JPH02291922A - Flow-rate detector - Google Patents

Flow-rate detector

Info

Publication number
JPH02291922A
JPH02291922A JP1112487A JP11248789A JPH02291922A JP H02291922 A JPH02291922 A JP H02291922A JP 1112487 A JP1112487 A JP 1112487A JP 11248789 A JP11248789 A JP 11248789A JP H02291922 A JPH02291922 A JP H02291922A
Authority
JP
Japan
Prior art keywords
fluid
spherical body
flow rate
flow
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1112487A
Other languages
Japanese (ja)
Inventor
Hisashi Sugimoto
久 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Okuma Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Okuma Industrial Co Ltd filed Critical Asahi Okuma Industrial Co Ltd
Priority to JP1112487A priority Critical patent/JPH02291922A/en
Publication of JPH02291922A publication Critical patent/JPH02291922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To make it possible to maintain the highly accurate detecting capability for the flow rate of solvent and paint when the flow rate is small for a long period by providing casings having acid and solvent resisting characteristics and a closely sealed annular path in a closed circuit pattern in the inside. CONSTITUTION:A sealing material is held between stainless casings 1a and 1b. A closely sealed annular path 2 having the circular cross section is formed along the entire inner surface. A plurality of spherical bodies 5 whose outer surfaces keep slight gaps so that the bodies can be rolled and slidden in the path are inserted in the annular path. Said spherical body has a high hardness. An inlet port 3 and an outlet port 4 for fluid are opened at the appropriate positions of the annular path. A movement detecting system for the spherical body 5 is provided at the side wall of the annular path between the inlet port 3 and the outlet port 4. The fluid passes through a part of the path 2. The spherical body 5 moves from the inlet port 3 of the fluid to the outlet port 4 following the flow of the fluid. The spherical body is separated from the flow of the fluid in the vicinity of the outlet port 4 and recovered. When the spherical body is recovered, a spherical body 5c which is standing by at the inlet port 3 is thrown into the flow of the fluid. The spherical body 5c enters into the annular path. The flow rate is measured based on the moving speed of the spherical body 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は移送される流体全般の移送量を計測するもので
あり、特に比較的小流量で高精度な塗料の流量管理を要
求される高級塗装分野で有用である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention measures the amount of transferred fluid in general, and is particularly used in the field of high-grade painting, which requires highly accurate control of the flow rate of paint at a relatively small flow rate. It is useful in

従来の技術が解決しようとする問題点 一a的に液体の流量計としては、流量検出部に機械運動
部分を有する機械方式と、機械運動部分を持たない非機
械方式の2通りが上げられろ。
Problems to be Solved by Conventional Technology First, there are two types of liquid flowmeters: a mechanical type that has a mechanically moving part in the flow rate detection section, and a non-mechanical type that does not have a mechanically moving part. .

機械方式はオーバルギア機構等を利用した容積計量方式
が良く知られている。ギアの噛み合いによって流体の運
動エネルギーを支軸の回転数に変換して、オーバルギア
機構の吐出し量と支軸の回転数の関係から流量を測定す
るものである。容積室を連続移動することで液体を通過
させるので微小流量を正確に測定出来るが、噛合う機械
部品が多いので摩耗・破損し易い欠点がある。又、異物
などが侵入して機械部品の運動が阻害されると容積計量
部分の差圧が大きくなリ、流体圧力が高いものは機械部
品損傷の危険性がさらに大きかった。
As a mechanical method, a volumetric measuring method using an oval gear mechanism or the like is well known. The kinetic energy of the fluid is converted into the rotational speed of the support shaft by the meshing of the gears, and the flow rate is measured from the relationship between the discharge amount of the oval gear mechanism and the rotational speed of the support shaft. Since the liquid passes through the chamber by continuous movement, it is possible to accurately measure minute flow rates, but there are many mechanical parts that mesh with each other, making them susceptible to wear and tear. Furthermore, if the movement of mechanical parts is obstructed by foreign matter entering, the differential pressure in the volumetric part becomes large, and if the fluid pressure is high, there is an even greater risk of damage to the mechanical parts.

