JPH02280313A - Detection of inclination or height of optical multiplier object, device therefor and projection aligner - Google Patents

Detection of inclination or height of optical multiplier object, device therefor and projection aligner

Info

Publication number
JPH02280313A
JPH02280313A JP1100026A JP10002689A JPH02280313A JP H02280313 A JPH02280313 A JP H02280313A JP 1100026 A JP1100026 A JP 1100026A JP 10002689 A JP10002689 A JP 10002689A JP H02280313 A JPH02280313 A JP H02280313A
Authority
JP
Japan
Prior art keywords
light
height
inclination
measured
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1100026A
Other languages
Japanese (ja)
Other versions
JP2796347B2 (en
Inventor
Ryoji Oshida
押田 良志
Minoru Tanaka
稔 田中
Tetsuzo Tanimoto
谷本 哲三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1100026A priority Critical patent/JP2796347B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to DE69027738T priority patent/DE69027738T2/en
Priority to US07/623,438 priority patent/US5227862A/en
Priority to EP90906337A priority patent/EP0426866B1/en
Priority to KR1019900702643A priority patent/KR930011884B1/en
Priority to PCT/JP1990/000520 priority patent/WO1990013000A1/en
Publication of JPH02280313A publication Critical patent/JPH02280313A/en
Priority to US07/936,661 priority patent/US5392115A/en
Priority to US08/315,841 priority patent/US6094268A/en
Application granted granted Critical
Publication of JP2796347B2 publication Critical patent/JP2796347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To measure an inclination or a height of an object to be measured by irradiating irradiation light to the object at an incident angle of 85 deg. or more and by detecting information of reflected light. CONSTITUTION:A pattern of reticule 9 is expressed on a wafer 4 through a reduction exposure lens 8 by an exposure illumination system 81. A plane surface is not always acquired because of waviness of a wafer with a photoresist surface which is applied to a surface of the wafer 4, irregularities in thickness, flatness of a wafer chuck, etc. Laser light which is projected from a semiconductor laser 1 is injected through a collimator lens 11 and a mirror 13 into an aligning region of a resist surface of the wafer 4 at an incident angle of 85 deg. or more. Reflected light is converged on an optical position detector 3' by a mirror 210 and a condenser lens 20, and a condensing position is detected. A detected signal is sent to a treatment circuit 5', a tilt mechanism whereon a wafer chuck is mounted is driven, and a photoresist surface on the wafer is controlled to match a reticule pattern image surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ウェハ等光学的多層物体の傾きもしくは高さ
を光学的に検出する方法及びその装置に関し、更にこの
方法並びに装置を適用した投影露光装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and apparatus for optically detecting the inclination or height of an optical multilayer object such as a wafer, and further relates to a projection apparatus using this method and apparatus. Related to exposure equipment.

〔従来の技術〕[Conventional technology]

従来の半導体ウェハ等の光学的多層構造物体の傾き検出
装置は第1の公知例である特開昭61−170605号
公報に記載のように第8図のレーザダイオード2を出射
した光をレンズ14により指向性のビームとしウェハ4
に上方より照射し、反射光を2次元位置検出器20で位
置検出するものである。
A conventional inclination detection device for an optical multilayer structure object such as a semiconductor wafer uses a lens 14 to detect light emitted from a laser diode 2 shown in FIG. The beam becomes directional and the wafer 4
The beam is irradiated from above, and the position of the reflected light is detected by a two-dimensional position detector 20.

