JPH02280423A - Transmission power control system using superimposing modulation - Google Patents

Transmission power control system using superimposing modulation

Info

Publication number
JPH02280423A
JPH02280423A JP9993689A JP9993689A JPH02280423A JP H02280423 A JPH02280423 A JP H02280423A JP 9993689 A JP9993689 A JP 9993689A JP 9993689 A JP9993689 A JP 9993689A JP H02280423 A JPH02280423 A JP H02280423A
Authority
JP
Japan
Prior art keywords
earth station
signal
relay
small
small earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9993689A
Other languages
Japanese (ja)
Inventor
Toshio Mizuno
水野 俊夫
Takuo Muratani
村谷 拓郎
Yasuhiko Ito
泰彦 伊藤
Tatsuo Watanabe
渡辺 龍雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP9993689A priority Critical patent/JPH02280423A/en
Priority to CA002015105A priority patent/CA2015105C/en
Priority to AU53727/90A priority patent/AU619105B2/en
Priority to US07/511,681 priority patent/US5066957A/en
Publication of JPH02280423A publication Critical patent/JPH02280423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To keep excellent line quality with simple constitution for a great number of small sized earth stations by informing reception signal quality information due to superimposing modulation from a small sized earth station to a relay earth station and applying compensation control against rainfall attenuation with the relay earth station centralizingly. CONSTITUTION:The result of measuring the quality of the reception signal affected due to rainfall attenuation or the like at groups of small sized earth stations A1-An, B1-Bn is informed to the relay earth station 2 by using superimposing modulation and the transmission power of the relay earth station 2 to the small sized earth stations A1-An, B1-Bn is controlled within a range set in advance. Then the operation to incorporate the result of measurement result of the quality of the reception signal to the substantial transmission signal is not required, and the system is easily applied also to the existing small sized earth station installation, and the system cost is made inexpensive.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、衛星通信システムにおける送信電力の制御方
式に関し、特に降雨減衰を伴う周波数帯を利用する小型
地球局相互間の通信に適用して有効な送信電力制御方式
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a transmission power control method in a satellite communication system, and is particularly applicable to communication between small earth stations using a frequency band accompanied by rainfall attenuation. This paper relates to an effective transmission power control method.

(従来の技術) 近年、通信衛星の大型化、ディジタル通信技術の発展、
通信用素子の発達により、小型アンテナを用いた小型地
球局の衛星通信システムへの導入が進められている。特
にKu帯(11〜12/14GHz>を用いる小型地球
局間通信方式は、将来の低コスト衛星通信方式として有
望視されている。
(Conventional technology) In recent years, communication satellites have become larger, digital communication technology has developed,
With the development of communication elements, small earth stations using small antennas are being introduced into satellite communication systems. In particular, a small earth station communication system using the Ku band (11 to 12/14 GHz>) is seen as a promising future low-cost satellite communication system.

このように、衛星通信回線に10GHz以上の周波数帯
を用いるときには、降雨減衰が回線運用上大きな問題と
なる。特に低仰角で運用される小型地球局では、このた
めの対策が重要となる。
As described above, when a frequency band of 10 GHz or more is used in a satellite communication line, rain attenuation becomes a major problem in line operation. Measures to prevent this are especially important for small earth stations that operate at low elevation angles.

従来、降雨減衰対策としては、スペースダイバ−シチ方
式と送信電力制御方式が考えられている。
Conventionally, a space diversity method and a transmission power control method have been considered as rain attenuation countermeasures.

スペースダイバーシチ方式は、2つのアンテナを用意し
、これらを互いに同時に降雨の影響を受けることのない
よう十分離れた位置に設置し、2つのアンテナのうち降
雨減衰の少ない方を選択しつつ回線を維持する方式であ
る。
The space diversity method prepares two antennas, installs them far enough away from each other so that they are not affected by rain at the same time, and maintains the line while selecting the one with the least rain attenuation of the two antennas. This is a method to do so.

また、送信電力制御方式は、通常、当該地球局の受信情
報、例えば、ビーコン信号レベルを参照して自局の送信
電力を制御するものや、小型地球局で測定した受信信号
品質を中継地球局に送信信号とともに通報する送信電力
制御方式(特願昭60−200517 ’)かある。
In addition, transmission power control methods usually control the transmission power of the local station by referring to the reception information of the earth station concerned, such as the beacon signal level, or the reception signal quality measured by the small earth station is used to control the transmission power of the relay earth station. There is a transmission power control method (Japanese Patent Application No. 60-200517') in which notification is made along with the transmission signal.

小型地球局間の通信方式としては、衛星を介して小型地
球局相互が直接通信する方式と、中継地球局を介在させ
該中継地球局か衛星を介して小型地球局から信号を受信
し、復調・再変調し、衛星を介して相手の小型地球局へ
送信する方式とがある。後者の中継地球局を介在させる
方式は、中継地球局が有する大型アンテナで小型地球局
の信号を受信するので中継地球局での受信C/N  (
信号電力対雑音電力比)は十分大きいが、中継地球局か
らの信号を小型アンテナで受信する小型地球局側では降
雨減衰に対して十分高いマージンを確保するのは困難で
ある。
Communication methods between small earth stations include direct communication between small earth stations via satellites, and methods in which a relay earth station is used to receive and demodulate signals from the small earth station via the relay earth station or satellite.・There is a method in which the signal is re-modulated and transmitted to the other party's small earth station via a satellite. In the latter method using a relay earth station, the signal from the small earth station is received by the large antenna of the relay earth station, so the reception C/N at the relay earth station (
Although the signal power to noise power ratio (signal power to noise power ratio) is sufficiently large, it is difficult to secure a sufficiently high margin against rain attenuation on the side of a small earth station that receives signals from a relay earth station with a small antenna.

