JPH02290316A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH02290316A
JPH02290316A JP1161972A JP16197289A JPH02290316A JP H02290316 A JPH02290316 A JP H02290316A JP 1161972 A JP1161972 A JP 1161972A JP 16197289 A JP16197289 A JP 16197289A JP H02290316 A JPH02290316 A JP H02290316A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
film
silicon substrate
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1161972A
Other languages
Japanese (ja)
Inventor
Takeshi Okamoto
猛 岡本
Ryuichi Asai
龍一 浅井
Shoichi Minagawa
皆川 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP1161972A priority Critical patent/JPH02290316A/en
Publication of JPH02290316A publication Critical patent/JPH02290316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To attain highly efficient operation by forming a zinc oxide film having a tilt less than a specified value with respect to a silicon layer face with a specific film thickness onto a silicon layer of a face cut off on nearly equivalent to the (110) plane and using a Sezawa wave as a surface acoustic wave element. CONSTITUTION:A dielectric film 7 made of a silicon dioxide or the like is formed on a silicon substrate 5 cut at a face equivalent to the (110) plane. A zinc oxide film 6 is formed on the substrate 5 and the film 7 so that its film thickness (h) is in a range of 0.9<2pih/lambda<3.0 with respect to a wavelength lambdaof a surface acoustic wave and a piezoelectric axis is tilted less than 10 deg. from the direction perpendicular to the face of the substrate 5. When a Sezawa wave is excited as a surface acoustic wave in a direction equivalent to the direction of the (011) axis of the substrate 5 to the input electrode 8, the surface acoustic wave propagates on the surface of the film 8 and reaches an output electrode 9. Thus, the electromechanical coefficient is increased and the element is operated with a high efficiency.

Description

【発明の詳細な説明】 本発明は、高効率で動作しかつ小さな温度係数を有する
構造の表面弾性波素子に関するものである. 弾性体表面に沿って伝播する表面弾性波を利用した各種
表面弾性波素子が最近盛んに開発されつつある. 表面弾性波素子用圧電基板としてはニオブ酸リチウム(
LiNb○,)のような圧電単結晶、ジルコンチタン酸
釦(PZT)のような圧電セラミックス、非圧電基板上
に設けるようにした酸化亜鉛(ZnO)のような圧電薄
膜が知られている。これらのうち、ニオブ酸リチウムは
電気機械結合係数Kが大きくかつ表面波伝播損失が小さ
いが、温度係数が大きいという欠点を有している6また
圧電セラミソクスは電気機械結合係数Kは大きいが焼結
体のために,高周波になる程表面波伝播損失が大きくな
る欠点がある。さらに以上の圧電単結晶および圧電セラ
ミックスは自身の単一機能しか有していないために用途
が限定され、ICと組み合わせて新しい機能を備えたデ
バイスを製造することは困難である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave device that operates with high efficiency and has a structure that has a small temperature coefficient. Recently, various surface acoustic wave devices that utilize surface acoustic waves propagating along the surface of an elastic body have been actively developed. Lithium niobate (
Piezoelectric single crystals such as LiNb○, ), piezoelectric ceramics such as zirconium titanate buttons (PZT), and piezoelectric thin films such as zinc oxide (ZnO) provided on non-piezoelectric substrates are known. Among these, lithium niobate has a large electromechanical coupling coefficient K and small surface wave propagation loss, but has the disadvantage of a large temperature coefficient. Due to the nature of the body, the higher the frequency, the greater the surface wave propagation loss. Furthermore, since the piezoelectric single crystals and piezoelectric ceramics described above have only a single function, their uses are limited, and it is difficult to manufacture devices with new functions by combining them with ICs.

この点上記圧電薄膜は第1図に示すように、シノコン基
板1のような非圧電基板」二に酸化亜鉛膜2等が設けら
れこの表面に電極3,4が設けられて素子が構成される
ので、シリコン基板1上に他の半導体素子を形成するこ
とにより新しい機能を備えたデバイスの実現が可能とな
る。
In this regard, as shown in FIG. 1, the piezoelectric thin film described above is constructed by providing a non-piezoelectric substrate such as a silicon substrate 1, a zinc oxide film 2, etc. on the surface thereof, and electrodes 3 and 4 being provided on the surface of the non-piezoelectric substrate. Therefore, by forming other semiconductor elements on the silicon substrate 1, it becomes possible to realize a device with new functions.