また計測対象を光学的多層構造物体に限らず一般的対象
の距離(高さ)及び傾き計測装置は第2の公知例である
第9図の特開昭62−218802号公報に示されてい
る。この公知例では傾きについては垂直に入射し、第1
の公知例と同様第2の受光器で求められ、距#it(被
測定物6の而に垂直方向)は第1の光路9により入射角
60°程度で照射されたスポットを第1の検出器上に結
像し、その結像位置から求めている。
Furthermore, the distance (height) and inclination measuring device for general objects, not limited to optical multilayer structure objects, is shown in the second known example, JP-A-62-218802, shown in Fig. 9. . In this known example, the inclination is perpendicular, and the first
The distance #it (in the direction perpendicular to the object to be measured 6) is determined by the second light receiver as in the known example of An image is formed on the device and determined from the position of the image.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は半導体ウェハ等ウェハ表面上に薄膜構造
で形成されたパターンや、その上にフォトレジストを1
〜数μmの厚さで塗布されたものに適用すると照射光は
被測定物の表面で反射するだけでなく、屈折して層構造
の内部にも入射し、下地層で反射した光が、11)び表
面を通り、−1−記の最上面で反射した光に重畳される
。この際最り而と下地面で反射した光は互に干渉しあい
、膜の厚さと照射光の入射角度の微小な変化に対し干渉
強度が大きく変化する。第8図や第9図の距離を検出す
る系のように斜めより照射すると第4図に示すように被
測定物体からの反射光の分布は入射時の分布(例えばガ
ウス分布)とは異なったものとなり、しかも、被測定物
体の層構造や、それを構成する物質の光学定数により分
布は異って来る。
The above conventional technology uses a pattern formed in a thin film structure on the surface of a wafer such as a semiconductor wafer, or a photoresist layer formed on the pattern.
When applied to a coating with a thickness of ~ several μm, the irradiated light not only reflects on the surface of the object to be measured, but also refracts and enters the layered structure, and the light reflected from the base layer becomes 11 ) and the surface, and is superimposed on the light reflected at the top surface of -1-. At this time, the light reflected from the underlying surface interferes with each other, and the interference intensity changes greatly with minute changes in the thickness of the film and the angle of incidence of the irradiated light. When irradiating from an oblique direction as in the distance detection systems shown in Figures 8 and 9, the distribution of reflected light from the object to be measured differs from the distribution at the time of incidence (e.g. Gaussian distribution), as shown in Figure 4. Furthermore, the distribution differs depending on the layer structure of the object to be measured and the optical constants of the substances that make up the object.

この結果、被測定物が異なるたびに測定データにオフセ
ットが発生し、正確な絶対値Mi11定が困難になる。
As a result, an offset occurs in the measurement data each time the object to be measured changes, making it difficult to accurately determine the absolute value Mi11.

また第9図の傾き検出では垂直に照射しているが、傾き
や高さ検出を半導体露光装置や、半導体パターン検査装
置に適用しようとすると、露光光学系や検出光学系と照
射光学系が重なり、光学系の構成が難しくなる。
In addition, in the tilt detection shown in Figure 9, the irradiation is performed vertically, but when trying to apply tilt and height detection to semiconductor exposure equipment or semiconductor pattern inspection equipment, the exposure optical system, detection optical system, and irradiation optical system overlap. , the configuration of the optical system becomes difficult.

上述の光学的多層物体の干渉による測定誤差の発生は特
に干渉方式により被測定物の表面の傾きや高さを測定す
る場合に顕著に問題となる。干渉方式の場合被測定物の
表面で反射した光と参照光とで発生する干渉縞から反射
光の波面の傾きや位相を求め、これが被測定物の傾きや
高さを表わすことになる。しかし多層構造物の場合、第
4図に示すように被測定物にO〜85″程度の通常の入
射角度で入射すると多層構造物体の表面や内部の各層間
で反射した光が干渉し、被測定物反射直後の光の振幅や
位相は各層の厚さや、その場所による変化により大きく
変化を受ける。この結果参照光を重畳して得る干渉縞は
正確な正弦波形とならず、大きな誤差を発生してしまう
The occurrence of measurement errors due to the interference of the optical multilayer object described above becomes a significant problem, especially when measuring the inclination or height of the surface of the object to be measured using the interference method. In the case of the interference method, the inclination and phase of the wavefront of the reflected light are determined from the interference fringes generated by the light reflected from the surface of the object to be measured and the reference light, and this represents the inclination and height of the object to be measured. However, in the case of a multilayer structure, when the light is incident on the object to be measured at a normal incident angle of about 0 to 85'', as shown in Figure 4, the light reflected from the surface of the multilayer structure object and between each layer inside the object interferes. The amplitude and phase of the light immediately after it is reflected from the measurement object changes greatly depending on the thickness of each layer and its location.As a result, the interference fringes obtained by superimposing the reference light do not have an accurate sine waveform, resulting in large errors. Resulting in.

本発明の目的は上記従来の課題を解決し、半導体ウェハ
等層構造から成る物体の傾き又は高さの少くとも一方を
被測定物体の構造や光特性に関係なく、正確に測定する
ことができるようにした光学的多層物体の傾きもしくは
高さの検出方法及びその装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems, and to be able to accurately measure at least one of the inclination and height of an object made of a semiconductor wafer homolayer structure, regardless of the structure and optical characteristics of the object to be measured. An object of the present invention is to provide a method and apparatus for detecting the inclination or height of an optical multilayer object.

