than on the fin surface with hydrophilic surface treatment, but when defrosting, water becomes droplets and is less likely to fall between the fins. The disadvantage is that the recovery rate of ventilation resistance is poor. Therefore,
During heating operation after defrosting, accumulated water droplets become nuclei, and frost grows between the fins, resulting in an increase in ventilation resistance.

これに対して、親水性表面処理を施したフイン
表面では、着霜時における霜成長は速いが、除霜
時における水はけが速く通風抵抗の回復率も良好
となつている。
On the other hand, on the fin surface that has been subjected to hydrophilic surface treatment, frost growth is rapid during frost formation, but water drainage is rapid during defrosting, and the recovery rate of ventilation resistance is also good.

一方、逆サイクル等による除霜運転を行なうと
暖房能力の低下、コールドドラフトによる不快感
およびエネルギー効率の低下をひき起すことか
ら、除霜運転回数および時間を可及的に減少せし
めることが望ましい。そのためには、伝熱管に嵌
装するフインとしては、着霜しにくく且つ水はけ
良好な(即ち除霜し易い)ものを使用することが
望ましい。
On the other hand, if defrosting operation is performed using a reverse cycle or the like, it causes a decrease in heating capacity, discomfort due to cold drafts, and a decrease in energy efficiency, so it is desirable to reduce the number and time of defrosting operations as much as possible. To this end, it is desirable to use fins fitted to the heat transfer tubes that are resistant to frost formation and have good drainage (that is, are easy to defrost).

本考案は熱交換器における着霜および除霜につ
いての上記のような観察にもとづいてなされたも
ので、疎水性および親水性表面のそれぞれの長所
を生かしたフインを使用することによつて、フイ
ン表面において着霜時の霜の成長を遅らし且つ除
霜時の水はけ性を向上せしめることを目的とする
ものであり、かかる目的達成のため、隣り合うフ
インの相対向する面において、一方の面に疎水性
部を、他方の面に親水性部を全面あるいは部分的
に形成して、除霜時において疎水性部に生ずる水
滴を親水性部側へ吸引せしめて速やかに落下させ
るようにした構成および作用を特徴とする。
The present invention was developed based on the above-mentioned observations regarding frost formation and defrost in heat exchangers. The purpose of this is to delay the growth of frost during frost formation on the surface and improve drainage during defrosting, and in order to achieve this purpose, one surface of the opposing surfaces of adjacent fins is A hydrophobic part is formed on one side, and a hydrophilic part is formed on the other side entirely or partially, so that water droplets generated on the hydrophobic part during defrosting are attracted to the hydrophilic part and quickly fall. and action.

以下第2図ないし第4図に示す各実施例に基づ
いて本考案の熱交換器を説明すると、第2図ない
し第4図において、符号1はフイン、2は該フイ
ン1に嵌装された伝熱管を示し、又フイン1の表
面に付された符号Aは疎水性部を、Bは親水性部
をそれぞれ示している。
The heat exchanger of the present invention will be explained below based on the embodiments shown in FIGS. 2 to 4. In FIGS. A heat exchanger tube is shown, and the symbol A attached to the surface of the fin 1 indicates a hydrophobic portion, and the symbol B indicates a hydrophilic portion.

本実施例の熱交換器は、例えば、ヒートポンプ
式空気調和機における室外側熱交換器として使用
されるものであり、空気と熱交換(即ち、空気を
冷却あるいは加熱)するものである。
The heat exchanger of this embodiment is used, for example, as an outdoor heat exchanger in a heat pump air conditioner, and exchanges heat with air (that is, cools or heats the air).

第2図には、本考案の第1実施例が示されてお
り、この場合、各フイン1の一方の面に疎水性部
Aを、また他方の面に親水性部Bを全面に亘つて
形成し、これらフイン1a,1a……を、疎水性
部Aと親水性部Bとが互いに対向するように平行
に配列している。
FIG. 2 shows a first embodiment of the present invention, in which each fin 1 has a hydrophobic portion A on one side and a hydrophilic portion B on the other side over the entire surface. These fins 1a, 1a... are arranged in parallel so that the hydrophobic part A and the hydrophilic part B face each other.