(発明が解決しようとする課題) 小型地球局の降雨減衰対策として、前述のスペースダイ
バーシチ方式を取ることは、設備の二重化での費用の点
で問題がある。また、前述の送信電力制御方式では、本
来の送信信号の一部を受信信号品質情報の通報に使用し
装置もそれなりの改修が必要である点が難点である。
(Problem to be Solved by the Invention) Using the above-mentioned space diversity method as a rain attenuation countermeasure for a small earth station has a problem in terms of the cost of duplicating equipment. Further, the aforementioned transmission power control method has a drawback in that a part of the original transmission signal is used to report received signal quality information, and the device requires some modification.

よって、本発明は装置への機能追加が簡単で、かつ送信
信号の一部を使用せずに、小型地球局の受信レベルを降
雨等環境の変化に係わらすほぼ一定とするように中継地
球局の送信電力を制御する方式を提供することを目的と
する。
Therefore, the present invention enables the relay earth station to easily add functions to the device, and to maintain the reception level of the small earth station almost constant regardless of changes in the environment such as rainfall, without using a part of the transmitted signal. The purpose of this study is to provide a method for controlling the transmission power of

(課題を解決するための手段) 本発明は、各小型地球局で降雨減衰等によって影響を受
ける受信信号の品質を測定した結果を、重畳変調を用い
て中継地球局に通報し、該中継地球局の当該小型地球局
に対する送信電力を予め設定されている値の範囲内で制
御せしめるようにして受信信号品質を良好に維持する方
式であり、特徴は重畳変調により受信信号品質情報を小
型地球局から中継地球局に通報するところにある。
(Means for Solving the Problems) The present invention measures the quality of received signals affected by rain attenuation, etc. at each small earth station, and reports the results to a relay earth station using superimposed modulation. This method maintains good received signal quality by controlling the transmission power of the station to the small earth station within a preset value range, and its feature is that superimposed modulation is used to transmit received signal quality information to the small earth station. This is where the information is sent from to the relay earth station.

本方式は、既存の小型地球局設備への機能追加か極めて
簡単で、かつ方式の保守、運用、監視も極めて容易であ
る。
This method is extremely easy to add functions to existing small earth station equipment, and is also extremely easy to maintain, operate, and monitor.

本発明は、従来方式に比べ受信信号品質の測定結果を本
来の送信信号に組込むための操作を不要とし、既存の小
型地球局設備にも容易に適用できる方式であり、中継地
球局を介在させる小型地球局間通信に適用して有効かつ
安価な送信電力制御方式を提供することを目的とするも
のである。
Compared to conventional methods, the present invention does not require any operations to incorporate the measurement results of the received signal quality into the original transmitted signal, and is a method that can be easily applied to existing small earth station equipment. The purpose is to provide an effective and inexpensive transmission power control method that can be applied to communication between small earth stations.

(発明の構成と作用) 以下、図面を用いて本発明の詳細な説明する。(Structure and operation of the invention) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明を適用した中継地球局を介する小型地
球局間通信方式を説明するための図である。図において
、1は衛星、2は中継地球局、3〜8は小型地球局であ
る。なお、地球局から衛星1の方向の回線を上り回線、
衛星1から地球局方向の回線を下り回線という。また、
各小型地球局間の通信は周波数分割方式で設定されてい
るものとする。
FIG. 1 is a diagram for explaining a communication system between small earth stations via relay earth stations to which the present invention is applied. In the figure, 1 is a satellite, 2 is a relay earth station, and 3 to 8 are small earth stations. In addition, the uplink from the earth station to satellite 1,
The line from satellite 1 toward the earth station is called the downlink. Also,
It is assumed that communication between each small earth station is set using a frequency division method.

この構成において、中継地球局2は衛星1を介して各小
型地球局3〜8からの複数の信号を受信し、これらを独
立に一旦復調した後、再変調して衛星1に送信する。な
お、本発明を適用する構成として、第1図に示すように
衛星が1つである構成の他に、例えば、小型地球局3〜
5が衛星1に接続し、6〜8が他の衛星(図示なし)に
接続し、それぞれの衛星に接続する2つのアンテナを有
する地球局を中継地球局2として介在させる構成も考え
られる。いずれの構成を採用しても本発明の技術思想に
変更を与えるものでないので、以下の説明は、第1図の
構成を例に進める。
In this configuration, the relay earth station 2 receives a plurality of signals from each of the small earth stations 3 to 8 via the satellite 1, demodulates these signals independently, re-modulates them, and transmits them to the satellite 1. In addition, as a configuration to which the present invention is applied, in addition to the configuration in which there is one satellite as shown in FIG.
A configuration is also conceivable in which the earth station 5 is connected to the satellite 1, the earth stations 6 to 8 are connected to other satellites (not shown), and an earth station having two antennas connected to each satellite is interposed as the relay earth station 2. Since the technical idea of the present invention is not changed no matter which configuration is adopted, the following explanation will proceed using the configuration shown in FIG. 1 as an example.