また、本発明の目的は露光装置や、検査装置に実装容易
にすることにある。
Another object of the present invention is to facilitate implementation in an exposure device or an inspection device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明においてはウェハ等
多層構造を有する被測定物体の表面に、比較的指向性の
高い光を、その主光線の入射角が85@以上になるよう
に斜めより照射する。入射角度が85°以上になると第
5図、第6図に示すように入射光の振幅に対する反射光
の振幅の比は小さくなり、はとんどの光が表面で反射し
、内部への入射は僅かになる。更に照射する光の振幅を
S偏光にすると表面での反射は益々大きくなる。
In order to achieve the above object, in the present invention, relatively highly directional light is emitted obliquely onto the surface of an object to be measured having a multilayer structure such as a wafer so that the incident angle of the principal ray is 85@ or more. irradiate. When the angle of incidence is 85° or more, the ratio of the amplitude of the reflected light to the amplitude of the incident light becomes small, as shown in Figures 5 and 6, and most of the light is reflected from the surface, and only a small amount of light enters the interior. It becomes slight. Furthermore, when the amplitude of the irradiated light is made S-polarized, the reflection on the surface becomes even greater.

被測定物体に入射する照射光の正反射の方向は被測定物
体の傾きαに対し2αとなる。この正反射光をほぼ垂直
に反射させ元の光路に戻し、再び被測定物に入射させる
と、第12図に示すように正反射光は4αとなる。即ち
被測定物の傾きの4倍の傾きが正反射光に生じることに
なる。
The direction of specular reflection of the irradiation light incident on the object to be measured is 2α with respect to the inclination α of the object to be measured. When this specularly reflected light is reflected almost perpendicularly, returned to the original optical path, and incident on the object to be measured again, the specularly reflected light becomes 4α as shown in FIG. In other words, the specularly reflected light has an inclination that is four times the inclination of the object to be measured.

て干渉を用いる場合、前述した干渉法を用いる従来の課
題に対し、表面での反射を大きくすることにより正反射
光の振幅や位相はほとんど表面の情報を表わすことにな
り、内部の層の厚さやパターン段差の影響を受けなくな
る。
When using interference, the problem with conventional interferometry described above is that by increasing the reflection at the surface, the amplitude and phase of the specularly reflected light mostly represent surface information, and the thickness of the internal layer It is no longer affected by the sheath pattern step.

〔作 用〕[For production]

被al!I定物体に入射する光の振幅をS偏光、P偏光
に対しΔS?APとすると、屈折率nの物体の表面で反
射及び屈折する光の振幅RSt Rpおよび1)s、l
)Pは入射角θ、屈折角プ(sinプ= sinθ/n
)に対し、以下の式で与えられる。
Covered! I What is the amplitude of light incident on a constant object as ΔS for S-polarized light and P-polarized light? Let AP be the amplitude RSt Rp of light reflected and refracted on the surface of an object with refractive index n and 1) s, l
)P is the angle of incidence θ, and the angle of refraction is p(sinp=sinθ/n
) is given by the following formula.

0″′から75°程度までは表面反射光より透過光の方
が大きく、下地の多層構造の境界からの反射光により表
面反射光との間で振幅の大きな干渉が発生する。入射角
が上記値から85°程度までは表面反射光の振幅の方が
大きくなるが、正確なjlす定を実施するには不十分な
条件である。以下にその理由を示す。第3図に示すよう
に入射角Oで入射した振幅Aの光は屈折角f、振幅りで
屈折し、下地で振幅反射率R4,で反射すると、この反
射光の振幅はD−Rbとなる。ここで入射光Aの振幅を
1とすると!〕は振幅透過率になる。従って下地で反射
した光が表面を通過するとその振幅はRt、 D ”と
なる、他方振幅A(=1)で入射した光は表面で反射し
その振幅はRとなる。ここでRや■)は入射光の偏光が
SかPかでI<s、Ds及び1り、。
From 0'' to about 75 degrees, the transmitted light is larger than the surface reflected light, and the reflected light from the boundary of the underlying multilayer structure causes interference with a large amplitude with the surface reflected light. The amplitude of the surface reflected light becomes larger up to about 85 degrees from the value, but this is an insufficient condition to carry out accurate jl estimation.The reason for this is shown below.As shown in Figure 3. Light with an amplitude A that is incident at an incident angle O is refracted at a refraction angle f and an amplitude equal to the amplitude, and is reflected by the substrate with an amplitude reflectance R4, and the amplitude of this reflected light becomes D-Rb.Here, the amplitude of the incident light A is ] is the amplitude transmittance. Therefore, when the light reflected from the base passes through the surface, its amplitude becomes Rt,D''.On the other hand, the light incident with amplitude A (=1) is reflected by the surface. Its amplitude is R. Here, R and ■) are I<s, Ds and 1 depending on whether the polarization of the incident light is S or P.