第3図には、本考案の第2実施例が示されてお
り、この場合、両面に疎水性部Aを形成したフイ
ン1bと、両面に親水性部Bを形成したフイン/
cとを交互に平行に配列している。
FIG. 3 shows a second embodiment of the present invention, which includes a fin 1b with hydrophobic parts A formed on both sides, and a fin 1b with hydrophilic parts B formed on both sides.
c are arranged alternately in parallel.

第4図には、本考案の第3実施例が示されてお
り、この場合、各フイン1両面に、上下方向に連
続する帯状の疎水性部Aと親水性部Bとを交互に
形成し、これらのフイン1d,1d……を平行に
配列したとき、疎水性部Aと親水性部Bとが互い
に対向するような寸法の帯状に形成して平行に配
列している。
FIG. 4 shows a third embodiment of the present invention, in which vertically continuous band-shaped hydrophobic parts A and hydrophilic parts B are alternately formed on both sides of each fin. When these fins 1d, 1d, .

なお、フイン表面に親水性を付与する方法とし
ては、例えば合成シリカを含む水性塗料等を塗布
する方法があり、これに対してフイン表面に疎水
性を付与する方法としては、例えば4フツ化エチ
レン等のフロン樹脂をコーテイングする方法があ
る。
A method of imparting hydrophilicity to the fin surface is, for example, a method of applying a water-based paint containing synthetic silica, while a method of imparting hydrophobicity to the fin surface is, for example, applying a water-based paint containing synthetic silica. There is a method of coating with fluorocarbon resin such as chlorofluorocarbon resin.

又、前記疎水性あるいは親水性表面のどちらか
一方を無処理表面におきかえてもよいことは勿論
である。
Furthermore, it goes without saying that either the hydrophobic or hydrophilic surface may be replaced with an untreated surface.

上記各実施例に示す熱交換器をヒートポンプ式
空気調和機の室外側熱交換器として使用した時に
は、各フインは次のように作用する。
When the heat exchanger shown in each of the above embodiments is used as an outdoor heat exchanger of a heat pump type air conditioner, each fin functions as follows.

暖房運転時において外気温が低下して、フイン
1の表面温度が0℃以下になると、フイン1表面
への着霜が始まるが、霜の成長速度は、疎水性部
Aでは遅く、親水性部Bでは速いというように霜
成長速度にちがいがある。
When the outside temperature drops during heating operation and the surface temperature of the fins 1 becomes 0°C or less, frost begins to form on the surface of the fins 1, but the growth rate of frost is slow on the hydrophobic part A, and on the hydrophilic part. There are differences in frost growth speed, with B being faster.

ここで、隣り合うフイン1,1においては、疎
水性部Aと親水性部Bとが相対向しており、疎水
性部Aで霜の成長速度が遅いため、フイン間を流
通する風の通風抵抗の増大が抑えられることとな
る結果、暖房運転継続時間が長くなる(即ち、除
霜運転回数が減少する)。
Here, in the adjacent fins 1, 1, the hydrophobic part A and the hydrophilic part B face each other, and since the growth rate of frost is slow in the hydrophobic part A, the wind that flows between the fins As a result of suppressing the increase in resistance, the duration of heating operation becomes longer (that is, the number of times of defrosting operation decreases).