この様な構成では、一般に、小型地球局の通信コストを
軽減するために、小型地球局は小型アンテナとともに低
出力の送信装置で構成されるので回線運用上の送信レベ
ル又は受信レベルの余裕度(マージン)は小さい。
In such a configuration, in order to reduce the communication cost of the small earth station, the small earth station is generally configured with a small antenna and a low-power transmitter, so the margin of transmission level or reception level for line operation ( margin) is small.

特に受信レベルはチャネル当りの衛星送信出力が小さく
、受信アンテナ利得も小さいためマージンが少ない。そ
のために降雨によって小型地球局の下り回線の信号品質
が先に劣化する。
In particular, the reception level has little margin because the satellite transmission output per channel is small and the reception antenna gain is also small. Therefore, the downlink signal quality of the small earth station deteriorates first due to rainfall.

よって、本発明での中継地球局における送信電力制御は
、各小型地球局で測定された信号品質を重畳変調を用い
て中継地球局に通報し、該中継地球局の当該小型地球局
に対する送信電力を制御することにある。
Therefore, in the transmission power control at the relay earth station in the present invention, the signal quality measured at each small earth station is reported to the relay earth station using superimposed modulation, and the transmission power of the relay earth station to the small earth station is adjusted. The goal is to control.

以下の説明では説明の都合上、小型地球局3および小型
地球局6の通信に中継地球局2が介在する通信例とする
In the following description, for convenience of explanation, a communication example will be used in which the relay earth station 2 intervenes in the communication between the small earth station 3 and the small earth station 6.

(実施例1) 本発明の第1の実施例である。(Example 1) This is a first embodiment of the present invention.

以下、−次変調にBPSK (2相ディジタル位相変調
)、二次変調に±45″のpsにを用いた重畳変調を例
にとり本方式の動作を詳細に説明する。
The operation of this system will be described in detail below, taking as an example superimposed modulation using BPSK (two-phase digital phase keying) for -order modulation and ±45'' ps for secondary modulation.

まず、以下に小型地球局側の該重畳変調方法の説明をす
る。
First, the superimposition modulation method on the small earth station side will be explained below.

第2図は該重畳変調波を小型地球局で発生させる装置の
ブロック図を示したものである。
FIG. 2 shows a block diagram of a device for generating the superimposed modulated waves at a small earth station.

10は音声、データ、ファクシミリ等の一次変調ディジ
タルベースバンド信号、11はBPSK変調器、12は
BPSに変調器11の出力信号、13は小型地球局にお
いて測定された信号品質情報を表す二次変調ディジタル
ベースバンド信号、14は二次変調ディジタルベースバ
ンド信号13の信号に応じて±45″の位相偏位を発生
させるためのPSK変調器であり、15はPSK変調器
14の出力信号である。
10 is a primary modulation digital baseband signal such as voice, data, facsimile, etc.; 11 is a BPSK modulator; 12 is a BPS output signal of the modulator 11; and 13 is a secondary modulation representing signal quality information measured at a small earth station. The digital baseband signal 14 is a PSK modulator for generating a phase deviation of ±45'' according to the signal of the secondary modulation digital baseband signal 13, and 15 is the output signal of the PSK modulator 14.

二次変調ディジタルベースバンド信号13は、例えば該
小型地球局受信C/N  (信号電力対雑音電力比)や
ビット誤り率等の信号品質情報であり、その伝送速度は
一次変調ディジタルベースバンド信号lOよりもずっと
低い。
The secondary modulated digital baseband signal 13 is signal quality information such as the reception C/N (signal power to noise power ratio) of the small earth station and the bit error rate, and its transmission speed is the same as that of the primary modulated digital baseband signal lO much lower than.

第3図は、被変調波の位相ダイアクラムを示したもので
ある。
FIG. 3 shows a phase diagram of a modulated wave.

第3図(a)はBPSK変調器11の出力12を、第3
図(b)及び第3図(C)は二次変調ディジタルベース
バンド信号13が1°Zll□”の場合のPSに変調器
14の出力15の例をそれぞれ示している。すなわち、
psに変調器14においては、(0@、180’ )の
BPSK波を、低速の二次変調ディジタルベースバンド
信号が°“1°°の場合(+45 ’ 、+225°)
、また該信号が“0°°の場合(−45°、+135 
@)のPSK波にしている。
FIG. 3(a) shows the output 12 of the BPSK modulator 11
Figures (b) and 3 (C) respectively show examples of the output 15 of the modulator 14 at PS when the secondary modulation digital baseband signal 13 is 1°Zll□''. That is,
In the modulator 14, the BPSK wave of (0 @, 180') is converted into a BPSK wave of (0 @, 180'), and when the low speed secondary modulation digital baseband signal is '1° (+45', +225°)
, and when the signal is “0°° (-45°, +135°
@) PSK wave is used.

そして、このようにして二度(重畳)変調されたPSK
変調器14の出力15が小型地球局から中継地球局へ伝
送される。
Then, PSK modulated twice (superimposed) in this way
The output 15 of modulator 14 is transmitted from the small earth station to the relay earth station.