特に、高級塗装に用いる場合には、さらに重大な欠陥が
あった。それは、MEK等の強力な有機溶剤と、高硬度
の着色顔料が含まれる塗科等を扱う場合に耐溶剤性の部
品で構成しなければならないのは勿論であるが、一最的
な流量計のこと《機械部品の潤滑に取扱い流体を利用す
ると、顔料によって摩耗が促進されて早期に使用不能に
陥る欠陥である。さらに、メタリック塗科に含まれるア
ルミを主とするメタリック塗料が正常に発色するには、
調合時のメタリックフレークの形状として光を反射し易
い針状が望ましいのであるが、ギア方式の機械流量計を
通すと、ギアの噛み合い部分でメタリックフレークが折
れ曲がったり破壊されたりしてメタリック塗料の発色に
悪影響を及ぼす欠陥がありメタリック塗料には流量計を
使用出来なかった。又、機械部品の運動による圧力損失
の影響は噴霧ヘッドでの塗料の微粒化にも悪影響を及ぼ
す欠陥があった。
In particular, when used for high-grade coatings, there were even more serious defects. Of course, when dealing with paints that contain strong organic solvents such as MEK and highly hard colored pigments, it must be constructed with solvent-resistant parts, but the most suitable flowmeter is This is a defect in which when handling fluids are used to lubricate mechanical parts, pigments accelerate wear and make them unusable early. Furthermore, in order for metallic paints mainly made of aluminum contained in metallic paints to develop properly,
It is desirable for the metallic flakes to have a needle-like shape that easily reflects light during compounding, but when passed through a gear-type mechanical flowmeter, the metallic flakes are bent or broken at the meshing part of the gear, causing the metallic paint to develop color. The flow meter could not be used for metallic paint due to a defect that adversely affected the paint. In addition, the influence of pressure loss due to the movement of mechanical parts has a disadvantage in that it also adversely affects the atomization of paint in the spray head.

次に、非機械方式の流量計と(7ては一般的にコリオリ
カ、超音波ドップラー効果方式、差圧検出方式、温度差
検出方式、渦流検出方式等が知られている。何れも噛合
う機械部品が無いので耐久性に優れているが、高価なう
えに計測精度が粗いので小流量の塗料の高精度な流量管
理には使用できない欠点があった。成分、粘度が異なり
、非ニュートン流体である塗科を環境変化に影響されず
に高精度に測定するためには問題の多い機械式容積計量
型流量計しかなかった。
Next, non-mechanical flowmeters (generally known are Coriolis, ultrasonic Doppler effect method, differential pressure detection method, temperature difference detection method, eddy current detection method, etc.). Since there are no parts, it has excellent durability, but it is expensive and has poor measurement accuracy, so it cannot be used for highly accurate flow control of small flow rate paints.The composition and viscosity are different, and it is a non-Newtonian fluid. Mechanical volumetric flowmeters, which have many problems, were the only way to measure certain coatings with high precision without being affected by environmental changes.

発明が解決しようとする課題 塗料の高精度な流量管理に用いる機械方式の容積計量型
流量計において、特に小流量、例えば毎分11以下の流
量の場合の溶剤、塗料の高精度の流量検出を長期に渡っ
て維持出来ないことに対する耐摩耗性能、耐溶剤性能の
克服。又、メタリック塗料を扱う場合のメタリックフレ
ーク損傷による塗装時の発色への悪影響対策。又、塵な
どが噛み込むことによる、機械構成部品損傷事故対策。
Problem to be Solved by the Invention In a mechanical volumetric flow meter used for highly accurate flow control of paint, it is possible to detect the flow rate of solvents and paint with high precision, especially in the case of small flow rates, for example, flow rates of 11 or less per minute. Overcoming wear resistance and solvent resistance that cannot be maintained over a long period of time. Also, when handling metallic paints, countermeasures against adverse effects on color development during painting due to damage to metallic flakes. Also, prevents damage to mechanical components caused by dust etc.

および、耐圧力性能の向上、圧力損失の低減、製造コス
ト低下対策が緊急の課題であツtコ。
Improving pressure resistance, reducing pressure loss, and reducing manufacturing costs are urgent issues.

課題を解決するための手段 耐酸・耐溶剤特性があり、内部に閉回路の密封環状通路
を有し、前記環状通路表面に高硬度の表面処理を施した
堅牢なるケーシングと、前記環状3!1略内に外周が通
路内周と転勤・摺動可能に僅かな隙間を保つ複数の高硬
度の球体を挿入し、前記するシステムを設けた構成とし
た。
Means for Solving the Problems: A robust casing which has acid and solvent resistance properties, has a sealed annular passage with a closed circuit inside, and has a surface treated with high hardness on the surface of the annular passage, and the annular 3!1 A plurality of high-hardness spheres are inserted substantially inside the passageway so that the outer periphery can move and slide with the inner periphery of the passage with a slight gap, and the above-mentioned system is provided.