しかしながら圧電薄膵を用いた表面弾性波素子は、電気
機械結合係数Kが上記圧電単結晶および圧電セラミック
スの場合よりも小さいために、効率良く動作しないとい
う欠点がある。また温度係数が比較的大きいために、信
号の遅延時間を問題とするデバイスに対しては適用しに
くいという欠点がある。
However, the surface acoustic wave device using the piezoelectric thin pancreas has a drawback that it does not operate efficiently because the electromechanical coupling coefficient K is smaller than that of the piezoelectric single crystal and piezoelectric ceramic. Furthermore, since the temperature coefficient is relatively large, it is difficult to apply it to devices where signal delay time is a problem.

本発明は以上の問題に対処してなされたもので,基板材
料としてほぼ(1 0 0)面と等価な面でカットされ
たシリコン基板を用いこのシリコン基板上に誘電体膜を
形成し、少なくともこの誘電体膜表面に酸化亜鉛膜を形
成し、この酸化亜鉛膜に接して電極を形成するようにし
た構造の表面弾性波素子を提供するものである。
The present invention has been made in response to the above problems, and uses a silicon substrate cut in a plane approximately equivalent to the (1 0 0) plane as a substrate material, forms a dielectric film on this silicon substrate, and at least The present invention provides a surface acoustic wave element having a structure in which a zinc oxide film is formed on the surface of this dielectric film, and electrodes are formed in contact with this zinc oxide film.

以下図面を参照して本発明実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例レこよる表面弾性波素子を示
す断面図で、5はシリコン基板で(110)面と等価な
面でカットされたものから成り、7はそのシリコン基板
5上に部分的に形成された誘電体膜で例えば二酸化シリ
コンから成り、6はシリコン基板5および誘電体膜7表
面に形成された圧電軸がシリコン基板5面に垂直になる
ように形成された酸化亜鉛膜、8,9は酸化亜鉛膜6表
面に形成されたくし型電極である。
FIG. 2 is a cross-sectional view showing a surface acoustic wave device according to an embodiment of the present invention, in which 5 is a silicon substrate cut in a plane equivalent to the (110) plane, and 7 is the silicon substrate 5. A dielectric film partially formed on the top is made of silicon dioxide, for example, and 6 is an oxide film formed on the silicon substrate 5 and the dielectric film 7 so that the piezoelectric axis is perpendicular to the surface of the silicon substrate 5. Zinc films 8 and 9 are comb-shaped electrodes formed on the surface of the zinc oxide film 6.

上記酸化亜鉛膜6および誘電体膜7は周知のスパッタ法
.CVD法等の手段で形成され、またくし型電極8,9
はアルミニュウム等の金属が周知の蒸着法等により形成
される。
The zinc oxide film 6 and dielectric film 7 are formed using the well-known sputtering method. The comb-shaped electrodes 8 and 9 are formed by a CVD method or the like.
A metal such as aluminum is formed by a well-known vapor deposition method.

以上の構造の表面弾性波素子の入力電極8に対し、上記
シリコン5の[001F軸方向と等価な方向に表面弾性
波とじでセザワ波を励振させる.これにより表面弾性波
は酸化亜鉛膜6表面を伝播して出力電極9に至る。
A Sezawa wave is excited in the input electrode 8 of the surface acoustic wave device having the above structure in a direction equivalent to the [001F axis direction of the silicon 5 by surface acoustic wave binding. As a result, the surface acoustic waves propagate on the surface of the zinc oxide film 6 and reach the output electrode 9.

