JPH02306520A - Electron emitting element - Google Patents

Electron emitting element

Info

Publication number
JPH02306520A
JPH02306520A JP1126949A JP12694989A JPH02306520A JP H02306520 A JPH02306520 A JP H02306520A JP 1126949 A JP1126949 A JP 1126949A JP 12694989 A JP12694989 A JP 12694989A JP H02306520 A JPH02306520 A JP H02306520A
Authority
JP
Japan
Prior art keywords
metal layer
layer
electron
insulator
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1126949A
Other languages
Japanese (ja)
Inventor
Akira Kaneko
彰 金子
Toru Sugano
亨 菅野
Kaoru Tomii
薫 富井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1126949A priority Critical patent/JPH02306520A/en
Publication of JPH02306520A publication Critical patent/JPH02306520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To allow a metal layer to be easily coupled chemically with those of component elements for an insulative substance which tend to be turned into negative ions, by impressing a voltage between the conductor of an electron emitting element and the mentioned metal layer, and thereby releasing electrons having passed through an insulative substance layer due to the tunnel effect to outside of the metal layer. CONSTITUTION:An insulative substance layer 12 is formed on the conductor 11 of an electron emitting element, and a metal layer 13 is formed on this insulative substance layer 12. This metal layer 13 consists of elements which are easy to be coupled chemically with those of the component elements for the insulative substance layer 12 which tend to be turned into negative ions. Thus the electrons from conductive layer 11 having passed through this insulative substance layer 12 due to the tunnel effect can be released into the vacuum from the metal layer 13 by means of voltage impression from the outside, wherein the metal layer 13 and conductive layer 11 are given positive and negative potentials, respectively. At the interface between the insulative substance layer 12 and metal layer 13, those of the component elements for the insulative substance which were surplus for the coupling and turned into negative ions are coupled with the metal elements.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子顕微鏡、電子ビーム露光装置、CRT等
、各種電子ビーム応用装置の電子発生源2ヘージ として利用することができる電子放出素子(冷陰極)に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electron emitting device (a cold cathode ) regarding.

従来の技術 従来、電子顕微鏡、電子ビーム露光装置、CRT等の電
子ビーム応用装置における電子発生源として、熱電子放
出する熱陰極が用いられてきた。
2. Description of the Related Art Conventionally, a hot cathode that emits thermionic electrons has been used as an electron generation source in electron beam application devices such as electron microscopes, electron beam exposure devices, and CRTs.

しかし、このような熱陰極を用いると、加熱手段を必要
とし、加熱によるエネルギーロスを生じるなどの問題が
あった。そこで、近時、加熱によらないで電子を放出す
る電子放出素子、いわゆる冷陰極に関する研究が行われ
、数種類の構成の電子放出素子が提案されてきた。例え
ば、PN接合の逆バイアス電圧を印加し、電子なだれ降
伏現象を起こさせ、素子外へ電子を放出させるものや、
電界集中の生じやすい形状の金属に対し、電圧を印加し
て局所的に高密度な電界を発生させ、金属から素子外へ
電子を放出させる電界効果型のものや、金属−絶縁体層
−金属層の構成で、上記2つの金属層の間に電圧を印加
することにより、トンネル効果で絶縁体層を通過してき
た電子を金属層から3ベーノ 素子外へ放出させるMIM型のもの等が提案されてきた
However, when such a hot cathode is used, a heating means is required, and there are problems such as energy loss due to heating. Therefore, research has recently been conducted on electron-emitting devices that emit electrons without heating, so-called cold cathodes, and several types of electron-emitting devices have been proposed. For example, a method that applies a reverse bias voltage to a PN junction to cause an electron avalanche breakdown phenomenon and emit electrons to the outside of the device,
A field-effect type that applies a voltage to a metal whose shape is likely to cause electric field concentration to generate a locally high-density electric field and emit electrons from the metal to the outside of the element, and a metal-insulator layer-metal type. MIM type devices have been proposed that have a layer structure in which electrons that have passed through the insulator layer are emitted from the metal layer to the outside of the 3-Beno element by applying a voltage between the two metal layers due to the tunnel effect. It's here.