つぎに、中継地球局側で該重畳変調された搬送波から信
号を抽出し、該小型地球局向けの送信出力を制御する方
法について説明をする。
Next, a method for extracting a signal from the superimposed modulated carrier wave on the relay earth station side and controlling the transmission output for the small earth station will be explained.

第4図は中継地球局における送信電力制御に関する装置
のブロック図である。
FIG. 4 is a block diagram of a device related to transmission power control at a relay earth station.

ここで、20〜22.20°〜22°はそれぞれのチャ
ネルの入力信号を表し、23〜25.23°〜25°は
小型地球局の二次変調信号に対するPSK復調器、26
〜28、26°〜28°は該地球局の一次変調信号に対
すルBPSKI調器、29〜31.29’ 〜31’ 
(iPsK変調器、32〜34.32′〜34゛は可変
減衰器、35〜37゜35°〜37°はそれぞれのチャ
ネルの出力を表す。
Here, 20-22. 20°-22° represents the input signal of each channel, 23-25. 23°-25° is the PSK demodulator for the secondary modulation signal of the small earth station, 26
~28, 26°~28° is the BPSKI modulator for the primary modulation signal of the earth station, 29~31.29'~31'
(iPsK modulator, 32 to 34; 32' to 34' are variable attenuators; 35 to 37 degrees; 35 to 37 degrees represent the output of each channel.

また、38は可変減衰器の制御回路である。Further, 38 is a control circuit for the variable attenuator.

第5図は、第4図のPSK復調器23〜25.23’〜
25°のブロック図である。
FIG. 5 shows the PSK demodulators 23 to 25, 23' in FIG.
It is a block diagram of 25 degrees.

40は入力信号を表し、41は2逓倍回路、42は位相
検波回路、43は位相検波回路42の出力、すなわち小
型地球局受信信号品質情報である。
40 represents an input signal, 41 is a doubler circuit, 42 is a phase detection circuit, and 43 is the output of the phase detection circuit 42, that is, small earth station received signal quality information.

つぎに、本装置の動作について説明する。Next, the operation of this device will be explained.

小型地球局3からの重畳変調された搬送波は、入力信号
20として装置に入力する。PSに復調器23は小型地
球局3において二次変調に使用したディジタルベースバ
ンド信号を復調し小型地球局受信信号品質情報を検出す
る。PSK復調器23では、第3図(b) 、 (C)
に示したような重畳変調波が第5図の入力信号40とな
り、2逓倍回路41では小型地球局受信信号品質情報“
1゛“O”を示す第3図(b) 、 (C)に応じて第
6図に示すようにぞれぞれ+90°、−90°の出力を
位相検波回路42に対し出す。位相検波回路42は+9
0°、−90°の判定を行い、二次変調ディジタルベー
スバンド信号である小型地球局受信信号品質情報を検出
し制御回路38に出力する。制御回路38は、予め設定
されている信号品質の基準値と前記小型地球局受信信号
品質情報の差を用いて該小型地球局向けの可変減衰器3
2”の減衰量を前記の差が減じるように制御する。
The superimposed modulated carrier wave from the small earth station 3 enters the device as an input signal 20. The PS demodulator 23 demodulates the digital baseband signal used for secondary modulation in the small earth station 3 and detects small earth station received signal quality information. In the PSK demodulator 23, Fig. 3(b) and (C)
The superimposed modulated wave as shown in FIG. 5 becomes the input signal 40 in FIG.
In response to FIGS. 3(b) and 3(c) showing 1'O, outputs of +90° and -90° are respectively outputted to the phase detection circuit 42 as shown in FIG. The phase detection circuit 42 is +9
0° and -90° are determined, and small earth station received signal quality information, which is a secondary modulated digital baseband signal, is detected and output to the control circuit 38. The control circuit 38 uses the difference between a preset signal quality reference value and the received signal quality information of the small earth station to adjust the variable attenuator 3 for the small earth station.
2'' is controlled so that the above-mentioned difference is reduced.

なお、該地球局受信信号品質情報な差動符号化後送比す
る場合には、位相検波器42の代わりとして差動位相検
波器を用いてもよい。
Note that in the case where the earth station received signal quality information is differentially encoded and transmitted, a differential phase detector may be used in place of the phase detector 42.

また、入力信号20中の一次変調のディジタルベースバ
ンド信号はBPSに復調器26で復調され、変調器29
で再度変調され、可変減衰器32、送信器(図示せず)
、衛星1を経て、第1図の小型地球局6に送信さる。
Further, the primary modulated digital baseband signal in the input signal 20 is demodulated into BPS by the demodulator 26, and
and a variable attenuator 32, a transmitter (not shown)
, and is transmitted to the small earth station 6 in FIG. 1 via the satellite 1.

一方、前記小型地球局6の送信信号は、第4図の入力信
号20°として中継地球局で受信、BPSK復調器26
°で復調され、再度変調器29゛で変調、可変減衰器3
2゛から送信器を経て衛星で中継され小型地球局3で受
信される。この場合も、小型地球局受信信号品質情報は
常に第4図のPSK復調器23°の出力に含まれ、制御
回路38は、予め設定されている信号品質の基準値と前
記信号品質の差を用いて可変減衰器32の減衰量を前記
の差が減じるように制御する。
On the other hand, the transmission signal from the small earth station 6 is received by the relay earth station as an input signal of 20 degrees as shown in FIG.
demodulated by the modulator 29, and then modulated by the variable attenuator 3.
The signal is relayed from 2' via a transmitter via a satellite and received by a small earth station 3. In this case, the small earth station received signal quality information is always included in the output of the PSK demodulator 23° in FIG. 4, and the control circuit 38 calculates the difference between the preset signal quality reference value and the signal quality. is used to control the attenuation amount of the variable attenuator 32 so that the above-mentioned difference is reduced.

