JPH02302726A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH02302726A
JPH02302726A JP1124738A JP12473889A JPH02302726A JP H02302726 A JPH02302726 A JP H02302726A JP 1124738 A JP1124738 A JP 1124738A JP 12473889 A JP12473889 A JP 12473889A JP H02302726 A JPH02302726 A JP H02302726A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
light
display element
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124738A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Shoichi Uchiyama
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1124738A priority Critical patent/JPH02302726A/en
Publication of JPH02302726A publication Critical patent/JPH02302726A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain the bright liquid crystal display element which has a lens array with high light convergence performance even when a light source which is inferior in the parallelism of projection luminous flux is used by embedding microlenses with a high numerical aperture in a counter substrate. CONSTITUTION:Lens bodies 102 are embedded in the counter substrate 101 and a transparent layer and an orienting layer 109 for holding liquid crystal are formed on the surface. Then the respective lenses in a plane lens array are so arranged having their optical axes correspond to respective display elements of a liquid crystal display element one to one. Namely, light which is incident on the counter substrate is converged by the microlenses 102 and transmitted through display picture element opening parts 104 corresponding to the microlenses one to one without being cut off by a light shield film 103. Thus, the quantity of the transmitted light is controlled to maintain a high contrast ratio, thereby obtaining the bright liquid crystal display element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶ディスプレイ、投射型プロジェクタ−1
光プリンター等の光学機器に使用される液晶表示素子に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid crystal display, a projection type projector-1
The present invention relates to liquid crystal display elements used in optical equipment such as optical printers.

〔従来の技術〕[Conventional technology]

高分解能液晶表示素子の解決すべき課題に表示面におけ
る明るさ及びコントラストの改善が挙げられる。上記課
題に対し、液晶表示素子の前面(光源側)にレンズアレ
イ体を形成し、入射光を液晶画素開口部に集めることに
より、明るさ及びコントラストの改善を図るという提案
がなされてきた(例えば、特開昭57−157215、
特開昭6O−165624)、  以下に、従来の提案
の概要を第2図を用いて説明する。レンズアレイ板20
1上に形成されたマイクロレンズ202と、透明基板2
07上に形成された液晶画素開口部205が対応するよ
うに両者を構成し、該マイクロレンズにより入射光を液
晶画素開口部に局所的に集光し、なおかつその部分を透
過させ、遮光性部分で光が遮られることによる透過損失
を減少させ、明るい液晶表示素子を得ようとするもので
ある。
Problems to be solved with high-resolution liquid crystal display elements include improving the brightness and contrast on the display surface. To address the above issues, proposals have been made to improve brightness and contrast by forming a lens array on the front surface (light source side) of the liquid crystal display element and concentrating the incident light on the liquid crystal pixel aperture (for example, , Japanese Patent Publication No. 57-157215,
JP-A No. 6O-165624), the outline of the conventional proposal will be explained below with reference to FIG. Lens array plate 20
Microlens 202 formed on 1 and transparent substrate 2
The microlenses are configured so that the liquid crystal pixel apertures 205 formed on the liquid crystal pixel apertures correspond to each other. The aim is to reduce the transmission loss caused by light being blocked by the light, and to obtain a bright liquid crystal display element.

一般にマイクロレンズとしては円形レンズまたはレンチ
キュラーレンズが用いられる。又、透明基板207上に
形成されている信号線及び能動スイッチング素子206
を強い入射光から保護するために、通常対向基板には金
属筒膜等による遮光膜204が形成されている。
Generally, a circular lens or a lenticular lens is used as the microlens. In addition, signal lines and active switching elements 206 formed on the transparent substrate 207
In order to protect the light from strong incident light, a light shielding film 204 made of a metal tube film or the like is usually formed on the opposing substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来技術に見られる提案は光源を含めた一連の
光学系の特性をほとんど考慮していないため、いずれも
効果的であるとは言い難い、なぜならば、従来の提案は
何れも集光性のレンズアレイを、液晶表示素子の共通電
極が形成されている対向基板の光源側表面に形成してい
るため、形成されるレンズ体としては非常に焦点距離の
長いものとなってしまう0通常、対向基板の厚みは約1
順程度あるため、仮に表示画素の大きさが100μm×
100μm程度とするとFナンバーが6〜8程度の焦点
距離の長いレンズ体を形成することになる。焦点距離の
長いレンズ体、つまり開口数(NA値)が小さいレンズ
体は入射光に対する呑込み角が小さく、レンズの光軸に
対しである角度を持って入射する光はほとんど集光する
ことができない。
However, the proposals found in the prior art hardly take into consideration the characteristics of a series of optical systems including the light source, so it is difficult to say that they are effective. Since the lens array is formed on the light source side surface of the counter substrate on which the common electrode of the liquid crystal display element is formed, the lens body formed has a very long focal length. The thickness of the opposing board is approximately 1
Since there are some degrees, if the size of the display pixel is 100μm×
If it is about 100 μm, a lens body with a long focal length and an F number of about 6 to 8 will be formed. A lens body with a long focal length, that is, a lens body with a small numerical aperture (NA value), has a small swallowing angle for incident light, and most of the light that enters at a certain angle to the optical axis of the lens can be focused. Can not.