発明の作用及びその効果 本発明は上記構成になり、密封環状通路の1部分を液体
が通過し、その流れに従って、前記球体が液体の流入口
から流出口に向って移動し、流出口付近で液体の流れか
ら分離回収される。回収に伴って流入口に待機していた
球体を液体の流れに投入出来るように、前記環状通路を
球体の循環通路とし、球体の移動速度から流量を割り出
すことにしたから、 イ.構造が簡単で機械的結合、及び駆動部分力τ無く、
機械部品の損傷事故は皆無となる。又、環状通路のライ
ナ一部分と球体表面の硬度を高めるだけで耐摩耗性能、
耐圧力性能が向上し、あらゆる流体の流量計測に適用可
能。
Functions and Effects of the Invention The present invention has the above-mentioned configuration, in which liquid passes through a portion of the sealed annular passage, and according to the flow, the sphere moves from the inlet to the outlet of the liquid, and near the outlet. Separated and recovered from the liquid stream. In order to be able to throw the spheres waiting at the inlet during collection into the liquid flow, we decided to use the annular passage as a circulation passage for the spheres and calculate the flow rate from the moving speed of the spheres. (a) Simple structure, no mechanical connection, no driving force τ,
There will be no accidents resulting in damage to mechanical parts. In addition, wear resistance can be improved simply by increasing the hardness of a portion of the liner of the annular passage and the surface of the sphere.
Improved pressure resistance performance, applicable to flow rate measurement of all fluids.

口.鋭角に噛合う機械要素部分が無くなり、メタリック
塗料のメタリックフレークの損傷力9皆無となるので、
メタリック塗料の発色に悪影響が無くなり、メタリック
塗料の流量計測(こも適用可能。
mouth. There are no mechanical elements that mesh at acute angles, and there is no damaging force9 caused by the metallic flakes of metallic paint.
There is no negative effect on the color development of metallic paint, and it can also be used to measure the flow rate of metallic paint.

ハ.球体の前後での圧力差が殆ど発生しなし)ので環状
通路と球体間の隙間を小さくすることで、流体の球体前
後間の漏れを極少とし、液体と球1体の移動量のズレが
皆無となるので、液体の移動速度を高精度に検出できる
。又、摩擦抵抗が少ないので圧力損失を低く押さえるこ
とができる。
C. There is almost no pressure difference between the front and rear of the sphere), so by reducing the gap between the annular passage and the sphere, leakage of fluid between the front and rear of the sphere is minimized, and there is no discrepancy in the amount of movement between the liquid and one sphere. Therefore, the moving speed of the liquid can be detected with high precision. Moreover, since there is little frictional resistance, pressure loss can be kept low.

以上の観点に立って小流量の塗料等の高精度流量計を得
ようとするものである。
From the above point of view, the present invention attempts to obtain a high-precision flow meter for paints, etc., which can handle small flow rates.

実施例 以下具体的実施例に基づきその作用を説明する。Example The operation will be explained below based on specific examples.

第1図は本実施例の流量計本体の縦断面図、第2図は第
1図A−A’線縦断面図である。本装置の設置状態は、
重力を利用してボールの繰り出しを可能にするためにボ
ールの貯留部が下になるようにする。
FIG. 1 is a longitudinal sectional view of the flow meter main body of this embodiment, and FIG. 2 is a longitudinal sectional view taken along the line AA' in FIG. The installation status of this device is
The ball reservoir should be at the bottom to allow the ball to be fed out using gravity.