(実施例2) 第7図は、本発明の第2の実施例であり、−次変調とし
てBPSK、二次変調としてASK  (ディジタル振
幅変調)を用いた場合に、重畳変調波を小型地球局で発
生させる回路構成を示したもので、54は振幅変調器、
55は振幅変調器54の出力であり、その他は第2図と
同様である。
(Embodiment 2) FIG. 7 shows a second embodiment of the present invention, in which a superimposed modulated wave is transmitted to a small earth station when BPSK is used as the -order modulation and ASK (digital amplitude modulation) is used as the secondary modulation. 54 is an amplitude modulator;
55 is the output of the amplitude modulator 54, and the other parts are the same as in FIG.

第8図は該変調器出力55の位相ダイアグラムな示した
ものであり、例えば、該小型地球局において測定された
小型地球局受信信号品質情報を表す二次変調ディジタル
ベースバンド信号13が1゛。
FIG. 8 shows a phase diagram of the modulator output 55, where, for example, the secondary modulated digital baseband signal 13 representing the small earth station received signal quality information measured at the small earth station is 1.

の場合は第8図(a)に示すような振幅C1のBPSK
波を0′°の場合は第8図(b)に示すような振幅CD
のBPSK波を、それぞれASK変調で重畳変調し中継
地球局へ向けて送出する。中継地球局の送信電力制御は
、第4図の二次変調ディジタルベースバンド信号に対す
る復調器23〜25.23°〜25′が第9図に示すA
SK復調器となるたけで、他は第4図とまったく同一の
構成となり、その動作も前述したものと同様である。第
9図において入力信号60は第4図、20〜22.20
°〜22′に相当する小型地球局受信信号品質情報を含
んだ重畳変調信号である。61は入力信号60から搬送
波成分を抽出するための搬送波再生回路、62は該再生
回路で作られた搬送波成分を用いて入力信号60から小
型地球局受信信号品質情報信号を検波するための同期検
波回路、63は該検波回路出力のレベルを検出するため
のレベル検出回路である。レベル検出回路63の出力6
4は、第8図の二次変調波振幅C1、COに比例するた
め、ASに二次変調ディジタルベースバンド信号の復調
が出来る。
In the case of BPSK with amplitude C1 as shown in Fig. 8(a)
When the wave is 0'°, the amplitude CD is as shown in Figure 8(b).
The BPSK waves are superimposed and modulated using ASK modulation, respectively, and sent to the relay earth station. The transmission power control of the relay earth station is performed by the demodulators 23 to 25 and 23° to 25' for the secondary modulated digital baseband signal in FIG.
Except for being an SK demodulator, the configuration is otherwise exactly the same as that shown in FIG. 4, and its operation is also the same as described above. In FIG. 9, the input signal 60 is as shown in FIG.
This is a superimposed modulated signal containing small earth station received signal quality information corresponding to 22'. 61 is a carrier wave regeneration circuit for extracting a carrier wave component from the input signal 60, and 62 is a synchronous detection circuit for detecting a small earth station received signal quality information signal from the input signal 60 using the carrier wave component generated by the regeneration circuit. A circuit 63 is a level detection circuit for detecting the level of the output of the detection circuit. Output 6 of level detection circuit 63
4 is proportional to the secondary modulated wave amplitudes C1 and CO in FIG. 8, so that the secondary modulated digital baseband signal can be demodulated to AS.

なお、第9図において61.62のないASK復調器(
非同期ASK復調器と呼ばれる)の構成としても、該デ
ィジタルベースバンド信号の復調が可能である。
In addition, in Fig. 9, the ASK demodulator without 61 and 62 (
The digital baseband signal can also be demodulated using an asynchronous ASK demodulator (called an asynchronous ASK demodulator).

(実施例3) 本発明の第3の実施例を説明する。(Example 3) A third embodiment of the present invention will be described.

第10図は小型地球局における二次変調としてFSK 
 (ディジタル周波数変調)を用いた場合に重畳変調波
を発生させるための回路構成を示している。ここで、7
4は信号品質情報13の++ 1 ++、“0”9に応
じてBPSK変調器の出力12(BPSK変調波)の搬
送周波数を、例えば、それぞれfO+Δf、fO−△f
に変換するための周波数変調器であり、75は周波数変
調器74の出力である。その他は第2図と同様である。
Figure 10 shows FSK as secondary modulation in a small earth station.
This figure shows a circuit configuration for generating a superimposed modulated wave when using (digital frequency modulation). Here, 7
4 indicates the carrier frequency of the output 12 (BPSK modulated wave) of the BPSK modulator according to ++ 1 ++ and “0” 9 of the signal quality information 13, for example, fO+Δf and fO−Δf, respectively.
75 is the output of the frequency modulator 74. Other details are the same as in FIG. 2.