レーザー光源を除いて、一般の白色光源がらの出射光束
は3〜10°程度の極めて大きな広がり角を有すること
、液晶表示素子の高密度化に伴い益々表示画素が小さく
なることを考えると、集光性のレンズアレイを対向基板
の光源側に取り付けるという従来の構造では、十分な集
光効果を期待できないという問題がある。
Considering that the luminous flux emitted from general white light sources, excluding laser light sources, has an extremely large divergence angle of about 3 to 10 degrees, and that the display pixels are becoming smaller and smaller as the density of liquid crystal display elements increases, it is difficult to concentrate. The conventional structure in which a light lens array is attached to the light source side of the counter substrate has a problem in that a sufficient light focusing effect cannot be expected.

そこで本発明は以上のような問題点を解決するもので、
その目的とするところは、出射光束の平行性が悪い光源
を用いても集光性能の高いレンズアレイを備えた、明る
い液晶表示素子を提供することにある。
Therefore, the present invention solves the above problems.
The objective is to provide a bright liquid crystal display element that is equipped with a lens array that has high light-gathering performance even when a light source whose output light beams are poorly collimated is used.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために本発明の液晶表示素子は一対
の基板間に液晶を保持し前記基板上に液晶の電気光学効
果を制御する手段として、一方の基板上に能動スイッチ
ング素子をマトリックス状に形成した液晶表示素子にお
いて、該基板に対向する基板内に埋め込み型レンズを液
晶画素と対応するように形成したことを特徴とする。
In order to solve the above problems, the liquid crystal display element of the present invention holds a liquid crystal between a pair of substrates, and as a means for controlling the electro-optic effect of the liquid crystal on the substrate, active switching elements are arranged in a matrix on one substrate. The formed liquid crystal display element is characterized in that embedded lenses are formed in the substrate facing the substrate so as to correspond to the liquid crystal pixels.

〔作用〕[Effect]

第1図は本発明の液晶表示素子の断面図を示したもので
ある。第1図に示すように対向基板1゜1の内部にレン
ズ体102が埋め込まれており、また、表面には透明電
極層と液晶を保持するための配向層109が形成されて
いる。平板レンズアレイ中の各レンズの光軸は液晶表示
素子の各表示画素と1対1に対応するように配置構成さ
れている。対向基板に入射した光は、基板内に埋め込ま
れたマイクロレンズ102により集光され、遮光膜10
3に遮られることなく、マイクロレンズとl対lに対応
した、表示画素開口部104を透過する。したがって、
実質上入射光は液晶駆動部、配線部等の領域(遮光層)
で遮られることなく、はとんど全ての光は透明開口部の
みを通ることになる。したがって、その透過光量を制御
することにより、高コントラスト比を維持しつつ明るい
液晶表示素子を得ることができる。
FIG. 1 shows a cross-sectional view of a liquid crystal display element of the present invention. As shown in FIG. 1, a lens body 102 is embedded inside a counter substrate 1.degree. 1, and a transparent electrode layer and an alignment layer 109 for holding liquid crystal are formed on the surface. The optical axis of each lens in the flat lens array is arranged in a one-to-one correspondence with each display pixel of the liquid crystal display element. The light incident on the counter substrate is focused by the microlens 102 embedded in the substrate, and the light is collected by the light shielding film 102.
The light passes through the display pixel aperture 104, which corresponds to the microlens 1:1, without being obstructed by the light beam 3. therefore,
Substantially, the incident light is transmitted to areas such as the liquid crystal drive section and wiring section (light shielding layer).
Almost all light passes through the transparent aperture without being blocked by the transparent aperture. Therefore, by controlling the amount of transmitted light, a bright liquid crystal display element can be obtained while maintaining a high contrast ratio.