(la)、(lb)は磁性体を含まないステンレス製の
ケーシングであり、ケーシング間には図又、前記密封環
状通路2に対して流入口(3)、流出口(4)が開口し
、夫々には図示しない流体経路が接続され、該通@(2
)内には該通路と摺動可能でかつ流体を密封可能とする
適正間隙になる複数の球体5が、磁性体を含有する材質
により構成され組込まれている。第1図において、(5
a)は該通路2の上部に当たる流体の移動領域を通過中
の球体を示している。この状態では前記流入口(3)、
?A出口(4)ともに開放状態であり、球体(5a)は
[流出口側の流体圧カコ<[流入口側の流体圧力]によ
って流出口方向へ運ばれる。
(la) and (lb) are stainless steel casings containing no magnetic material, and between the casings, an inlet (3) and an outlet (4) are opened to the sealed annular passage 2, A fluid path (not shown) is connected to each of them.
), a plurality of spheres 5 made of a material containing a magnetic substance and built in are slidable in the passageway and provided with an appropriate gap for fluid sealing. In Figure 1, (5
a) shows the sphere passing through the fluid movement area at the top of the channel 2; In this state, the inlet (3),
? Both A outlets (4) are open, and the sphere (5a) is carried toward the outlet by [fluid pressure on the outlet side <[fluid pressure on the inlet side]].

前記通路(2)の下部に当たる球体の待機領域の通路に
は、球体(5)が各々の間隔を緊密に保ちながら順次流
入口(3)から流路に放出されるべく待機状態を作り出
すために流出口(4)よりもここで、球体(5)を順次
流出口(4)より流路へ押し出す繰り出し機構について
説明する。
In the passage of the sphere waiting area corresponding to the lower part of the passage (2), in order to create a waiting state so that the spheres (5) are sequentially discharged from the inflow port (3) into the flow passage while maintaining close intervals between each sphere. A mechanism for pushing out the spheres (5) sequentially from the outlet (4) into the channel will now be described.

第1図において、流出口に向って移動中の球体(5a)
が流出口に到着して待機中の最後尾の球体(5b)に接
触した状態が2点鎖線の(5a’)である。球体間に充
満していた液体は前記連通溝(6)によって排出され球
体間の間隔は緊密状態となる。この時球体(5)全体は
静水圧の状態に置かれているので、前記通路内での球体
の位置は左右にバランスされる方向に移動する。流入口
で待機中の最先頭の球体(5c)は、この移動によj(
5(!’)の位置まで押し上げられる。(5c)の位置
においては流入口(3)を塞ぐ格好にな吻、流入口側と
流出口側の流体圧力の差によって(5 c’ ) − 
(5 a)方向へと繰り出される。
In Figure 1, the sphere (5a) is moving toward the outlet.
The state in which the sphere reaches the outlet and contacts the last waiting sphere (5b) is indicated by a two-dot chain line (5a'). The liquid filling between the spheres is discharged through the communication groove (6), and the distance between the spheres becomes tight. At this time, since the entire sphere (5) is placed under hydrostatic pressure, the position of the sphere within the passage moves in a direction that is balanced left and right. Due to this movement, the foremost sphere (5c) waiting at the inlet becomes j(
It will be pushed up to the 5 (!') position. At the position (5c), the proboscis is in a position to block the inlet (3), and due to the difference in fluid pressure between the inlet and the outlet, (5 c') -
(5 a) It is fed out in the direction.

次に球体移動検出と流量換算について説明する。Next, sphere movement detection and flow rate conversion will be explained.

磁性体の移動を検出するために、図示しない磁気式近接
センサを第1図の前記流入口、流出口間に配置して、球
体の通過を検出できるようにした。
In order to detect the movement of the magnetic body, a magnetic proximity sensor (not shown) was placed between the inlet and outlet in FIG. 1 so as to be able to detect the passage of the sphere.

サ7は出力値のリセットを行うためのものであり、流体
の流れが停止した時、磁気式近接センサ(8)と磁気式
近接センサ(9)の間に、移動球体が位置する場合等に
、流体が流れだした時の磁気式近接センサ(9)におけ
る先頭の検出信号をキャンセルして、不具合値を出力し
ないための配慮である。
The sensor 7 is for resetting the output value, and is used when a moving sphere is located between the magnetic proximity sensor (8) and the magnetic proximity sensor (9) when the fluid flow stops. This is a consideration for canceling the first detection signal in the magnetic proximity sensor (9) when the fluid begins to flow and not outputting a defective value.