ただし、fOはBPSK変調器11の出力12の搬送周
波数である。
However, fO is the carrier frequency of the output 12 of the BPSK modulator 11.

該重畳変調波に対する中継地球局の送信電力の制御装置
の構成は、第4図の復調器23〜25゜23′〜25゛
が第11図の構成となるたけで、他は第4図と同一であ
り、その動作も第4図で述べたのと同様である。第11
図において、80は一次変調BPSに二次変調FSXの
小型地球局からの重畳変調波、81は該重畳変調波から
一次変調のBPSKを除去するための2逓倍回路、82
は該逓倍回路出力成分を取り出すための帯域フィルタお
よび該出力信号の振幅を抑圧するための振幅リミタから
なる帯域通過型振幅リミタ、83は周波数弁別器であり
、該弁別器出力84は、+Δfおよび−△fに比例した
値を取り、小型地球局における受信信号品質情報である
。これにより二次変調ディジタルベースバンド信号が復
調されることとなる。
The configuration of the control device for transmitting power of the relay earth station for the superimposed modulated wave is the same as that in FIG. 4, except that the demodulators 23 to 25 and 23' to 25 in FIG. 4 have the configuration shown in FIG. 11. The operation is also the same as that described in FIG. 11th
In the figure, 80 is a modulated wave superimposed on primary modulated BPS from a small earth station of secondary modulated FSX, 81 is a doubling circuit for removing BPSK of primary modulation from the superimposed modulated wave, and 82
83 is a frequency discriminator, and 83 is a frequency discriminator, and the discriminator output 84 is +Δf and It takes a value proportional to −Δf and is received signal quality information at a small earth station. As a result, the secondary modulated digital baseband signal is demodulated.

なお、これまでの実施例では二次変調として位相変調、
振幅変調、周波数変調が個別に適用される場合を述べた
が、これらの変調を組合わせたものを二次変調としても
本方式が動作することは自明であろう。また、−次変調
としてもBPSにに限らず、他の多相PSK、ASに、
 FSKを用いることも可能である。
In addition, in the embodiments so far, phase modulation,
Although the case where amplitude modulation and frequency modulation are applied individually has been described, it is obvious that the present method also operates when a combination of these modulations is used as secondary modulation. In addition, -order modulation is not limited to BPS, but also other polyphase PSK, AS,
It is also possible to use FSK.

以上、中継地球局を介する送信電力制御の1例について
述べたが、中継地球局を介さない小型地球局間通信にお
いても同様な考え方は適用できることは云うまでもない
。この場合には受信側において、相手地球局からの降雨
減衰に関する情報を解読する必要があり、又小型地球局
の送信電力に余裕があることが必要である。
Although an example of transmission power control via a relay earth station has been described above, it goes without saying that the same concept can be applied to communication between small earth stations that does not involve a relay earth station. In this case, on the receiving side, it is necessary to decode information regarding rain attenuation from the partner earth station, and it is also necessary that the small earth station has sufficient transmission power.

なお、第1図では、小型地球局群(A)と小型地球局群
(B)との間の通信例を示したものであるが、各小型地
球局群内においても中継地球局を介して通信可能であり
、さらに中継地球局が2つの衛星に接続できるアンテナ
設備を有する場合には2つの衛星を介して広範囲な小型
地球局間通信が実現でき、前述の本発明は当然、これら
の方式についても適用できることは云うまでもない。
Although Fig. 1 shows an example of communication between a small earth station group (A) and a small earth station group (B), communication is also performed within each small earth station group via relay earth stations. If the relay earth station has antenna equipment that can connect to two satellites, wide range communication between small earth stations can be realized via the two satellites, and the present invention described above naturally applies to these methods. Needless to say, it can also be applied to.

また、実施例の説明では中継地球局を介して小型地球局
間の衛星通信が構成された場合について説明したが、本
発明の適用は前記実施例のみならず、大型地球局(中央
地球局)と小型地球局間の衛星通信システムにも適用で
きる。例えば、地理的条件等により関門地球局に陸線で
アクセスできない場合、あるいは、陸線な介するよりも
直接衛星を介して中央地球局にアクセスする方が経済的
に有利となる場合には前記のような中央地球局と小型地
球局間の衛星通信回線が構成されることもある。この様
な構成では、中央地球局が前実施例で説明したような中
継地球局の機能を中央地球局に設ければ、前実施例とま
ったく同様に中央地球局が本発明に係る送信電力制御機
能動作を行わせしむることかできることは明らかである
In addition, in the description of the embodiment, a case has been described in which satellite communication is configured between small earth stations via a relay earth station, but the present invention is applicable not only to the above embodiment but also to large earth stations (central earth stations). It can also be applied to satellite communication systems between small earth stations and small earth stations. For example, if the Kanmon Earth Station cannot be accessed by land line due to geographical conditions, or if it is economically more advantageous to access the central earth station directly via satellite than via land line, the above-mentioned method may be used. A satellite communication link between a central earth station and a small earth station may be configured. In such a configuration, if the central earth station is provided with the function of a relay earth station as explained in the previous embodiment, the central earth station can perform the transmission power control according to the present invention in exactly the same way as in the previous embodiment. It is clear that it is possible to force a functional operation to take place.