第3図は以上の本発明実施例によって得られた特性曲線
を示すもので、横軸は酸化亜鉛膜6の膜厚hの規格化さ
れた厚さを2πh/λ(ここでλは表面弾性波の波長)
で示し、縦軸は電気機械結合係数Kの二乗値K2 を百
分率で示している。第2図の本発明実施例構造において
、シリコン基板5と酸化亜鉛膜6間の境界近傍の導電率
が高い場合には、電気機械結合係数Kの二乗値K2は第
3図の特性において曲線Aのような変化をする。なおこ
の曲線Aは表面弾性波のうち上記のようなセザワ波につ
いての曲線を示している。
FIG. 3 shows the characteristic curve obtained by the above embodiment of the present invention, where the horizontal axis represents the normalized thickness h of the zinc oxide film 6, which is 2πh/λ (here, λ is the surface elasticity wave wavelength)
The vertical axis indicates the square value K2 of the electromechanical coupling coefficient K in percentage. In the structure of the embodiment of the present invention shown in FIG. 2, when the conductivity near the boundary between the silicon substrate 5 and the zinc oxide film 6 is high, the square value K2 of the electromechanical coupling coefficient K is curved A in the characteristic shown in FIG. change like this. Note that this curve A shows a curve for the above-mentioned Sezawa wave among surface acoustic waves.

また直線Bは二オブ酸リチウム( L iN b O 
:l )基板におけるK2の最大値を示すもので、約5
.5%の値となる。
In addition, straight line B is lithium diobate (L iN b O
:l) Indicates the maximum value of K2 in the substrate, approximately 5
.. The value is 5%.

第3図の特性から明らかなように、シリコン5表面の[
001]軸方向と等価な方向に表面弾性波を伝播させた
場合、酸化亜鉛膜6の膜厚hを0.9<2πh/λ<3
.0の範囲となるように選ぶことにより、高効率で動作
させ得る大きな値の電気機械結合係数を得ることができ
る。
As is clear from the characteristics shown in Figure 3, [
001] When a surface acoustic wave is propagated in a direction equivalent to the axial direction, the thickness h of the zinc oxide film 6 is 0.9<2πh/λ<3
.. By selecting a value in the range of 0, it is possible to obtain a large electromechanical coupling coefficient that allows high efficiency operation.

なお、上記セザワ波は、例えば第2図の構造において存
在する複数のモードの表面弾性波のうち,2次の高次モ
ードのものである。因みに1次の基本モードのものはレ
ーリー波と言われる。例えばr 1977年Ultra
sonic Symposium Proceedin
gsIEE J第814頁乃至第818頁のFig, 
4において、1stがレーリー波で2ndがセザワ波で
ある。
Note that the Sezawa wave is a second-order higher-order mode among a plurality of modes of surface acoustic waves that exist in the structure shown in FIG. 2, for example. Incidentally, the first-order fundamental mode is called a Rayleigh wave. For example r 1977 Ultra
sonic symposium proceedings
Fig from gsIEE J pages 814 to 818,
4, the 1st wave is a Rayleigh wave and the 2nd wave is a Sezawa wave.

セザワ波を用いた場合の電気機械結合係数K2の特性は
第3図に示すようになるが、レーリー波を用いた場合は
例えばr National TechnicalRe
port,December 1976J第905頁乃
至第923頁の第19図に示す特性となり、本発明のよ
うにセザワ波を用いた方が明らかに電気機械結合係数K
2が大きい。この係数は表面弾性波装置にとって非常に
重要なパラメータであり、表面弾性波トランスジューサ
の効率、帯域幅等に大きな影響を与えるので、セザワ波
を用いる実用上の効果は多大である。
The characteristics of the electromechanical coupling coefficient K2 when using Sezawa waves are shown in Fig. 3, but when using Rayleigh waves, for example, rNational TechnicalRe
port, December 1976J, pages 905 to 923, shown in FIG.
2 is large. This coefficient is a very important parameter for surface acoustic wave devices, and has a great effect on the efficiency, bandwidth, etc. of the surface acoustic wave transducer, so the practical effects of using Sezawa waves are great.