流量換算のやり方は、近接センサ(8)によって球体の
通過が確認されると、時間計測が開始され、近接センサ
(9)で球体の到着が確認されて時間計測完了となり途
中経過時till(T)が把握される。次の演算処理回
路では、通路断面積(S)とセンサ間距gl(Llが一
定なのでS*L/Tにより単位時間当な妙の流量が算出
・出力される仕組みになっている。センサの数量増加、
センサの検出感度向上により検出サイクル、応答性はさ
らに向上する。
The method of converting the flow rate is that when the passage of the sphere is confirmed by the proximity sensor (8), time measurement is started, and when the arrival of the sphere is confirmed by the proximity sensor (9), the time measurement is completed and the time elapsed is until(T). ) is understood. In the next arithmetic processing circuit, since the passage cross-sectional area (S) and the distance between the sensors gl (Ll are constant, S*L/T is used to calculate and output the appropriate flow rate per unit time.Quantity of sensors increase,
Detection cycles and responsiveness will further improve as the sensor's detection sensitivity improves.

上記実施例によって具体的に説明したように、本発明の
流量検出装置は、円形断面形状の環状通路′を形成した
ケーシングを縦置き配置とし、流体の流入口、流出口を
適正な位置に設け、環状通路内には通路壁面と緊密で且
つ摺動可能に複数の球体を組み込み、流体の移動によっ
て球体が環状通路を循環する構造であり、球体を流体と
同速度で移動できるようにして、回収再循環するシステ
ムとしたため、球体の移動を計測することで連続して流
体の流量を測定出来るようにしたことを要旨とするもの
であって、 イ.構造が簡単で機械的結合、及び駆動部分を排除。あ
らゆる流体に適用可能で耐久性、適応性;こ富 む。
As specifically explained in the above embodiments, the flow rate detection device of the present invention has a casing in which an annular passage with a circular cross-section is formed and is placed vertically, and the inlet and outlet of the fluid are provided at appropriate positions. The annular passage has a structure in which a plurality of spheres are built into the annular passage so as to be tightly and slidably connected to the passage wall surface, and the spheres circulate through the annular passage as the fluid moves, so that the spheres can move at the same speed as the fluid, Since the system is designed to collect and recirculate, the gist of the system is to be able to continuously measure the flow rate of fluid by measuring the movement of the sphere. Simple structure eliminates mechanical coupling and driving parts. Applicable to all fluids, highly durable and adaptable.

ロ.メタリックフレークに損傷を与えないので,メタリ
ック塗料に用いることが出来る。
B. Since it does not damage metallic flakes, it can be used in metallic paints.

ハ.流体の移動速度と球体の移動速度のズレは極少とな
り、低圧力損失で高精度な流量計測が可能となる等の効
果を奏する。
C. The discrepancy between the moving speed of the fluid and the moving speed of the sphere becomes extremely small, resulting in effects such as enabling highly accurate flow rate measurement with low pressure loss.

つまり、従来の非接触方式の流量計測装置の耐久性、適
応性を持ち、さらに機械式方式よりも侵れた高精度計浬
の特微を合わせもった流量計測装置を可能にするもので
ある。本実施例では球体検出センサーとして磁気式近接
センサーを用いたが、ホール素子センサーを用いてもよ
い。又、環状通路形状を工夫して計測部分を長い直線に
し超音波を用いたド・ソブラー効果による速度検出をし
てもよい。又、本実施例は高圧力流体を対象としてケー
シングを強固なものとしたが、ケーシングを樹1]旨製
にしたり、球体に磁性材を含む樹脂材料を採用する等軽
量なものにすれば低圧力流体、及び気体の流量検出器と
しても用いることも可能である。
In other words, it enables a flow rate measurement device that has the durability and adaptability of conventional non-contact type flow rate measurement devices, and also has the features of high-precision metering that are more advanced than mechanical methods. . In this embodiment, a magnetic proximity sensor is used as the sphere detection sensor, but a Hall element sensor may also be used. Alternatively, the shape of the annular passage may be devised to make the measurement portion a long straight line, and the speed may be detected by the de Sobler effect using ultrasonic waves. In addition, in this example, the casing was made strong for high-pressure fluid, but if the casing is made of wood or the sphere is made of resin material containing magnetic material, it can be made lightweight. It can also be used as a pressure fluid and gas flow rate detector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例の縦断面図。第2図は第1図A−A’
線縦断面図。第3図は説明のため流歌計本体を便宜上第
1図の0−0′線で切断し水平に展開した図である。1
 ケーシング、2・・環状通路、6 連通溝、7、8、
9 磁気式近接センサー 10・信号処理回路。
FIG. 1 is a longitudinal sectional view of this embodiment. Figure 2 is Figure 1 A-A'
Line longitudinal cross-sectional view. FIG. 3 is a view of the main body of the flowmeter, cut along the line 0-0' of FIG. 1 and developed horizontally for convenience. 1
Casing, 2... Annular passage, 6 Communication groove, 7, 8,
9. Magnetic proximity sensor 10. Signal processing circuit.