次に除霜運転時には、親水性部Bにおける融霜
が疎水性部Aより先行し、該融霜がドレンとなつ
て流下する。一方、疎水性部Aでは融霜時表面に
付着した滴状水ω(第5図イ図示)が静的、動的
合体により成長して、その高さhがフインピツチ
Fpと同等になると(第5図ロ図示)、疎水性部A
に対向する親水性部Bに接触し、表面張力の差に
よつて瞬時のうちに親水性部B側へ吸引されてし
まい(第5図ハ図示)、その後、親水性部Bに沿
つて速やかに流下する(第5図ニ図示)。即ち、
水滴滞留の大きな原因となる「水滴のフイン間の
またがり」という現象が起り得なくなる。従つ
て、除霜時における水はけ性が向上し且つ通風抵
抗の回復率も著しく向上することとなる。
Next, during defrosting operation, the frost melting in the hydrophilic part B precedes the hydrophobic part A, and the melting frost becomes drain and flows down. On the other hand, in the hydrophobic part A, droplet-like water ω (shown in Fig. 5 A) adhering to the surface during frost melting grows due to static and dynamic coalescence, and its height h becomes the fin pitch.
When it becomes equal to Fp (shown in Figure 5), the hydrophobic part A
It comes into contact with the hydrophilic part B facing the hydrophilic part B, and is instantly attracted to the hydrophilic part B side due to the difference in surface tension (as shown in Figure 5, C), and then quickly moves along the hydrophilic part B. (as shown in Figure 5 D). That is,
The phenomenon of ``water droplets straddling the fins'', which is a major cause of water droplet retention, cannot occur. Therefore, drainage properties during defrosting are improved, and the rate of recovery of ventilation resistance is also significantly improved.

又、第3実施例のように、同一面上において上
下に連続する帯状の疎水性部Aと親水性部Bとを
交互に形成したものにおいては、同一面内におい
ても疎水性部Aより親水性部Bへの水滴誘引が起
り、一層水はけ性が向上する。
In addition, as in the third embodiment, in the case where vertically continuous band-shaped hydrophobic portions A and hydrophilic portions B are alternately formed on the same surface, the hydrophobic portion A is more hydrophilic than the hydrophilic portion A even within the same surface. Water droplets are attracted to genital area B, further improving drainage.

更に、第6図図示の如くフイン1の一部を切起
してスリツト3を設けると、該スリツト3を通し
て疎水性部Aからフイン裏面の親水性部Bへの水
滴誘引が起り得る。このような構造となし得るの
は、第1および第3実施例のようにフイン1両面
にそれぞれ疎水性部Aと親水性部Bとを形成した
ものに限定される。
Furthermore, if a part of the fin 1 is cut and raised to form a slit 3 as shown in FIG. 6, water droplets may be attracted from the hydrophobic part A to the hydrophilic part B on the back surface of the fin through the slit 3. Such a structure is limited to one in which the hydrophobic part A and the hydrophilic part B are formed on both surfaces of the fin 1, respectively, as in the first and third embodiments.

続いて本考案の熱交換器の効果を以下に列記す
る。
Next, the effects of the heat exchanger of the present invention will be listed below.

即ち、本考案によれば、 (1) 隣り合うフイン1,1の相対向する面におい
て、一方の面に疎水性部Aを、他方の面に親水
性部Bを全面あるいは部分的に形成したので、
着霜時における通風抵抗の増大が抑えられるこ
ととなり、除霜運転回数の減少を計り得るとと
もに、着霜時のフアン動力の増加および暖房能
力の減少を可及的に抑えることができる。
That is, according to the present invention, (1) In the opposing surfaces of the adjacent fins 1, 1, the hydrophobic portion A is formed on one surface and the hydrophilic portion B is formed on the other surface, either entirely or partially. So,
The increase in ventilation resistance during frosting is suppressed, and the number of defrosting operations can be reduced, and an increase in fan power and a decrease in heating capacity during frosting can be suppressed as much as possible.