また現在、圧電体材料として広く利用されているものの
K2 の一例は下記に示す通りで,L iN b O 
3は他の材料 128’Y  LiNb○,K”=5.5%YZ  L
iNbO.  K2=4.8%IjTaO,     
K”=Q.8%水晶       K2α0.2% と比較して1桁大きなK2 を有しているが,本発明の
セザワ波を用いたZnO/Si構造の装置ではK2の最
大値はL x N b O 3よりも大きく、ZnO膜
の膜厚hを0.9<2πh/λ<3.o以外に選んだ場
合にも、L iN b O 3以外の広く利用されてい
る圧電材料よりも大きなK2が得られるので、第3図の
ようにZnO膜の膜厚にょりK2が変化するとしても、
大きな利点が得られる. 第4図は大発明の他の実施例による表面弾性波素子を示
す断面図で、5′はシリコン基板で(1 0 0)面と
等価な面でカットされたものから成り、その他第2図と
同一部分は同一番号で示してある。
An example of K2, which is currently widely used as a piezoelectric material, is shown below.
3 is other material 128'Y LiNb○,K''=5.5%YZ L
iNbO. K2=4.8%IjTaO,
K"=Q.8% quartz has K2 which is one order of magnitude larger than K2α0.2%, but in the ZnO/Si structure device using Sezawa waves of the present invention, the maximum value of K2 is L x N bO 3, and even when the ZnO film thickness h is selected outside of 0.9<2πh/λ<3.o, it is larger than other widely used piezoelectric materials other than LiNbO3. Since K2 is obtained, even if K2 changes depending on the thickness of the ZnO film as shown in Figure 3,
You can get big advantages. FIG. 4 is a cross-sectional view showing a surface acoustic wave device according to another embodiment of the invention, in which 5' is a silicon substrate cut in a plane equivalent to the (1 0 0) plane; The same parts are indicated by the same numbers.

以上の構造の表面弾性波素子の入カ電極8に対しては、
シリコン5′の[0111軸方向と等価な方向に表面弾
性波としてセザヮ波を励振させる。
Regarding the input electrode 8 of the surface acoustic wave device having the above structure,
A Sezawa wave is excited as a surface acoustic wave in a direction equivalent to the [0111 axis direction of silicon 5'.

第5図は以上の実施例によって得られた特性曲線を示す
もので、上記構造においてシリコン基板5′と酸化亜鉛
膜6間の境界近傍の導電率が高い場合には、電気機械結
合係数Kの二乗値K2は曲線Aのような変化をする.な
おこの曲線Aは表面弾性波のうち上記のようなセザヮ波
についての曲線を示している。
FIG. 5 shows the characteristic curve obtained by the above embodiment. In the above structure, when the conductivity near the boundary between the silicon substrate 5' and the zinc oxide film 6 is high, the electromechanical coupling coefficient K is The square value K2 changes like curve A. Note that this curve A shows a curve for the above-mentioned Séza wave among surface acoustic waves.

また直線Bはニオブ酸リチウム(LiNbO,)基板に
おけるK2 の最大値を示すもので、約5.5%の値と
なる. 第5図の特性から明らかなように、シリコン5′表面の
[011F軸方向と等価な方向に表面弾性波を伝播させ
た場合、酸化亜鉛膜6の膜厚hを0.9<2πh/λ<
3.5の範囲となるように選ぶことにより、高効率で動
作させ得る大きな値の電気機械結合係数を得ることがで
きる。
Straight line B indicates the maximum value of K2 in the lithium niobate (LiNbO) substrate, which is approximately 5.5%. As is clear from the characteristics shown in FIG. 5, when a surface acoustic wave is propagated in a direction equivalent to the [011F axis direction of the silicon 5' surface, the film thickness h of the zinc oxide film 6 is 0.9<2πh/λ <
By selecting a value in the range of 3.5, it is possible to obtain a large electromechanical coupling coefficient that enables highly efficient operation.

上述のように、シリコン基板5′と酸化亜鉛膜6間の境
界近傍の導電率が高いということは、第6図のように上
記シリコン基板5′と酸化亜鉛膜6間の境界部の電WA
8.9との対応部に金属膜10を形成した構造でも同じ
効果が得られることを意味している。
As mentioned above, the fact that the conductivity near the boundary between the silicon substrate 5' and the zinc oxide film 6 is high means that the electric conductivity at the boundary between the silicon substrate 5' and the zinc oxide film 6 is high as shown in FIG.
This means that the same effect can be obtained with a structure in which the metal film 10 is formed in the portion corresponding to 8.9.