第1図ではレンズ体としてリニアレンチキュラー型のレ
ンズ体を示したが、使用可能なレンズ形状としては一般
的な円形、楕円形あるいは方形等があげられる。
In FIG. 1, a linear lenticular type lens body is shown as the lens body, but usable lens shapes include general circular, elliptical, or rectangular shapes.

〔実施例〕〔Example〕

以下、実施例に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail based on Examples.

但し、本発明は以下の実施例に限定されるものではない
However, the present invention is not limited to the following examples.

[実施例1] 両端面を平行平面研磨した厚さ1 mmのはう珪酸系光
学ガラスを基板ガラスとして用い、二段階イオン拡散法
により基板ガラスの表面から深さ方向に約300μmの
位置に、埋め込み型の分布屈折!’ 2レンズを形成し
た。この埋め込み型レンズは幅約100μmのレンチキ
ュラー状レンズであり、レンズ体が相互に接するように
二次元的に配列し、基板ガラス中に埋め込み型レンズア
レイ102を形成した。なお、このレンズの焦点距離を
ガラス中で約300μmに設定し、光を入射した場合に
基板ガラスの裏面に合焦するようにした。
[Example 1] A 1 mm thick silicic acid optical glass with both end surfaces polished to parallel planes was used as a substrate glass, and a two-step ion diffusion method was used to deposit a glass substrate at a position approximately 300 μm in the depth direction from the surface of the substrate glass. Embedded distributed refraction! ' Two lenses were formed. This embedded lens was a lenticular lens with a width of about 100 μm, and the lens bodies were arranged two-dimensionally so as to be in contact with each other, thereby forming an embedded lens array 102 in the substrate glass. Note that the focal length of this lens was set to about 300 μm in the glass so that when light was incident, it was focused on the back surface of the substrate glass.

次に、埋め込み型レンズが形成されている上記基板ガラ
スを対向基板101として用い、第1図に示すような断
面構造を有する液晶表示素子を構成した。対向基板ガラ
スの片側の表面には能動スイッチング素子を遮光するた
めのニッケル薄膜製遮光膜103、透明電極層(ITO
膜)及び液晶配向層(ポリイミド膜)109が、また、
相対する透明基板上には能動スイッチング素子としてポ
リシリコン薄膜トランジスター105がマトリックス状
に形成されている。なお、基板中のレンズの光軸と液晶
表示画素開口部104の光軸は対応している。この液晶
表示素子の前方(対向基板側)より平行性の良い光線を
入射し、液晶表示素子を透過する光束工を測定したとこ
ろ、対向基板前面位置における全光束ユは3001mで
あり、液晶表示素子を透過した全光束量は1961mで
あった。なお、光源にはアーク長が約6 mmであるメ
タルハライドランプにリフレクタ−を取り付けたものを
用いた。従来の集光用レンズを取り付けていない液晶表
示素子における全光束ユが1121mであることを考慮
すると、本発明の液晶表示素子は極めて明るい光学系で
あると言える。
Next, a liquid crystal display element having a cross-sectional structure as shown in FIG. 1 was constructed using the substrate glass on which the embedded lens was formed as a counter substrate 101. On one surface of the counter substrate glass, there is a light shielding film 103 made of a thin nickel film for shielding active switching elements from light, and a transparent electrode layer (ITO
film) and the liquid crystal alignment layer (polyimide film) 109,
On the opposing transparent substrates, polysilicon thin film transistors 105 are formed in a matrix as active switching elements. Note that the optical axis of the lens in the substrate corresponds to the optical axis of the liquid crystal display pixel opening 104. When we measured the luminous flux transmitted through the liquid crystal display element by entering a well-parallel light beam from the front of the liquid crystal display element (on the opposite substrate side), the total luminous flux at the front position of the opposite substrate was 3001 m, and the liquid crystal display element The total amount of luminous flux transmitted was 1961 m. The light source used was a metal halide lamp with an arc length of about 6 mm and a reflector attached. Considering that the total luminous flux of a conventional liquid crystal display element without a condensing lens is 1121 m, it can be said that the liquid crystal display element of the present invention is an extremely bright optical system.