Claims (1)

【特許請求の範囲】 1 ケーシング内に閉回路の密封中空通路を形成し、同
通路内に通路壁面と適正な隙間を保って摺動可能な複数
の摺動子を挿入し、前記通路に開口する流体の入出口を
設け、流体で充満された前記通路に於て、通路内に開口
する流体の入口付近に前記摺動子を投入し、出口に向っ
て流れる流体の流れに沿って摺動子を移動させ、流体の
出口付近にて摺動子を回収して再度流体の入口へ投入可
能に待機させる摺動子の循環通路を構成することと、ケ
ーシングに設けた検出体で移動中の前記摺動子を検出し
て信号出力する手段を設けたことを特徴とする流体の流
量検出装置。 2 上記検出体が出力する検出信号を信号処理すること
によって単位時間当たりの流量を認識出来るようにした
信号処理部から成る特許請求の範囲第1項記載の流量検
出装置。
[Claims] 1. A closed-circuit sealed hollow passage is formed in the casing, a plurality of sliders are inserted into the passage and are capable of sliding while maintaining an appropriate gap with the passage wall surface, and an opening is formed in the passage. In the passage filled with fluid, the slider is inserted near the fluid inlet opening into the passage, and the slider is slid along the flow of the fluid flowing toward the outlet. A circulation path for the slider is constructed in which the slider is moved, the slider is collected near the fluid outlet, and is placed on standby so that it can be introduced into the fluid inlet again. A fluid flow rate detection device characterized by comprising means for detecting the slider and outputting a signal. 2. The flow rate detection device according to claim 1, comprising a signal processing section that is capable of recognizing the flow rate per unit time by signal processing the detection signal output by the detection body.
JP1112487A 1989-05-01 1989-05-01 Flow-rate detector Pending JPH02291922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112487A JPH02291922A (en) 1989-05-01 1989-05-01 Flow-rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112487A JPH02291922A (en) 1989-05-01 1989-05-01 Flow-rate detector

Publications (1)

Publication Number Publication Date
JPH02291922A true JPH02291922A (en) 1990-12-03

Family

ID=14587875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112487A Pending JPH02291922A (en) 1989-05-01 1989-05-01 Flow-rate detector

Country Status (1)

Country Link
JP (1) JPH02291922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345393A (en) * 2004-06-04 2005-12-15 Katayanagi Institute Liquid flow detection sensor and living monitoring system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345393A (en) * 2004-06-04 2005-12-15 Katayanagi Institute Liquid flow detection sensor and living monitoring system using the same

Similar Documents

Publication Publication Date Title
CN201476821U (en) Double-channel pore plate gas flow rate measuring device with bypass bridge path
CN105652034B (en) A kind of landslide monitoring groundwater velocity and direction detection intelligence sensor
US8950235B2 (en) Self-flushing small volume prover apparatus, method and system
US4953403A (en) Positive displacement flushable flow meter
JPH02291922A (en) Flow-rate detector
US20120024037A1 (en) Compact provers
US5616862A (en) Volume meter
CN209690115U (en) A kind of duct type on-line densimeter
Zappa et al. Uncertainty budget in PSV technique measurements
SE8204356D0 (en) VOLUME FLOW METERS FOR A FLOWING MEDIUM
US5191782A (en) Device for gauging a volumetric meter
CN207600529U (en) The transposition detection device of ultrasonic water meter
CN207472616U (en) A kind of oil pipeline sampling bottle
Zhang et al. A correlation-based optical flowmeter for enclosed flows
JPS5565117A (en) Detection method of gas flow rate
CN105371926B (en) A kind of high-speed rotary for flow measurement divides water instrument
Xiong et al. PIV experiments using an endoscope for studying pipe flow
CN213121979U (en) Tracer particle feeding device for gas phase fluid
JP2805043B2 (en) Flow measurement method in moving pipe
RU2176395C1 (en) Gear measuring speed of dust-carrying gas flow
CN203657848U (en) Rotation type flow meter
Young Water Metering Accuracy Vital to Water Industry
Fowles et al. Measurement of flow
JPH0410012B2 (en)
JPH07209037A (en) Flow meter