(発明の効果) 以上のごとく、本発明によると降雨減衰に対する補償制
御が中継地球局により集中的に行われるので、多数の小
型地球局は簡単な構成でありながら良好な回線品質を保
つことができる。
(Effects of the Invention) As described above, according to the present invention, compensation control for rain attenuation is performed centrally by the relay earth station, so many small earth stations can maintain good line quality despite having a simple configuration. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る衛星通信システムの構成図、第2
図と第3図はBPSK−PSK重畳変調波の発生回路お
よびその位相ベクトル図、第4図は本発明に係る基本的
な中継地球局装置構成のブロック図、第5図と第6図は
二次変調用復調器および該復調器の2逓倍回路出力の位
相ベクトル図、第7図、第8図および第9図はBPSK
−ASK重畳変調波発生および復調に係る説明図、第1
0図および第11図はBPSK−FSに重畳変調波発生
および復調に係る説明図である。 1・・・衛星、     2・・・中継地球局、3〜8
・・・小型地球局、 10・・・−時変調ディジタルベースバンド信号、11
・・・BPSK変調器、  12・・・BPSK変調器
の出力、13・・・二次変調ディジタルベースバンド信
号、14・・・PSK変調器、  15・・・PSK変
調器の出力、20〜22および20゛〜22′・・・中
継地球局における入力信号、 23〜25および23゛〜25゛・・・二次変調信号に
対するPSK復調器、 26〜28および26′〜28゛・・・−時変調信号に
対するBPSK復調器、 29〜31および29゛〜31°・・・変調器、32〜
34および32°〜34′・・・可変減衰器、35〜3
7および35′〜37°・・・可変減衰器の出力、38
・・・制御回路、 40・・・入力信号、   41・・・2逓倍回路、4
2・・・位相検波回路、 43・・・位相検波回路出力、 54・・・振幅変調器、  55・・・振幅変調器出力
、60・・・入力信号、   61・・・搬送波再生回
路、62・・・同期検波回路、 63・・・レベル検出
回路、64・・・レベル検出回路出力、 74・・・周波数変調器、 75・・・周波数変調器出
力、80・・・入力信号、   81・・・2逓倍回路
、82・・・帯域通過型振幅リミタ、 83・・・周波数弁別器、 84・・・周波数弁別器出
力、A1〜An・・・小型地球局群、 Bl−Bn・・・小型地球局群。
FIG. 1 is a configuration diagram of a satellite communication system according to the present invention, and FIG.
3 and 3 are diagrams of a BPSK-PSK superimposed modulated wave generation circuit and its phase vector, FIG. 4 is a block diagram of the basic relay earth station device configuration according to the present invention, and FIGS. 5 and 6 are two diagrams. The phase vector diagrams of the demodulator for the next modulation and the output of the doubler circuit of the demodulator, FIGS. 7, 8, and 9 are BPSK.
- Explanatory diagram related to ASK superimposed modulation wave generation and demodulation, Part 1
FIG. 0 and FIG. 11 are explanatory diagrams related to generation and demodulation of superimposed modulated waves in BPSK-FS. 1...Satellite, 2...Relay earth station, 3-8
...small earth station, 10...-time modulated digital baseband signal, 11
...BPSK modulator, 12... Output of BPSK modulator, 13... Secondary modulation digital baseband signal, 14... PSK modulator, 15... Output of PSK modulator, 20 to 22 and 20゛-22'...input signal at the relay earth station, 23-25 and 23゛-25゛...PSK demodulator for the secondary modulation signal, 26-28 and 26'-28゛...- BPSK demodulator for time modulated signal, 29~31 and 29゛~31°...modulator, 32~
34 and 32°~34'...variable attenuator, 35~3
7 and 35' to 37°...Output of variable attenuator, 38
...Control circuit, 40...Input signal, 41...2 multiplier circuit, 4
2... Phase detection circuit, 43... Phase detection circuit output, 54... Amplitude modulator, 55... Amplitude modulator output, 60... Input signal, 61... Carrier wave regeneration circuit, 62 ... Synchronous detection circuit, 63 ... Level detection circuit, 64 ... Level detection circuit output, 74 ... Frequency modulator, 75 ... Frequency modulator output, 80 ... Input signal, 81. ...Doubling circuit, 82...Band-pass amplitude limiter, 83...Frequency discriminator, 84...Frequency discriminator output, A1-An...Small earth station group, Bl-Bn... Small earth station group.

Claims (1)