さらに、本発明の液晶表示素子では対向基板中に埋め込
み型のレンズを形成したことから、焦点距離の短い、開
口数の大きなレンズ光学系を採用することができ、出射
光束の平行性が悪い光源を用いた場合にも十分に集光性
を発揮することが可能であった。具体的には、光軸に対
して約±6゜4@の広がり角を有する光源まで使用する
ことが可能であった。つまり、本発明の液晶表示素子の
場合、外付は法により集光性レンズを取り付けた従来の
同じサイズの液晶表示素子と比べて、出射光束の平行性
が約3.4倍悪い光源まで用いることができることを意
味している。
Furthermore, since the liquid crystal display element of the present invention has an embedded lens formed in the opposing substrate, it is possible to use a lens optical system with a short focal length and a large numerical aperture, and it is possible to use a lens optical system with a short focal length and a large numerical aperture. It was also possible to exhibit sufficient light-gathering properties when using . Specifically, it was possible to use up to a light source having a spread angle of approximately ±6°4@ with respect to the optical axis. In other words, in the case of the liquid crystal display element of the present invention, a light source whose output light beam is approximately 3.4 times worse in collimation than a conventional liquid crystal display element of the same size in which a condensing lens is attached by an external method is used. It means that you can.

[実施例2コ ブレス成形法によりアクリル製樹脂平板の片側表面にレ
ンズ幅100μm、レンズピッチ100μm、焦点距離
250μmのレンチキュラーレンズアレイを形成した。
[Example 2] A lenticular lens array having a lens width of 100 μm, a lens pitch of 100 μm, and a focal length of 250 μm was formed on one surface of an acrylic resin flat plate by the cobres molding method.

この樹脂製レンズアレイのレンズ側表面に、光硬化樹脂
層を介して厚さ約355μmの薄型石英ガラス基板を貼
り付け、レンズ部分が基板内に埋め込まれた平板状レン
ズアレイを作製した。この平板状レンズアレイを対向基
板として用いるため、貼り付けた石英ガラス基板の接着
しない面上には、予めニッケル薄膜製遮光膜、透明電極
層及び液晶配向層が形成されている。
A thin quartz glass substrate with a thickness of approximately 355 μm was attached to the lens-side surface of this resin lens array via a photocurable resin layer to produce a flat lens array in which the lens portion was embedded within the substrate. Since this flat lens array is used as a counter substrate, a nickel thin film light-shielding film, a transparent electrode layer, and a liquid crystal alignment layer are previously formed on the non-adhesive surface of the attached quartz glass substrate.