1〕Pで表わせば上記(1)〜(4)式が成立する。表
面で反射した光RnとF地で反射した光R1は層のHさ
dが薄いと重なり、その結果次式で示す複素振幅ARの
光となる。
1] If expressed as P, the above equations (1) to (4) hold true. The light Rn reflected on the surface and the light R1 reflected on the F ground overlap when the H width d of the layer is small, resulting in light having a complex amplitude AR expressed by the following equation.

S偏光では入射角がO″から60″ P偏光では 以下、余白 但しここでλは測定に用いる光の波長である。第3図に
示す膜の厚さdの僅かな変化(波長の1桁下の長さの変
化)に対しても(5)式からARの位相が変化すること
が分る。そこで入射角θとR,Dの関係はS及びP偏光
に対しそれぞれ第5図及び第6図に示す通りであり、こ
のグラフから更に分り易くするためノイズ成分となる(
5)式の第1項に対する第2項の振幅比Rh−D2/R
を求めれば、測定に及ぼす誤差の程度を評価することが
できる。
For S-polarized light, the incident angle is O'' to 60''. For P-polarized light, the following is a blank space, where λ is the wavelength of the light used for measurement. It can be seen from equation (5) that the phase of the AR changes even with a slight change in the film thickness d (a change in length one digit below the wavelength) shown in FIG. Therefore, the relationship between the incident angle θ and R and D is as shown in Figs. 5 and 6 for S and P polarized light, respectively, and to make it easier to understand from this graph, it becomes a noise component (
5) Amplitude ratio Rh-D2/R of the second term to the first term of the equation
By determining , it is possible to evaluate the degree of error that will affect the measurement.

そこで最悪のケースとしてR1=1の場合を考え、D”
/Rを入射角度θに対し、また2つの偏光に対して求め
たものが第7図である。I) 2/Rは各種゛検出方法
において雑音(誤差)成分となるため、この値を5%以
下に保つには85″以上の入射角にする必要があること
が分る。またS偏光状態で入射すれば更に雑音が小さく
なることが第7図から分る。
Therefore, consider the case where R1=1 as the worst case, and D”
FIG. 7 shows /R determined for the incident angle θ and for the two polarized lights. I) Since 2/R becomes a noise (error) component in various detection methods, it can be seen that in order to keep this value below 5%, it is necessary to set the incident angle to 85" or more. Also, the S polarization state It can be seen from FIG. 7 that the noise becomes even smaller if the light is incident at .

被測定物体表面で2度反射させる方法は前述した様に傾
きと高さの検出感度を向上させることになり、精度の高
い測定を可能にする。
As described above, the method of reflecting the light twice on the surface of the object to be measured improves the detection sensitivity of the inclination and height, and enables highly accurate measurement.

また干渉法による検出では下地面からの反射光は干渉パ
ターンに重畳し干渉縞のピッチャ位相を乱すが、85″
以上の入射によりまた更にS偏光を用いることにより前
述した通りほとんどこの影響を除くことが可能となり、
精度の高い検出が可能となる。更にこの干渉測定に用い
る参照光の光路を測定光とほぼ同一の光路にすることに
より空気のゆらぎ等の測定環境の影響をほとんど受けな
い安定で高精度の?llす定を実現する。
In addition, in detection using interferometry, the reflected light from the underlying surface is superimposed on the interference pattern and disturbs the pitcher phase of the interference fringe.
By using the above-mentioned incidence and by using S-polarized light, it is possible to almost eliminate this effect as mentioned above.
Highly accurate detection becomes possible. Furthermore, by making the optical path of the reference light used for this interference measurement almost the same as that of the measurement light, it is possible to achieve stable and high-precision measurement that is almost unaffected by the measurement environment such as air fluctuations. Achieve your goals.

上述の傾き及び高さ測定方法を半導体露光装置に適用す
ると、露光光学系との空間的干渉がなく、しかも上記の
ように高精度にウェハの霧光部分の傾きと高さを検出す
ることが可能なため、この検出値から、ウェハの傾きや
高さを制御し、露光結像面にウェハの表面を精密に合せ
ることができ。
When the above-mentioned method for measuring the inclination and height is applied to a semiconductor exposure apparatus, there is no spatial interference with the exposure optical system, and the inclination and height of the foggy part of the wafer can be detected with high precision as described above. From this detected value, the wafer's tilt and height can be controlled to precisely align the wafer's surface with the exposure image plane.