【特許請求の範囲】 小型地球局間衛星通信に該通信を中継する中継地球局を
介在させ、該中継地球局が小型地球局からの信号を衛星
を介して受信し信号再生処理を施した後、該信号を衛星
を介して相手小型地球局に伝送するごとき衛星通信シス
テムに適用する送信電力制御方式において、 前記小型地球局のそれぞれは衛星からの下り回線の信号
を利用して該信号の信号品質を測定し、該測定結果から
作成した受信信号品質情報を用いて第1の変調器で送信
信号により変調された搬送波をさらに第2の変調器で重
畳変調し、該小型地球局は該重畳変調波を送信し、該中
継地球局は受信した該重畳変調波から前記小型地球局の
受信信号品質情報を検出して、該信号品質に従って、信
号品質が予め設定した基準値になるように該小型地球局
に対する送信出力を予め設定された値の範囲内で制御す
ることを特長とする送信電力制御方式。
[Claims] A relay earth station that relays the communication is interposed in the satellite communication between small earth stations, and after the relay earth station receives the signal from the small earth station via the satellite and performs signal reproduction processing. , in a transmission power control method applied to a satellite communication system in which the signal is transmitted to a partner small earth station via a satellite, each of the small earth stations uses the downlink signal from the satellite to transmit the signal of the signal. The quality is measured, and using the received signal quality information created from the measurement results, the carrier wave modulated by the transmission signal in the first modulator is further superimposed modulated in the second modulator, and the small earth station A modulated wave is transmitted, and the relay earth station detects received signal quality information of the small earth station from the received superimposed modulated wave, and adjusts the signal quality to a preset reference value according to the signal quality. A transmission power control method characterized by controlling the transmission output to a small earth station within a preset value range.
JP9993689A 1989-04-21 1989-04-21 Transmission power control system using superimposing modulation Pending JPH02280423A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9993689A JPH02280423A (en) 1989-04-21 1989-04-21 Transmission power control system using superimposing modulation
CA002015105A CA2015105C (en) 1989-04-21 1990-04-20 Hybrid modulation satellite communication system
AU53727/90A AU619105B2 (en) 1989-04-21 1990-04-20 Hybrid modulation satellite communication system
US07/511,681 US5066957A (en) 1989-04-21 1990-04-20 Hybrid modulation satellite communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9993689A JPH02280423A (en) 1989-04-21 1989-04-21 Transmission power control system using superimposing modulation

Publications (1)

Publication Number Publication Date
JPH02280423A true JPH02280423A (en) 1990-11-16

Family

ID=14260607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9993689A Pending JPH02280423A (en) 1989-04-21 1989-04-21 Transmission power control system using superimposing modulation

Country Status (1)

Country Link
JP (1) JPH02280423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126361A (en) * 1996-10-23 1998-05-15 Nec Corp Communication system
US5776634A (en) * 1990-11-22 1998-07-07 Canon Kabushiki Kaisha Photosensitive recording medium and method of preparing volume type phase hologram member using same
JP2007518338A (en) * 2004-01-09 2007-07-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Communication apparatus, communication system, and signal transmission method
WO2017150344A1 (en) * 2016-02-29 2017-09-08 国立研究開発法人情報通信研究機構 Wireless communication device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066112A (en) * 1973-10-12 1975-06-04
JPS6261431A (en) * 1985-09-12 1987-03-18 Kokusai Denshin Denwa Co Ltd <Kdd> Transmission power control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066112A (en) * 1973-10-12 1975-06-04
JPS6261431A (en) * 1985-09-12 1987-03-18 Kokusai Denshin Denwa Co Ltd <Kdd> Transmission power control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776634A (en) * 1990-11-22 1998-07-07 Canon Kabushiki Kaisha Photosensitive recording medium and method of preparing volume type phase hologram member using same
JPH10126361A (en) * 1996-10-23 1998-05-15 Nec Corp Communication system
US6144648A (en) * 1996-10-23 2000-11-07 Nec Corporation Communication system for making carrier synchronous
JP2007518338A (en) * 2004-01-09 2007-07-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Communication apparatus, communication system, and signal transmission method
JP4896741B2 (en) * 2004-01-09 2012-03-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Communication apparatus, communication system, and signal transmission method
WO2017150344A1 (en) * 2016-02-29 2017-09-08 国立研究開発法人情報通信研究機構 Wireless communication device

Similar Documents

Publication Publication Date Title
US5066957A (en) Hybrid modulation satellite communication system
Huth Integrated source and channel encoded digital communication system design study
EP1225711B1 (en) Cross polarization interference canceller and method of canceling cross polarization interference
CA1250022A (en) One frequency repeater having interference cancellation capability in a digital radio system
US6603349B2 (en) Doppler learning phase lock loop for burst demodulator
US5497402A (en) Automatic frequency control device for satellite communications ground system
US6061020A (en) Method and apparatus for transmitting radio wave by rotating plane of polarization
JPH02280423A (en) Transmission power control system using superimposing modulation
US4293945A (en) Multichannel correlation receiver for determining depolarization of signals along signal propagation paths
US5592507A (en) Intermediate relay station of a digital microwave communication system using service channel for monitoring and controlling space and/or time diversity, heterodyne relay, phase control, frequency control, with phase shift keying modulation
JP2500781B2 (en) Line switching device
US6356580B1 (en) Direct sequence spread spectrum using non-antipodal phase shift keying
JPH0611125B2 (en) Same frequency relay system
JP2513311B2 (en) Cross polarization communication system
JPH03217138A (en) Transmission/reception system for operation state information of earth station using superposition modulation
US4352199A (en) Method and device for detecting and interpreting a distress signal
JPH0616613B2 (en) Polarization multiplexing wireless communication system
JPS6277725A (en) Same frequency relay system
JPH088796A (en) Transmitter/receiver
JP2623914B2 (en) Omnidirectional beacon system
JP2504184B2 (en) Cross polarization communication system
JPH0413893B2 (en)
CN116148896A (en) Safety isolation method and device for satellite navigation signals
JPH0955692A (en) Frequency diversity radio communication method, frequency diversity radio transmitter and frequency diversity ratio receiver, and frequency diversity radio communication equipment
Choi Sensitivity of modulation index in satellite communication link analysis