このレンズアレイが埋め込まれた対向基板を用いて、実
施例1と同様に液晶表示素子を構成し、同様に液晶表示
素子を透過する全光束量を測定したところ1781mで
あった0本実施例の場合、埋め込みレンズの焦点距離が
基板中で約365μmと長いため、先の実施例1の場合
と比べてレンズの開口率は小さくなり、その分集光性が
悪くなり透過光量が減少したものと考えられた。しかし
、集光性のレンズアレイを取り付けない場合に比べて、
透過光量は約1.6倍に増えており、十分明るい液晶表
示素子を得ることができた6以上の実施例は能動スイッ
チング素子としてポリシリコン薄膜トランジスターを用
いた液晶表示素子を例にとり示したが、その他にもMI
M (金属−絶縁体−金属)型2端子素子を用いたもの
等、一般にアクティブマトリックス型と呼ばれる液晶表
示素子や、単純マトリックス型液晶表示素子などあらゆ
る液晶表示素子に本発明は応用できる。
A liquid crystal display element was constructed in the same manner as in Example 1 using a counter substrate in which this lens array was embedded, and the total amount of luminous flux transmitted through the liquid crystal display element was similarly measured and found to be 1781 m. In this case, since the embedded lens has a long focal length of approximately 365 μm in the substrate, the aperture ratio of the lens is smaller than in Example 1, which is thought to result in poor light focusing and a decrease in the amount of transmitted light. It was done. However, compared to the case without a light-concentrating lens array,
The amount of transmitted light has increased by about 1.6 times, and the six or more embodiments in which a sufficiently bright liquid crystal display element was obtained are shown by taking as an example a liquid crystal display element using a polysilicon thin film transistor as an active switching element. , and other MI
The present invention can be applied to all kinds of liquid crystal display elements, such as those using an M (metal-insulator-metal) type two-terminal element, generally called active matrix type liquid crystal display elements, and simple matrix type liquid crystal display elements.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の液晶表示素子では、開口数
の高いマイクロレンズを対向基板内に埋め込み形成する
ことにより、出射光束の平行性が悪い光源を用いた場合
にも高い集光効果を確保でき、はとんどすべての入射光
を液晶表示画素開口部に集めることが可能である。した
がって、高コント”ラスト比を維持しつつ明るい液晶表
示素子を得ることができる。一般に液晶表示素子の画素
密度が上がるほど、マイクロレンズのレンズ径は小さく
なり、一定の開口数を確保するためには、同時に焦点距
離を短くする必要がある。従来の外付けによりレンズア
レイを液晶表示素子に取り付ける方法ではレンズの短焦
点化に限界があるのに対して、本発明の埋め込みレンズ
による方法では、短焦点化に対して極めて柔軟に対応す
ることができることから、極めて明るい液晶表示素子を
実現することが可能である。一般に、メタルハライドラ
ンプ、キセノンランプ等に代表される高輝度白色ランプ
の出射光束の広がり角は最大で約3〜8@程度あること
を考広すると、従来の集光性レンズアレイを取り付けた
液晶表示素子に対して、本発明の液晶表示素子の方がよ
り有効であると言える。
As explained above, in the liquid crystal display element of the present invention, by embedding a microlens with a high numerical aperture in the opposing substrate, a high light focusing effect is ensured even when using a light source with poor parallelism of the emitted light beam. It is possible to collect almost all the incident light into the liquid crystal display pixel aperture. Therefore, it is possible to obtain a bright liquid crystal display element while maintaining a high contrast ratio.Generally, as the pixel density of the liquid crystal display element increases, the lens diameter of the microlens becomes smaller, and in order to maintain a constant numerical aperture, the lens diameter of the microlens becomes smaller. At the same time, it is necessary to shorten the focal length.While there is a limit to shortening the focal length of the lens with the conventional method of externally attaching the lens array to the liquid crystal display element, with the method using the embedded lens of the present invention, Since it can respond extremely flexibly to short focal lengths, it is possible to realize extremely bright liquid crystal display elements.In general, the output luminous flux of high-intensity white lamps such as metal halide lamps and xenon lamps is Taking into consideration that the maximum divergence angle is about 3 to 8, it can be said that the liquid crystal display element of the present invention is more effective than a liquid crystal display element equipped with a conventional condensing lens array. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の埋め込み型レンズアレイ基板を対向基
板として用いた液晶表示素子の断面構造図。 第2図は外付けにより集光性のレンズアレイを取り付け
た、従来の一般的な液晶表示素子の断面構造図。 101・・・対向基板(レンズアレイ基板)102・・
・埋め込み型マイクロレンズ103・・・遮光膜 104・・・液晶画素開口部 105・・・能動スイッチング素子 106・・・透明基板 107・・・入射光 108・・・出射光 109・・・透明電極層及び液晶配向層201・・・レ
ンズアレイ基板 202・・・マイクロレンズ 203・・・対向基板 204・・・遮光膜 205・・・液晶画素開口部 206・・・能動スイッチング素子 207・・・透明基板 208・・・入射光 209・・・出射光 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴木 喜三部(化1名)第1図
FIG. 1 is a cross-sectional structural diagram of a liquid crystal display element using the embedded lens array substrate of the present invention as a counter substrate. FIG. 2 is a cross-sectional structural diagram of a conventional general liquid crystal display element to which a light-condensing lens array is attached externally. 101... Counter substrate (lens array substrate) 102...
- Embedded microlens 103... Light shielding film 104... Liquid crystal pixel opening 105... Active switching element 106... Transparent substrate 107... Incident light 108... Outgoing light 109... Transparent electrode layer and liquid crystal alignment layer 201...lens array substrate 202...microlens 203...counter substrate 204...light shielding film 205...liquid crystal pixel opening 206...active switching element 207...transparent Substrate 208...Incoming light 209...Outgoing light or more Applicant Seiko Epson Co., Ltd. Agent Patent attorney Kizobe Suzuki (1st name) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 一対の基板間に液晶を保持し前記基板上に液晶の電気光
学効果を制御する手段として、一方の基板上に能動スイ
ッチング素子をマトリックス状に形成した液晶表示素子
において、該基板に対向する基板内に埋め込み型レンズ
を液晶画素と対応するように形成したことを特徴とする
液晶表示素子。
In a liquid crystal display element in which a liquid crystal is held between a pair of substrates and active switching elements are formed in a matrix on one substrate as a means for controlling the electro-optical effect of the liquid crystal on the substrate, a substrate opposite to the substrate is A liquid crystal display element characterized in that an embedded lens is formed to correspond to a liquid crystal pixel.
JP1124738A 1989-05-18 1989-05-18 Liquid crystal display element Pending JPH02302726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124738A JPH02302726A (en) 1989-05-18 1989-05-18 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124738A JPH02302726A (en) 1989-05-18 1989-05-18 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH02302726A true JPH02302726A (en) 1990-12-14