上記電子放出素子のうち、MIM型電子放出素子につい
て図を参照しながら更に詳しく説明する。
Among the above electron-emitting devices, the MIM-type electron-emitting device will be described in more detail with reference to the drawings.

第3図に示すように金属層31上に薄い絶縁体層32と
薄い金属層33が順次積層されて形成されている。そし
て、電源34によって金属層31と金属層33との間に
印加することによって、絶縁体層32をトンネルした電
子のうち、真空準位より大きなエネルギーを有するもの
が金属層330表面から電子35として放出される。な
お、電子35の高い放出効率を得るためには、絶縁体層
32を絶縁破壊が生じない範囲で、しかも、金属層33
を電流が十分流れる範囲で、各々可能な限り薄く形成す
ることが望ましい。
As shown in FIG. 3, a thin insulator layer 32 and a thin metal layer 33 are sequentially laminated on a metal layer 31. Then, by applying power between the metal layer 31 and the metal layer 33 by the power source 34, among the electrons tunneled through the insulator layer 32, those having energy higher than the vacuum level are transferred from the surface of the metal layer 330 as electrons 35. released. Note that in order to obtain high emission efficiency of the electrons 35, the insulator layer 32 must be formed within a range that does not cause dielectric breakdown, and the metal layer 33 must be
It is desirable to form each of them as thinly as possible within a range where a sufficient current can flow.

このMIM型電子放出素子の具体例としては。A specific example of this MIM type electron-emitting device is as follows.

特開昭63−6717号公報に記載された構成が提案さ
れ、第4図に示すように基板41上の一部に金属層42
が形成され、基板41および金属層42上に絶縁体層4
3が形成され、絶縁体層43上に金属層42と直交方向
に金属層44が形成されている。そして、金属層44を
正にし、金属層42を負にして金属層44と金属層42
との間に電圧を印加することにより、両者の交差する領
域から電子を放出させることができる。
The structure described in Japanese Patent Application Laid-Open No. 63-6717 was proposed, and as shown in FIG.
is formed, and an insulator layer 4 is formed on the substrate 41 and the metal layer 42.
3 is formed, and a metal layer 44 is formed on the insulator layer 43 in a direction perpendicular to the metal layer 42 . Then, the metal layer 44 is made positive, the metal layer 42 is made negative, and the metal layer 44 and the metal layer 42 are
By applying a voltage between the two, electrons can be emitted from the region where the two intersect.

上記金属層42として、Be、Mo、Au等の金属を用
い、絶縁体層43として、5i02.Ta205、Al
2O3、S i C,AIN、 BN等を用い、金属層
44として、金属層42と同様な材料を用いる。
The metal layer 42 is made of a metal such as Be, Mo, or Au, and the insulator layer 43 is made of 5i02. Ta205, Al
The metal layer 44 is made of the same material as the metal layer 42, such as 2O3, SiC, AIN, BN, or the like.

発明が解決しようとする課題 しかし、上記従来のMIM型の電子放出素子では、絶縁
体層43と上部金属層44との界面において、絶縁体構
成元素のうちの負にイオン化する成分元素が、他の絶縁
体構成元素との結合から余り、負にイオン化して存在し
、絶縁体層43を通過する電子に対し、エネルギー障壁
となって、散乱させたり、トラップしたシして電子の持
つエネルギーを低減させ、電子放出効率を低下させるな
どの問題によシ特性が十分なものは得られていない。
Problems to be Solved by the Invention However, in the conventional MIM type electron-emitting device described above, at the interface between the insulator layer 43 and the upper metal layer 44, the component elements that are negatively ionized among the insulator constituent elements are mixed with other elements. The remaining energy from the bond with the insulator constituent elements exists in a negatively ionized state, and acts as an energy barrier for electrons passing through the insulator layer 43, scattering or trapping them, thereby absorbing the energy of the electrons. Due to problems such as reduction in electron emission efficiency and reduction in electron emission efficiency, it has not been possible to obtain one with sufficient characteristics.