(2) 除霜時には、疎水性部Aの滴状水ωが対向す
る親水性部Bへ水滴誘引されることとなり、水
滴のフイン間へのまたがりが防止されて水はけ
性が向上し、除霜時間が短縮され且つ通風抵抗
の回復率が向上する結果、エネルギー効率の向
上およびコールドドラフトによる不快感の減少
を計り得る、 等の実用的な効果がある。
(2) During defrosting, droplets of water ω in the hydrophobic part A are attracted to the opposing hydrophilic part B, preventing water droplets from straddling the fins, improving drainage, and defrosting. As a result of the shortened time and improved recovery rate of draft resistance, there are practical effects such as improved energy efficiency and reduced discomfort due to cold drafts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、親水性表面処理を施したフインでの
着霜および融霜の状態(符号Xで示す)と、疎水
性表面処理を施したフインでの着霜および融霜の
状態(符号Yで示す)とを、横軸に時間tを、縦
軸に通風抵抗△Paをとつて描いたグラフ、第2
図ないし第4図は、それぞれ本考案の第1ないし
第3実施例にかかる熱交換器の横断平面図、第5
図イ〜ニは前記各実施例にかかる熱交換器の除霜
時における水滴の状態を説明するための略図、第
6図は第1および第3実施例にかかる熱交換器の
フインの変形例を示す縦断面図である。 1……フイン、2……伝熱管、A……疎水性
部、B……親水性部。
Figure 1 shows the state of frosting and frosting on the fins with hydrophilic surface treatment (indicated by the symbol X) and the state of frosting and frosting on the fins with the hydrophobic surface treatment (indicated by the symbol Y). ) is plotted with time t on the horizontal axis and ventilation resistance △Pa on the vertical axis.
4 to 4 are cross-sectional plan views and fifth embodiments of heat exchangers according to the first to third embodiments of the present invention, respectively.
Figures A to D are schematic diagrams for explaining the state of water droplets during defrosting of the heat exchanger according to each of the above embodiments, and Figure 6 is a modification of the fins of the heat exchanger according to the first and third embodiments. FIG. 1... Fin, 2... Heat exchanger tube, A... Hydrophobic part, B... Hydrophilic part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 空気と熱交換する熱交換器であつて、伝熱管
2,2……に多数のフイン1,1…を嵌装すると
ともに、隣り合うフイン1,1の相対向する面に
は、一方の面に疎水性部Aを、他方の面に親水性
部Bを全面あるいは部分的に形成したことを特徴
とする熱交換器。
A heat exchanger that exchanges heat with air, in which a large number of fins 1, 1... are fitted into heat transfer tubes 2, 2..., and one side is attached to the opposing surfaces of adjacent fins 1, 1. A heat exchanger characterized in that a hydrophobic part A is formed on one surface and a hydrophilic part B is formed entirely or partially on the other surface.
JP5980482U 1982-04-23 1982-04-23 Heat exchanger Granted JPS58162467U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5980482U JPS58162467U (en) 1982-04-23 1982-04-23 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5980482U JPS58162467U (en) 1982-04-23 1982-04-23 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS58162467U JPS58162467U (en) 1983-10-28
JPH0230696Y2 true JPH0230696Y2 (en) 1990-08-17

Family

ID=30070086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5980482U Granted JPS58162467U (en) 1982-04-23 1982-04-23 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS58162467U (en)

Also Published As

Publication number Publication date
JPS58162467U (en) 1983-10-28

Similar Documents

Publication Publication Date Title
WO2006025169A1 (en) Refrigeration unit
JPS58217195A (en) Heat exchanger
JPH0791873A (en) Fin and tube type heat exchanger
JPH0230696Y2 (en)
JPH0271096A (en) Heat exchanger with fin
JP6552629B2 (en) Heat exchanger and air conditioner
JPH08152287A (en) Heat exchanger
JPH0330718Y2 (en)
JPH05322477A (en) Boiling heat transfer surface
JP2719004B2 (en) Heat exchanger
JPH06117788A (en) Heat exchanger
JPH0230695Y2 (en)
JPS61159094A (en) Finned heat exchanger
JPH0534598B2 (en)
JPS60263064A (en) Evaporator
JPS62155493A (en) Heat exchanger with fins
JPH04371796A (en) Heat exchanger
JPH05302791A (en) Fin tube type heat exchanger
JPS5842786Y2 (en) Heat exchanger
JPH02192597A (en) Heat exchanger
JPH109788A (en) Heat exchanger for air conditioning
JPH10197183A (en) Finned heat exchanger
JPS60181568A (en) Refrigerator
JPH04278192A (en) Heat exchanger
JPH06117789A (en) Heat exchanger