またシリコン基板5′がエビタキシャル成長層を有して
いるような場合でも、バルク抵抗を下げることができる
ので第2図の構造と同じ効果を得ることができる。
Further, even if the silicon substrate 5' has an epitaxial growth layer, the same effect as the structure shown in FIG. 2 can be obtained because the bulk resistance can be lowered.

第7図は本発明の他の実施例を示すもので、表面弾性波
の波長より充分小さな膜厚を有する二酸化シリコン等の
誘電体膜11を、シリコン5′の全表面に一様に形成し
た構造を示し、この構造でも第2図および第4図の構造
と同じ効果を得ることができる。
FIG. 7 shows another embodiment of the present invention, in which a dielectric film 11 made of silicon dioxide or the like having a thickness sufficiently smaller than the wavelength of the surface acoustic wave is uniformly formed on the entire surface of silicon 5'. This structure also provides the same effect as the structures shown in FIGS. 2 and 4.

以上のように構成することにより、誘電体膜11を構成
している二酸化シリコンはシリコン基板5′と酸化亜鉛
膜6とで決定する素子の温度係数を打ち消す方向に働く
ために、素子全体としては小さな温度係数を持たせるこ
とができる.さらにまた本発明の他の実施例として、く
し型電極はシリコン基板または誘電体膜上に設けた構造
にすることができる。またそのくし型電極に対向した酸
化亜鉛膜上に金属膜を付着させた構造にしても良い. 本文実施例中では酸化亜鉛膜6の圧電軸がシリコン基板
5′に対して垂直に形成された場合を示したが、シリコ
ン基板5′面に垂直な方向からの傾きがほぼ10度以下
の圧電軸の場合にもほぼ同等の特性が得られる.またシ
リコン基板5′のカット面および表面弾性波を励振すべ
き伝播軸は、それぞれ(1 1 0)面,(100)面
および[001]軸方向、[0 1 11軸方向から数
度ずれている場合にもほぼ同等の特性が得られることが
わかった.以上説明して明らかなように本発明によれば
,基板材料としての所定の結晶面でカットされたシリコ
ン基板を用い、このシリコン基板上に誘電体膜を形成し
,少なくともこの誘電体膜表面に酸化亜鉛膜を形成し、
この酸化亜鉛膜表面に電極を形成するように構成するも
のであるから、電気機械結合係数に柔軟性を持たせるこ
とができ、任意な値に設定することができる.また誘電
体膜を設けることにより温度係数を小さくすることがで
きる.このように電気機械結合係数を大きくすることが
できるので,表面弾性波トランスジューサのインピーダ
ンスを小さくできて整合がとり易くなるため高効率で動
作し得る表面弾性波素子が実現できる。
With the above configuration, the silicon dioxide constituting the dielectric film 11 acts to cancel out the temperature coefficient of the element determined by the silicon substrate 5' and the zinc oxide film 6, so that the overall element It can have a small temperature coefficient. Furthermore, as another embodiment of the present invention, the comb-shaped electrodes can be provided on a silicon substrate or a dielectric film. Alternatively, a structure may be adopted in which a metal film is attached on the zinc oxide film facing the interdigitated electrode. In the examples in this text, a case is shown in which the piezoelectric axis of the zinc oxide film 6 is formed perpendicular to the silicon substrate 5', but a piezoelectric film whose inclination from the direction perpendicular to the silicon substrate 5' is approximately 10 degrees or less Almost the same characteristics can be obtained for the shaft. In addition, the cut surface of the silicon substrate 5' and the propagation axis for exciting surface acoustic waves are shifted by several degrees from the (1 1 0) plane, (100) plane, [001] axis direction, and [0 1 11 axis direction, respectively. It was found that almost the same characteristics can be obtained even when As is clear from the above description, according to the present invention, a silicon substrate cut along a predetermined crystal plane is used as a substrate material, a dielectric film is formed on this silicon substrate, and at least the surface of this dielectric film is Forms a zinc oxide film,
Since the structure is such that electrodes are formed on the surface of this zinc oxide film, the electromechanical coupling coefficient can be made flexible and can be set to an arbitrary value. Also, by providing a dielectric film, the temperature coefficient can be reduced. Since the electromechanical coupling coefficient can be increased in this manner, the impedance of the surface acoustic wave transducer can be reduced and matching can be easily achieved, so that a surface acoustic wave element that can operate with high efficiency can be realized.