サブミクロンパターンを露光領域全面に亘り、正確に焼
付けることが可能となる。
It becomes possible to accurately print a submicron pattern over the entire exposed area.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図に示す。第1図は半導
体露光装置の露光状態にあリウエハの露光領域の傾きを
検出するものである。81は露光照明系、9はレチクル
であり、8は縮小露光レンズであり、レチクル9のパタ
ーンがウェハ4上に露光される。この際ウェハ表面に塗
布されたフォトレジストの面は、ウェハのうねり、厚さ
むら、ウェハチャック°の平面性等により必らずしも平
面でない。そこで1の半導体レーザから出射したレーザ
光をコリメートレンズ11により細い平行ビームとし、
ミラー1:3を介しウェハのレジスト表面のしかも露光
領域に85″以上の入射角で入射する1反射した光はミ
ラー210、集光レンズ20により、光位置検出器3′
上に集光させ、その集光位置を検出する。露光領域がα
傾いていると正反射光は2α傾くため集光レンズの焦点
距離を子とすると光位置検出器の集光スポットは2αチ
ずれる。従って、検出された信号は処理回路5′に送ら
れ、ウェハチャックを搭載したチルト機構を駆動し、レ
チクルパターン像面にウェハ上のフォトレジスト而が一
致する様に制御される。
An embodiment of the present invention is shown in FIG. 1 below. FIG. 1 shows a method for detecting the inclination of an exposed area of a wafer in an exposed state of a semiconductor exposure apparatus. 81 is an exposure illumination system, 9 is a reticle, 8 is a reduction exposure lens, and the pattern of the reticle 9 is exposed onto the wafer 4. At this time, the surface of the photoresist applied to the wafer surface is not necessarily flat due to undulations of the wafer, uneven thickness, flatness of the wafer chuck, and the like. Therefore, the laser light emitted from the semiconductor laser 1 is made into a narrow parallel beam by the collimating lens 11,
The reflected light, which is incident on the resist surface of the wafer and the exposed area through the mirror 1:3 at an incident angle of 85'' or more, is transmitted to the optical position detector 3' by the mirror 210 and the condensing lens 20.
The light is focused on the top and the focused position is detected. Exposure area is α
If it is tilted, the specularly reflected light is tilted by 2α, so if the focal length of the condenser lens is taken as the focal length, the focal spot of the optical position detector will be shifted by 2α. Therefore, the detected signal is sent to the processing circuit 5', which drives a tilt mechanism equipped with a wafer chuck, and is controlled so that the photoresist on the wafer is aligned with the image plane of the reticle pattern.

この際半導体レーザ出射光161′がウェハ而にS偏光
で入射するように半導体レーザをハ装置すれば前述した
ごとくより正確な傾き検出がiJ能になる。第1図の実
施例では光位置検出器3′はχ。
At this time, if the semiconductor laser is arranged so that the semiconductor laser emitted light 161' is incident on the wafer as S-polarized light, more accurate tilt detection can be performed as described above. In the embodiment of FIG. 1, the optical position detector 3' is χ.

7両方向を検出するタイプであり、一つの検出系で2方
向の傾きを求めることができる。
7. It is a type that detects in both directions, and the inclination in two directions can be determined with one detection system.

第1図で紙面と垂直な方向に第2の検出系を設け、Xと
yの方向の、傾きを別々に検出してもよい。
In FIG. 1, a second detection system may be provided in a direction perpendicular to the plane of the drawing, and the inclinations in the X and y directions may be detected separately.

また光源は比較的指向性の高い光をウェハに照射できれ
ば半導体レーザに限らない。
Further, the light source is not limited to a semiconductor laser as long as it can irradiate the wafer with relatively highly directional light.