5ヘー/ 本発明は、上記のような従来の課題を解決するものであ
り、絶縁体層を通過する電子のエネルギーの低下を防止
することができ、したがって、電子放出効率を向上させ
ることができるようにした電子放出素子を提供し、また
、作製プロセスにおいて金属層表面に化合物が生成する
のを防止し、安定的な電子放出効率の向上を図ることが
できるようにした電子放出素子を提供することを目的と
するものである。
5 H/ The present invention solves the conventional problems as described above, and can prevent a decrease in the energy of electrons passing through an insulating layer, and therefore can improve electron emission efficiency. The present invention provides an electron-emitting device which is capable of stably improving electron-emitting efficiency by preventing the formation of compounds on the surface of a metal layer during a manufacturing process. The purpose is to

課題を解決するための手段 上記課題を解決するための本発明の技術的手段は、導電
体と、この導電体上に形成された金属層を備え、上記金
属層が絶縁体構成元素のうちの負にイオン化する成分元
素と化学的に容易に結合しやすい元素からなるものであ
る。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems comprises a conductor and a metal layer formed on the conductor, and the metal layer contains an insulator constituent element. It consists of elements that chemically easily combine with component elements that are negatively ionized.

またけ、導電体と、この導電体上に形成された絶縁体層
と、この絶縁体層上に順次形成された第1および第2の
金属層を備え、上記第1の金属層が絶縁体構成元素のう
ちの負にイオン化する成分元素と化学的に容易に結合し
やすい元素からなり、6ページ 上記第2の金属層が化学的に安定な元素からなるもので
ある。
the first metal layer is an insulator; It is made of an element that easily chemically bonds with a negatively ionized component element among the constituent elements, and the second metal layer described above on page 6 is made of a chemically stable element.

作    用 本発明は上記構成により、導電体と金属層との間に電圧
を印加することによシ、トンネル効果で絶縁体層を通過
してきた電子を金属層から外部へ放出させる。そして、
絶縁体層と金属層との界面における絶縁体構成元素のう
ち、結合から余り、負にイオン化した成分元素と金属層
元素とを結合させるので、界面において負にイオーン化
した成分元素をなくし、エネルギー障壁の形成を防止し
、絶縁体層を通過する電子のエネルギー低下を防止する
ことができる。
Effects According to the present invention, by applying a voltage between the conductor and the metal layer, the electrons that have passed through the insulator layer are emitted from the metal layer to the outside due to the tunnel effect. and,
Among the insulator constituent elements at the interface between the insulator layer and the metal layer, the component elements that are left over from bonding and are negatively ionized are combined with the metal layer elements, so the negatively ionized component elements are eliminated at the interface, and the energy is reduced. It is possible to prevent the formation of a barrier and prevent the energy of electrons passing through the insulating layer from decreasing.

また、上記金属層のうち、外面側の第2の金属層が化学
的に安定な元素からなるので、作製プロセス中において
、素子特性に悪影響を及ぼす化合物が金属層表面に生成
するのを防止することができる。
In addition, since the second metal layer on the outer surface side of the metal layers is made of a chemically stable element, compounds that adversely affect the device characteristics are prevented from being generated on the surface of the metal layer during the manufacturing process. be able to.

実施例 以下、本発明の実施例について図面を参照しな7ヘーン から詳細に説明する。Example Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following will be explained in detail.

まず、本発明の第1の実施例について説明する。First, a first embodiment of the present invention will be described.

第1図は本発明の第1の実施例における電子放出素子を
示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an electron-emitting device according to a first embodiment of the present invention.

第1図に示すように導電体11上に絶縁体層12が形成
され、絶縁体層12上に金属層13が形成されている。
As shown in FIG. 1, an insulator layer 12 is formed on a conductor 11, and a metal layer 13 is formed on the insulator layer 12.

この金属層13は絶縁体層12の構成元素のうちの負に
イオン化する成分元素と化学的に容易に結合しやすい元
素からなっている。
This metal layer 13 is made of an element that is easily chemically bonded to a negatively ionized component element among the constituent elements of the insulator layer 12 .