またそれと共に表面弾性波トランスジューサの電極対数
を少なくすることができるため、素子の小型化が可能に
なりコストダウンを計ることができる. さらに温度係数が小さくなることで表面弾性波素子の安
定な動作を行わせることができる。
Additionally, since the number of electrode pairs in the surface acoustic wave transducer can be reduced, the device can be made smaller and costs can be reduced. Furthermore, since the temperature coefficient is reduced, the surface acoustic wave element can operate stably.

本発明のように表面弾性波として特にセザヮ波を用いる
場合は、その位相速度が大なる性質を利用して特に高周
波用素子の実現を計る場合有利となる。
When a Sezawa wave is used as a surface acoustic wave as in the present invention, it is particularly advantageous to realize a high frequency device by utilizing its property of having a large phase velocity.

本発明は特にシリコン基板としてIC用基板と共通の基
板を用いることにより,小型化、高集積化された新しい
機能を有するデバイスが得られるので広範囲な用途に適
用して効果的である。
In particular, by using a common silicon substrate as an IC substrate, the present invention can be effectively applied to a wide range of applications, since it is possible to obtain a smaller, highly integrated device with new functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す断面図、第2図、第4図、第6図
および第7図はいずれも本発明実施例を示す断面図,第
3図および第5図は共に本発明にょり得られた結果を示
す特性図である.
FIG. 1 is a sectional view showing a conventional example, FIGS. 2, 4, 6 and 7 are sectional views showing an embodiment of the present invention, and FIGS. 3 and 5 are sectional views showing an embodiment of the present invention. This is a characteristic diagram showing the results obtained.

Claims (3)

【特許請求の範囲】[Claims] (1)ほぼ(110)面と等価な面でカットされたシリ
コン基板と、このシリコン基板の表面部に部分的に形成
された誘電体膜と、この誘電体膜を覆うように上記シリ
コン基板上に形成された酸化亜鉛膜と、この酸化亜鉛膜
上に形成された電極とを含み、上記シリコン基板のほぼ
[001]軸方向と等価な方向に表面弾性波としてセザ
ワ波を伝播させ、上記酸化亜鉛膜の膜厚hを上記表面弾
性波の波長をλとして0.9<2πh/λ<3.0の範
囲に選定し、上記酸化亜鉛膜の圧電軸が上記シリコン基
板に対して垂直又は垂直方向に対して10度以下の傾き
をもつことを特徴とする表面弾性波素子。
(1) A silicon substrate cut in a plane approximately equivalent to the (110) plane, a dielectric film partially formed on the surface of this silicon substrate, and a layer on the silicon substrate so as to cover this dielectric film. and an electrode formed on the zinc oxide film, and propagates a Sezawa wave as a surface acoustic wave in a direction approximately equivalent to the [001] axis direction of the silicon substrate. The film thickness h of the zinc film is selected in the range of 0.9<2πh/λ<3.0, where the wavelength of the surface acoustic wave is λ, and the piezoelectric axis of the zinc oxide film is perpendicular or perpendicular to the silicon substrate. A surface acoustic wave element having an inclination of 10 degrees or less with respect to a direction.
(2)ほぼ(110)面と等価な面でカットされたシリ
コン基板と、このシリコン基板の表面部に部分的に形成
された誘電体膜と、この誘電体膜を覆うように上記シリ
コン基板上に形成された酸化亜鉛膜と、この酸化亜鉛膜
上に形成された電極と、上記シリコン基板と酸化亜鉛膜
間の電界部のこの電極との対応部に設けた金属膜とを含
み、上記シリコン基板のほぼ[001]軸方向と等価な
方向に表面弾性波としてセザワ波を伝播させ、上記酸化
亜鉛膜の膜厚hを上記表面弾性波の波長をλとして0.
9<2πh/λ<3.0の範囲に選定し、上記酸化亜鉛
膜の圧電軸が上記シリコン基板面に対して垂直又は垂直
方向に対して10度以下の傾きをもつことを特徴とする
表面弾性波素子。
(2) A silicon substrate cut in a plane approximately equivalent to the (110) plane, a dielectric film partially formed on the surface of this silicon substrate, and a layer on the silicon substrate so as to cover this dielectric film. a zinc oxide film formed on the silicon oxide film, an electrode formed on the zinc oxide film, and a metal film provided in a corresponding portion of the electric field between the silicon substrate and the zinc oxide film to the electrode; A Sezawa wave is propagated as a surface acoustic wave in a direction substantially equivalent to the [001] axis direction of the substrate, and the film thickness h of the zinc oxide film is set to 0.0.
9<2πh/λ<3.0, and the piezoelectric axis of the zinc oxide film is perpendicular to the silicon substrate surface or has an inclination of 10 degrees or less with respect to the perpendicular direction. Acoustic wave element.
(3)上記誘電体膜が二酸化シリコンから成ることを特
徴とする請求項(1)又は(2)に記載の表面弾性波素
子。
(3) The surface acoustic wave device according to claim 1 or 2, wherein the dielectric film is made of silicon dioxide.
JP1161972A 1989-06-23 1989-06-23 Surface acoustic wave element Pending JPH02290316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161972A JPH02290316A (en) 1989-06-23 1989-06-23 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161972A JPH02290316A (en) 1989-06-23 1989-06-23 Surface acoustic wave element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56163148A Division JPS5863214A (en) 1981-03-05 1981-10-12 Surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPH02290316A true JPH02290316A (en) 1990-11-30