第2図は本発明の一実施例であり、第1図と同一番号は
同一物を表す。半導体レーザ1を出射した光は入射角8
5“以上でウェハに入射し集光レンズ11′により光源
像がウェハ上の露光領域内に形成される。反射した光は
ミラー210、レンズ21.22により光位置検出器3
″上に集光される。ウェハ表面が露光光学系のレジスト
パターン結像位置にあれば光位置検出器3″の中心に、
上下にずれれば光位置検出器3″の中心から左右にずれ
るため、光位置検出器3″の検出信号を処理回路5′に
送り、ウェハ上下テーブルを駆動制御すれば、常に正し
い焦点合せが可能となる。レーザ光の偏光をウェハ而に
S偏光で入射するように構成すればより正確にフォトレ
ジスト表面の高さを求めることが可能となる。
FIG. 2 shows an embodiment of the present invention, and the same numbers as in FIG. 1 represent the same parts. The light emitted from the semiconductor laser 1 has an incident angle of 8
5" or more, and a light source image is formed in the exposure area on the wafer by the condensing lens 11'. The reflected light is transmitted to the optical position detector 3 by the mirror 210 and lenses 21 and 22.
If the wafer surface is at the resist pattern imaging position of the exposure optical system, the light is focused on the optical position detector 3''.
If the wafer is shifted vertically, it will shift left or right from the center of the optical position detector 3'', so if the detection signal of the optical position detector 3'' is sent to the processing circuit 5' and the wafer upper and lower tables are driven and controlled, correct focusing can be achieved at all times. It becomes possible. If the polarization of the laser beam is configured to be incident on the wafer as S-polarized light, it becomes possible to more accurately determine the height of the photoresist surface.

第10図は本発明の一実施例であり、第1図と同一部品
番号は同一物を表わしている。コリメートレンズ11に
より得られた平行光はビームスプリッタ19′を通り、
ウェハのフォトレジスト面に85°以上の入射角例えば
87°で入射する。
FIG. 10 shows one embodiment of the present invention, and the same part numbers as in FIG. 1 represent the same parts. The parallel light obtained by the collimating lens 11 passes through the beam splitter 19',
The light is incident on the photoresist surface of the wafer at an incident angle of 85° or more, for example 87°.

正反射した光は平面鏡14にほぼ垂直に入射し、反射光
は再びフォトレジスト面で正反射し、ビームスプリッタ
19′で反射され集光レンズ20により光位置検出器3
′上に集光され、集光スポットの位置が検出される。ウ
ェハへの入射角を87″とし第11図に示すようにS偏
光16sになる様にすると第7図に示すようにD s2
/ RSは0.0065、即ち0.65%となり、はと
んどフうになり、第11図に示すように下地層が凸凹し
ていても、その影響は全くほとんど受けず、平行光のま
ま正反射する。従って光位置検出器3′には集光度の高
い鋭いスポット光が得られる。更に本実施例では第12
図に示すように平面鏡14で垂直に反射され、再びウェ
ハに入射するため、ウェハが4から4′にαだけ傾くと
、最終的に光位置検出器に戻って来る光は4α傾くこと
になり。
The specularly reflected light enters the plane mirror 14 almost perpendicularly, and the reflected light is specularly reflected again on the photoresist surface, reflected by the beam splitter 19', and sent to the optical position detector 3 by the condensing lens 20.
′, and the position of the focused spot is detected. If the incident angle to the wafer is 87'' and the S polarization is 16s as shown in FIG. 11, D s2 as shown in FIG.
/ RS is 0.0065, that is, 0.65%, which means that even if the underlying layer is uneven, as shown in Figure 11, it is hardly affected by it and remains parallel light. reflect specularly. Therefore, a sharp spot light with a high degree of convergence can be obtained on the optical position detector 3'. Furthermore, in this embodiment, the 12th
As shown in the figure, the light is vertically reflected by the plane mirror 14 and enters the wafer again, so if the wafer is tilted from 4 to 4' by α, the light that finally returns to the optical position detector will be tilted by 4α. .

第1図の実施例に比べ2倍高い感度で光位置を検出する
ことが可能となる。この結果S/N、感度とも従来に比
べ非常に優れた傾き検出が可能となる。
It becomes possible to detect the optical position with twice the sensitivity as compared to the embodiment shown in FIG. As a result, it becomes possible to detect a tilt that is much superior in terms of S/N and sensitivity compared to conventional methods.