そして、金属層13を正、導電体11を負として外部よ
υ電圧を印加することによシ、トンネル効果で導電体1
1から絶縁体層12を透過してきた電子を金属層13か
ら真空中へ放出させることができる。ところで、酸化物
、窒化物等からなる絶縁体層12を形成する際、十分制
御しても、絶縁体層12の最終表面(絶縁体層12と金
属層13との界面14)は化学組成比から若干ずれたも
のとなってしまう。すなわち、界面14に正のイオン、
あるいは負のイオンの分布が存在することになる。界面
14近傍に特に負のイオンが分布していると、上記のよ
うな電子の透過に対してエネルギー障壁となり、その透
過率、すなわち、電子の放出効率が低下する。ここで、
上記実施例においては、金属層13に絶縁体層12の負
のイオン成分元来、例えば絶縁体層12が酸化物であれ
ば02.−窒化物であればN3−、ノ・ロゲン化物であ
れば・・ロゲンイオン等と化学的に容易に結合しやすい
元素を用い、界面14で積極的に負のイオン成分元素と
結合させることによシ、負イオンの分布をなくしている
。その結果、エネルギー障壁の形成を防止し、電子の透
過率を向上させ、電子の放出効率を向上させることがで
きる。
Then, by applying an external voltage υ with the metal layer 13 as positive and the conductor 11 as negative, the conductor 1 is
Electrons that have passed through the insulator layer 12 from the metal layer 13 can be emitted into the vacuum from the metal layer 13. By the way, when forming the insulating layer 12 made of oxide, nitride, etc., even if sufficient control is performed, the final surface of the insulating layer 12 (the interface 14 between the insulating layer 12 and the metal layer 13) will have a chemical composition ratio of This results in a slight deviation from the . That is, positive ions at the interface 14,
Alternatively, there will be a distribution of negative ions. When negative ions are particularly distributed near the interface 14, they act as an energy barrier to the transmission of electrons as described above, and the transmittance, that is, the electron emission efficiency decreases. here,
In the above embodiment, the negative ion component of the insulator layer 12 in the metal layer 13 is originally 02.0, for example, if the insulator layer 12 is an oxide. - If it is a nitride, N3-, if it is a halogenide, by using an element that chemically easily bonds with rogen ions etc., and actively bonding with the negative ion component element at the interface 14. B, the distribution of negative ions is eliminated. As a result, formation of an energy barrier can be prevented, electron transmittance can be improved, and electron emission efficiency can be improved.

次に、具体的な実施例を製造工程と共に説明する。Next, specific examples will be described together with manufacturing steps.

例えばSi1あるいはガラスからなる基板等(ガラス基
板等の有無は本発明の本質的なものではない。)の上に
導電体11としてAL Au、Pt、Ta、 Cr、 
Mo、W等を抵抗加熱蒸着法、電子ビーム蒸着法、スパ
ッタリング法、CVD法、MBE法、イオンビーム蒸着
法等によシ厚さ10um〜19へ−ノ μmに形成した。または導電体11として、上記元素か
らなる金属板を用いた。次にこの導電体11上に絶縁体
層12として、例えば5i02、Al2O3、Ta20
5、SiNx、BN、AIN等の絶縁物を電子ビーム蒸
着法、スパッタリング法、CVD法、MBE法、イオン
ビーム蒸着法、陽極酸化法等によシ膜厚1〜20 nm
程度に形成した。次にこの絶縁体層12上に金属層13
として、絶縁体層12の負のイオン成分元素と化学的に
容易に結合しやすい元素、例えばAI、 Pb、 Ta
、 Cd等を電子ビーム蒸着法、スパッタリング法、C
VD法、MBE法、イオンビーム蒸着法等により膜厚5
〜30nm程度に形成した。
For example, AL Au, Pt, Ta, Cr,
Mo, W, etc. were formed to a thickness of 10 um to 19 μm by resistance heating evaporation, electron beam evaporation, sputtering, CVD, MBE, ion beam evaporation, or the like. Alternatively, as the conductor 11, a metal plate made of the above elements was used. Next, an insulating layer 12 is formed on this conductor 11 using, for example, 5i02, Al2O3, Ta20, etc.
5. Insulators such as SiNx, BN, and AIN are deposited to a film thickness of 1 to 20 nm by electron beam evaporation, sputtering, CVD, MBE, ion beam evaporation, anodic oxidation, etc.
It was formed to a certain extent. Next, a metal layer 13 is placed on this insulator layer 12.
As, an element that easily combines chemically with the negative ion component element of the insulator layer 12, such as AI, Pb, Ta.
, Cd etc. by electron beam evaporation method, sputtering method, Cd etc.
Film thickness of 5 is achieved by VD method, MBE method, ion beam evaporation method, etc.
It was formed to have a thickness of about 30 nm.