Family

ID=14892894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124738A Pending JPH02302726A (en) 1989-05-18 1989-05-18 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH02302726A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444872A2 (en) * 1990-02-26 1991-09-04 Sharp Kabushiki Kaisha A liquid crystal display device
JPH049922A (en) * 1990-04-27 1992-01-14 Sharp Corp Projection type color liquid crystal display device
JPH0553090A (en) * 1991-08-29 1993-03-05 Fujitsu Ltd Projection type display device
EP0534426A2 (en) * 1991-09-26 1993-03-31 Canon Kabushiki Kaisha Liquid crystal display panel and projector utilizing the same
EP0609055A1 (en) * 1993-01-25 1994-08-03 Matsushita Electric Industrial Co., Ltd. Light valve apparatus and display system using same
US5583669A (en) * 1992-07-15 1996-12-10 Matsushita Electric Industrial Co., Ltd. Light valve apparatus, and projection display system and view-finder system employing said light valve apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444872A2 (en) * 1990-02-26 1991-09-04 Sharp Kabushiki Kaisha A liquid crystal display device
JPH03248125A (en) * 1990-02-26 1991-11-06 Sharp Corp Liquid crystal display element
EP0444872A3 (en) * 1990-02-26 1992-05-13 Sharp Kabushiki Kaisha A liquid crystal display device
US5680186A (en) * 1990-02-26 1997-10-21 Sharp Kabushiki Kaisha Liquid crystal display device with microlenses having a focal point between a cover layer and the liquid crystal layer's center
JPH049922A (en) * 1990-04-27 1992-01-14 Sharp Corp Projection type color liquid crystal display device
JPH0553090A (en) * 1991-08-29 1993-03-05 Fujitsu Ltd Projection type display device
EP0534426A3 (en) * 1991-09-26 1993-06-16 Canon Kabushiki Kaisha Liquid crystal display panel and projector utilizing the same
EP0534426A2 (en) * 1991-09-26 1993-03-31 Canon Kabushiki Kaisha Liquid crystal display panel and projector utilizing the same
US5764318A (en) * 1991-09-26 1998-06-09 Canon Kabushiki Kaisha Liquid crystal display panel and projector utilizing the same
US5583669A (en) * 1992-07-15 1996-12-10 Matsushita Electric Industrial Co., Ltd. Light valve apparatus, and projection display system and view-finder system employing said light valve apparatus
US5689315A (en) * 1992-07-15 1997-11-18 Matsushita Electric Industrial Co., Ltd. Light valve apparatus which is employed in a projection display system and in a view-finder system
EP0609055A1 (en) * 1993-01-25 1994-08-03 Matsushita Electric Industrial Co., Ltd. Light valve apparatus and display system using same
US5430562A (en) * 1993-01-25 1995-07-04 Matsushita Electric Industrial Co., Ltd. Liquid crystal light valve including between light and light valve microlenses and two reflecting layers with a matrix of openings

Similar Documents

Publication Publication Date Title
US7427146B2 (en) Light-collecting illumination system
US5052783A (en) Projection type image display apparatus
US5455694A (en) Liquid crystal display with pixel shape same as image of light source through microlens
KR0130057B1 (en) A projection type liquid crystal
JPH0351882A (en) Projection-type image display device
KR987001098A (en) Picture Display Device
KR100262044B1 (en) Image display apparatus
US6680762B2 (en) Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio
JPH01189685A (en) Liquid crystal light valve and video projector with liquid crystal light valve
JP2552389B2 (en) Transmissive display
EP0518362B1 (en) Image display device using liquid-crystal panel, liquid-crystal TV projector, and conical optical-element array used therein
JPH02302726A (en) Liquid crystal display element
KR970000348B1 (en) Liquid crystal panel for liquid crystal projector
JP2001059963A (en) Liquid crystal display element
JPH05346578A (en) Liquid crystal display panel
JP3032084B2 (en) Liquid crystal display device
JP3331238B2 (en) Direct-view display device
JPH0229684A (en) Liquid crystal display element and projector provided with liquid crystal display element
JPH04168424A (en) Liquid crystal display element
JPH0588161A (en) Liquid crystal display element
JPH03214121A (en) Liquid crystal display device
JPH07199188A (en) Liquid crystal display element and liquid crystal display device using the element
KR940000591B1 (en) Color image display device of projection type
JP2520186B2 (en) Projection type image display device
JP2841997B2 (en) Liquid crystal display device