第13図は本発明の一実施例であり、第21F+と同一
番号は同一物を表す。集光レンズ11′で得られた集光
ビームはウェハーヒの照射位1?!iAでほぼ集光する
。入射角度は85°以上である。正反射光はコリメート
レンズ141により平行光にされ、平面鏡14にほぼ垂
直に入射する。反射光は往路とほぼ同一光路を通り、ウ
ェハ上でほぼ集光し、再び反射し、ビームスプリッタ1
2を通過し、集光レンズ22により光位置検出器3″上
に集光される。第14図は実線で示したウェハの表面(
反射面Σ)4が点線の4′(反射面Σ)に変化した場合
のウェハ近傍の集光点の位置を説明している。
FIG. 13 shows an embodiment of the present invention, and the same numbers as 21F+ represent the same items. The condensed beam obtained by the condensing lens 11' is at the irradiation position 1 of the wafer. ! Most of the light is focused at iA. The angle of incidence is 85° or more. The specularly reflected light is made into parallel light by the collimating lens 141, and is incident on the plane mirror 14 almost perpendicularly. The reflected light passes through almost the same optical path as the outward path, is almost focused on the wafer, is reflected again, and is sent to beam splitter 1.
2, and is focused by the condensing lens 22 onto the optical position detector 3''.
The position of the focal point near the wafer when the reflective surface Σ) 4 changes to 4' (reflective surface Σ) indicated by a dotted line is explained.

反射面がΣの時には往路、復路ともA点に集光する場合
について考える0反射面がΣ′の時にはΣ′面が鏡面と
なり、往路のA点はA′点に鏡像を作る。このA′点か
ら出た光はレンズ141平面鏡14により、復路ではA
”に集光する。この集光点はΣ′が鏡面となりA″′に
A”点の鏡像を作る。従って復路からはあたかもA″′
から光が出射するごとく集光レンズ22人射し、光位置
検出器3″にはA″′の像位置に光が集光する。ΣとΣ
′の距離、即ちウェハの上下移動向をΔhとすると AA”=AA”= 2,6h AA″′=AA′+A′A”’=4Δh   ・・・(
6)となり、復路の発光点位置はウェハの変位斌の4倍
(4Δh)シフトする(第14図参照)、この検出器3
″で検出される。この結果高感度でS/Nの高い高さ検
出が可能となる。
When the reflecting surface is Σ, let's consider the case where light is focused on point A on both the outward and return trips.0When the reflecting surface is Σ', the Σ' surface becomes a mirror surface, and point A on the outward trip creates a mirror image at point A'. The light emitted from this point A' is passed through the lens 141 and the plane mirror 14, and on the return trip, the light is
At this focal point, Σ' becomes a mirror surface and creates a mirror image of point A'' at A''.Therefore, from the return trip, it appears as if A'''
The light is emitted from the condenser lens 22 and is focused on the optical position detector 3'' at the image position A'''. Σ and Σ
If the distance of ', that is, the vertical movement direction of the wafer is Δh, then AA"=AA"=2,6h AA"'=AA'+A'A"'=4Δh...
6), and the light emitting point position on the return trip is shifted by four times the displacement of the wafer (4Δh) (see Fig. 14).
''. As a result, height detection with high sensitivity and high S/N is possible.

第15図は本発明の一実施例図である。第1図と同一番
号は同一物を表わしている。レーザ等可干渉性光源1を
出射した光はコリメータレンズ11により平行光15と
なりプリズム1oに入射する。プリズム10は入射光1
5を2つの平行ビーム16と17に分離する。この2つ
の平行ビームは0点で重なる様に互に一定の角度oll
−θ、が付いている。一方の平行ビーム16はウェハに
入射角θ、で入射し、他方は参照光であリウェハに立て
た垂線に対しOn(>9o°)の角度でウェハには照射
せずに進む。ウェハで反射した平行ビーム16は平面鏡
14にほぼ垂直に入射し、再びウェハに入射し、往路を
逆に辿り、ビームスプリッタ12で反射し、レンズ21
と22を通過後平行ビームとなり、−次元センサ3に入
射する。他方参照光は0点から直接平面鏡14にほぼ垂
直に入射し、反射後往路を逆に辿り、同じく−次元セム
との間で干渉縞を発生する。ウェハで反射させた光の復
路にはピンホール23と、楔ガラス26が配置されてい
る。ピンホール23は、参照光路にもあり、光学部品の
裏面で反射したノイズ光を除去する役割を担っている。
FIG. 15 is a diagram showing an embodiment of the present invention. The same numbers as in FIG. 1 represent the same items. Light emitted from a coherent light source 1 such as a laser becomes parallel light 15 by a collimator lens 11 and enters a prism 1o. Prism 10 receives incident light 1
5 into two parallel beams 16 and 17. These two parallel beams are set at a constant angle to each other so that they overlap at the 0 point.
-θ is attached. One of the parallel beams 16 is incident on the wafer at an incident angle θ, and the other is a reference beam that travels at an angle of On (>9°) with respect to a perpendicular to the wafer without irradiating the wafer. The parallel beam 16 reflected by the wafer enters the plane mirror 14 almost perpendicularly, enters the wafer again, follows the outward path in the reverse direction, is reflected by the beam splitter 12, and then enters the lens 21.
After passing through and 22, it becomes a parallel beam and enters the -dimensional sensor 3. On the other hand, the reference light directly enters the plane mirror 14 almost perpendicularly from the 0 point, and after reflection follows the outward path in the reverse direction, similarly generating interference fringes with the -dimensional sem. A pinhole 23 and a wedge glass 26 are arranged on the return path of the light reflected by the wafer. The pinhole 23 is also located in the reference optical path and plays the role of removing noise light reflected from the back surface of the optical component.