このようにして製造した本発明の実施例の電子放出素子
と、金属層13に絶縁体層12の負のイオン成分元素と
化学的に容易に結合しやすい元素を用いなかった比較例
とを比較試験した結果、本発明実施例は比較例に比べ1
電子放出効率が顕著に向上した。
Comparison of the electron-emitting device of the example of the present invention manufactured in this manner and a comparative example in which an element that chemically easily combines with the negative ion component element of the insulator layer 12 is not used in the metal layer 13. As a result of the test, the example of the present invention was 1% lower than the comparative example.
Electron emission efficiency was significantly improved.

次に、本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

10ベーノ 第2図は本発明の第2の実施例における電子放出素子を
示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an electron-emitting device according to a second embodiment of the present invention.

第2図に示すように導電体21上に絶縁体層22が形成
され、絶縁体層22上に第1の金属層23aと第2の金
属層23bが順次形成されている。
As shown in FIG. 2, an insulator layer 22 is formed on the conductor 21, and a first metal layer 23a and a second metal layer 23b are sequentially formed on the insulator layer 22.

第1の金属層23aは絶縁体層22との界面24近傍に
おいて、負のイオンが分布して電子の透過・効率を下げ
ないように、絶縁体層22の負のイオン成分元素と化学
的に容易に結合しやすい元素からなっている。したがっ
て、界面24で積揄的に負のイオン成分元素と結合させ
て電子の透過率を上げることができる。しかし、第1の
金属層23aに用いる元素によっては、電子放出素子の
作製プロセス中において、その金属層23aの表面に化
合物が生成し、電子放出効率を低下させて安定性を欠く
ものとなる。そこで、本実施例においては、上記第1の
金属層23aを覆い、化学的に安定な元素からなる第2
の金属層23aが形成されている。これにより素子の安
定化を図ることができる。
The first metal layer 23a is chemically bonded to the negative ion component elements of the insulator layer 22 in order to prevent negative ions from being distributed and reducing electron transmission and efficiency near the interface 24 with the insulator layer 22. It consists of elements that easily combine. Therefore, it is possible to increase the electron transmittance by cumulatively combining with negative ion component elements at the interface 24. However, depending on the element used in the first metal layer 23a, a compound may be generated on the surface of the metal layer 23a during the manufacturing process of the electron-emitting device, reducing electron emission efficiency and causing instability. Therefore, in this embodiment, the first metal layer 23a is covered with a second metal layer made of a chemically stable element.
A metal layer 23a is formed. This makes it possible to stabilize the element.

11z<−> 次に具体的な実施例を製造工程と共に説明する。11z<-> Next, specific examples will be described together with manufacturing steps.

導電体21として、例えばSi基板を用い、この上の所
定の箇所に絶縁体層22として、例えば5i02、ある
いはAI’203をCVD法、MBE法、スパッタリン
グ法、イオンビーム蒸着法等で膜厚1〜20 nm程度
に形成した。次にこの絶縁体層(本実施例では上記のよ
うに酸化物を用いている)22の上に第1の金属層23
aとして、例えばAI、Pb、Cd等をMBE法、CV
D法、スパッタリング法、イオンビーム蒸着法等で膜厚
01〜5nm程度に形成し、更に第2の金属層23bと
して、例えばAg、 Mo、 Ta、 Cr、 Au等
をMBE法、スパッタリング法、イオンビーム蒸着法等
で膜厚5〜30 nm程度に形成した。
For example, a Si substrate is used as the conductor 21, and a film of 5i02 or AI'203, for example, is deposited at a predetermined location on the Si substrate to a thickness of 1 by CVD, MBE, sputtering, ion beam evaporation, etc. as an insulator layer 22. It was formed to a thickness of about 20 nm. Next, a first metal layer 23 is formed on this insulator layer 22 (in this embodiment, an oxide is used as described above).
As a, for example, AI, Pb, Cd, etc. are processed by MBE method, CV
The film is formed to a thickness of about 01 to 5 nm by the D method, sputtering method, ion beam evaporation method, etc., and further, as the second metal layer 23b, for example, Ag, Mo, Ta, Cr, Au, etc. are deposited by MBE method, sputtering method, ion beam evaporation method, etc. The film was formed to a thickness of about 5 to 30 nm by beam evaporation or the like.