Family

ID=15745583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161972A Pending JPH02290316A (en) 1989-06-23 1989-06-23 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPH02290316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327069B2 (en) * 2005-03-04 2008-02-05 Hon Hai Precision Industry Co., Ltd. Surface acoustic wave device and method for making same and mobile phone having same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863214A (en) * 1981-03-05 1983-04-15 Clarion Co Ltd Surface acoustic wave element
JPH029485A (en) * 1988-06-29 1990-01-12 Satake Giken Kk Separation of hydrophobic organic substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863214A (en) * 1981-03-05 1983-04-15 Clarion Co Ltd Surface acoustic wave element
JPH029485A (en) * 1988-06-29 1990-01-12 Satake Giken Kk Separation of hydrophobic organic substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327069B2 (en) * 2005-03-04 2008-02-05 Hon Hai Precision Industry Co., Ltd. Surface acoustic wave device and method for making same and mobile phone having same

Similar Documents

Publication Publication Date Title
JPH027525B2 (en)
TWI762832B (en) Surface acoustic wave device
JPWO2018198654A1 (en) Elastic wave device
JP4757860B2 (en) Surface acoustic wave functional element
JP3339350B2 (en) Surface acoustic wave device
US7323803B2 (en) Boundary acoustic wave device
US6710509B1 (en) Surface acoustic wave device
US6243933B1 (en) Piezoelectric resonator and method for fabricating the same
US4480209A (en) Surface acoustic wave device having a specified crystalline orientation
JP2009010927A (en) Elastic boundary wave substrate and elastic boundary wave functional element using the substrate
JP2000312129A (en) Piezoelectric resonator and filter
JPH05335879A (en) Surface acoustic wave element
Plessky et al. 3 rd type of FBARs?
JPH02290316A (en) Surface acoustic wave element
JPH0410764B2 (en)
JPH02290315A (en) Surface acoustic wave element
JP2004235886A (en) Piezoelectric thin film element
JP3860698B2 (en) Piezoelectric resonator
JPS5930332B2 (en) surface acoustic wave device
JPH0314362B2 (en)
WO2010125940A1 (en) Elastic wave device
WO2023013741A1 (en) Elastic wave device
JP3395298B2 (en) Surface wave device
JP2003142984A (en) Surface acoustic wave device
JPH08330895A (en) Acoustic wave element