このようにして製造した本発明実施例の電子放出素子と
、上記比較例とを比較試験した結果、本発明実施例は比
較例に比べて電子放出効率が顕著に向上した。また、第
2の金属層23bが化学的に安定な元素からなっている
ので、安定的に電子放出効率を向上させることができた
As a result of a comparative test between the electron-emitting device of the example of the present invention manufactured in this way and the above-mentioned comparative example, the electron emission efficiency of the example of the present invention was significantly improved compared to the comparative example. Furthermore, since the second metal layer 23b was made of a chemically stable element, the electron emission efficiency could be stably improved.

なお、上記各実施例では、金属層13.23a、23b
が単元素からなる場合について説明したが、例えば導電
性有機物のような複合元素からなる場合においても、本
発明の効果が失われることはない0 発明の効果 以上述べたように本発明によれば、絶縁体層上に形成さ
れた金属層が絶縁体構成元素のうちの負にイオン化する
成分元素と化学的に容易に結合しやすい元素からなるの
で、絶縁体層と金属層との界面において、絶縁体構成元
素のうち、結合から余シ、負にイオン化した元素と金属
層元素とを結合させ、界面において負にイオン化した元
素をなくし、絶縁体層を通過する電子のエネルギー低下
を防止することができ、したがって、電子放出効率を向
上させることができる。       □また、金属層
が第1と第2の金属層からなり、絶縁体層側の第1の金
属層が上記と同様の負のイオン化する成分元素とイ1i
学的に結合しやすい元素からなり、第2の金属層が化学
的に安定な元素か13ヘー/ らなるので、素子作製プロセス中において金属層表面に
、素子特性に悪影響を及ぼす化合物が生成するのを防止
することができ、電子放出効率を安定的に向上させるこ
とができる。
In addition, in each of the above embodiments, the metal layers 13.23a, 23b
Although the explanation has been made on the case where the material is made of a single element, the effects of the present invention are not lost even in the case where the material is made of a complex element such as a conductive organic substance. Since the metal layer formed on the insulator layer is made of an element that easily chemically bonds with the negatively ionized component elements of the insulator constituent elements, at the interface between the insulator layer and the metal layer, Among the elements constituting the insulator, negatively ionized elements are combined with the metal layer elements to eliminate the negatively ionized elements at the interface, thereby preventing a drop in the energy of electrons passing through the insulator layer. Therefore, electron emission efficiency can be improved. □Also, the metal layer is composed of a first and a second metal layer, and the first metal layer on the insulator layer side is made of the same negatively ionized component element as described above.
Since the second metal layer is made of chemically stable elements, compounds that adversely affect the device characteristics are generated on the surface of the metal layer during the device fabrication process. can be prevented, and electron emission efficiency can be stably improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における電子放出素子を
示す概略断面図、第2図は本発明の第2の実施例におけ
る電子放出素子を示す概略断面図、第3図および第4図
はそれぞれ従来の電子放出素子を示す概略断面図および
概略斜視図である。 11・・・導電体、12・・・絶縁体層、13・・・金
属層、14・・・界面、21・・・導電体、22・・・
絶縁体層、23a・・・第1の金属層、23b・・・第
2の金属層、24・・・界面。
FIG. 1 is a schematic cross-sectional view showing an electron-emitting device according to a first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view showing an electron-emitting device according to a second embodiment of the present invention, and FIGS. The figures are a schematic cross-sectional view and a schematic perspective view, respectively, showing a conventional electron-emitting device. DESCRIPTION OF SYMBOLS 11... Conductor, 12... Insulator layer, 13... Metal layer, 14... Interface, 21... Conductor, 22...
Insulator layer, 23a...first metal layer, 23b...second metal layer, 24...interface.

Claims (2)

【特許請求の範囲】[Claims] (1)導電体と、この導電体上に形成された絶縁体層と
、この絶縁体層上に形成された金属層を備え、上記金属
層が絶縁体構成元素のうちの負にイオン化する成分元素
と化学的に容易に結合しやすい元素からなる電子放出素
子。
(1) A conductor, an insulator layer formed on the conductor, and a metal layer formed on the insulator layer, and the metal layer includes a negatively ionized component of the insulator constituent elements. An electron-emitting device made of elements that chemically bond easily with other elements.
(2)導電体と、この導電体上に形成された絶縁体層と
、この絶縁体層上に順次形成された第1および第2の金
属層を備え、上記第1の金属層が絶縁体構成元素のうち
の負にイオン化する成分元素と化学的に容易に結合しや
すい元素からなり、上記第2の金属層が化学的に安定な
元素からなる電子放出素子。
(2) A conductor, an insulator layer formed on the conductor, and first and second metal layers sequentially formed on the insulator layer, wherein the first metal layer is an insulator. An electron-emitting device in which the second metal layer is made of an element that is chemically stable, and the second metal layer is made of an element that is chemically easily bonded to a negatively ionized component element among the constituent elements.
JP1126949A 1989-05-19 1989-05-19 Electron emitting element Pending JPH02306520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126949A JPH02306520A (en) 1989-05-19 1989-05-19 Electron emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126949A JPH02306520A (en) 1989-05-19 1989-05-19 Electron emitting element

Publications (1)

Publication Number Publication Date
JPH02306520A true JPH02306520A (en) 1990-12-19

Family

ID=14947884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126949A Pending JPH02306520A (en) 1989-05-19 1989-05-19 Electron emitting element

Country Status (1)

Country Link
JP (1) JPH02306520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018839A1 (en) * 1999-09-06 2001-03-15 Hitachi, Ltd. Thin-film electron source, process for manufacturing thin-film electron source, and display
WO2003065425A3 (en) * 2002-01-31 2004-04-01 Hewlett Packard Co Emitter and method of making
JP2016136485A (en) * 2015-01-23 2016-07-28 シャープ株式会社 Electron emission element and electron emission apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018839A1 (en) * 1999-09-06 2001-03-15 Hitachi, Ltd. Thin-film electron source, process for manufacturing thin-film electron source, and display
US6570321B1 (en) 1999-09-06 2003-05-27 Hitachi, Ltd. Thin-film electron source, process for manufacturing thin-film electron source, and display
WO2003065425A3 (en) * 2002-01-31 2004-04-01 Hewlett Packard Co Emitter and method of making
US6933517B2 (en) 2002-01-31 2005-08-23 Hewlett-Packard Development Company, L.P. Tunneling emitters
JP2016136485A (en) * 2015-01-23 2016-07-28 シャープ株式会社 Electron emission element and electron emission apparatus

Similar Documents

Publication Publication Date Title
US5821680A (en) Multi-layer carbon-based coatings for field emission
US6726518B2 (en) Electrode structures, display devices containing the same, and methods for making the same
JPH09259795A (en) Cold electron emitting display device
JPS63150837A (en) Electron emitting device
US5656883A (en) Field emission devices with improved field emission surfaces
JPH02306520A (en) Electron emitting element
KR100362075B1 (en) an MIM or MIS electron source and method of manufacturing the same
JP3341890B2 (en) Method of manufacturing field emission device
WO2000074098A1 (en) Thin-film electron source, display and device
JP3335836B2 (en) Electron emission device
JP3260502B2 (en) Electron-emitting device
JP3508652B2 (en) Field emission type electron source and method of manufacturing the same
JP2625349B2 (en) Thin film cold cathode
JP3405773B2 (en) Micro field emission cathode device and method of manufacturing the same
JPH02170327A (en) Electron releasing element
JP3487230B2 (en) Field emission electron source, method of manufacturing the same, and display device
JPH08180794A (en) Structure of flat cold cathode, drive method and electron beam emitting device using thereof
JPH0233823A (en) Electron emission element
JPH02121227A (en) Electron emission element and manufacture thereof
JPH02172127A (en) Electron emission element and its manufacture
JPH0855565A (en) Quantum-wire electron-beam source
JPH03203143A (en) Semiconductor device
KR100260074B1 (en) Heat-electron emiting structure of flat vacuum tube device
JPH02126532A (en) Electron emission element
JPH02239537A (en) Electron emitting element