他方楔ガラス26はウェハで反射した光を屈折させるこ
とにより、−次元センサ上でウェハ照射位置を結像させ
るとともに、参照光と重なるようにしている。−次元セ
ンサ上にはセンサのアレイ方向Xに対し第181!!J
の実線で示されるような強度の干渉縞が検出されている
。ウェハ照射位vi(X=O)を中心にウェハが点線で
示されるように70傾くと、検出される干渉縞は第16
図の点線のようになる。即ちX=0での強度はほとんど
変化しないが、縞のピッチPからP′に変化する。即ち
ピッチPと傾きΔθの関係は干渉縞の強度I (X)が
(7)式で与えられるため、この式から式(8)で求め
られる。
On the other hand, the wedge glass 26 refracts the light reflected by the wafer, thereby forming an image of the wafer irradiation position on the -dimensional sensor and overlapping the reference light. - On the dimensional sensor, the 181st! ! J
Intensity interference fringes as shown by the solid line are detected. When the wafer is tilted by 70° as shown by the dotted line around the wafer irradiation position vi (X=O), the detected interference fringe is the 16th
It will look like the dotted line in the figure. That is, the intensity at X=0 hardly changes, but changes from the stripe pitch P to P'. That is, since the intensity I (X) of the interference fringe is given by the equation (7), the relationship between the pitch P and the inclination Δθ can be determined from the equation (8).

以下、余白 λ ナーcoslj、・ΔZ)       、、、(7)
λ 上記(7)式でMはウェハ上の照射位置を一次元センサ
に結像する倍率であるが1話を簡単にするため楔ガラス
の楔角は0度と仮定している(撲ガラスがない場合)。
Hereinafter, the margin λ coslj, ·ΔZ) ,,,(7)
λ In the above equation (7), M is the magnification for imaging the irradiation position on the wafer on a one-dimensional sensor, but for the sake of simplicity, the wedge angle of the wedge glass is assumed to be 0 degrees (the wedge angle is 0 degrees). if not).

また(7)式のcos、insの中の第2項はウェハ而
が、6Z変化した時の干渉縞の変化を表わしており、第
17図に示すととくウェハ而が7Z′&化すると干渉縞
のピッチは変化せず位相がシフトする。従って本実施例
では一次元センサ3で得られた干渉縞を処理回路5に送
り、ここで干渉縞ピッチと位相を求めることにより、ウ
ェハ而の高さと傾きが同時に求められることになる。ま
た本実施例では入射角度θ1を87〜89度に取ること
も可能でらかなように下地多層構造の影響はほとんど受
けずに、傾きと高さを正確に求めることが可能となる。
In addition, the second term in cos and ins of equation (7) represents the change in interference fringes when the wafer changes by 6Z, and as shown in Figure 17, when the wafer changes to 7Z'&, interference occurs. The pitch of the fringes does not change, but the phase shifts. Therefore, in this embodiment, the interference fringes obtained by the one-dimensional sensor 3 are sent to the processing circuit 5, where the pitch and phase of the interference fringes are determined, thereby simultaneously determining the height and inclination of the wafer. Furthermore, in this embodiment, it is possible to set the incident angle θ1 to 87 to 89 degrees, which makes it possible to accurately determine the inclination and height without being affected by the underlying multilayer structure.

また本実施例では参照光はウェハ照射光とほとんど同一
の光路を通っており、また使用光学部品もウェハ而での
反射を除き総て共通のため、空気のゆらぎ等の影響をほ
とんど受けずに安定な8(り定を実現することができる
In addition, in this example, the reference light passes through almost the same optical path as the wafer irradiation light, and the optical components used are all the same except for reflection from the wafer, so it is hardly affected by air fluctuations, etc. It is possible to achieve a stable 8 (resolution).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、半導体回路製作過
程での様々の多層構造からなるウェハ等光学的多層物体
の傾きもしくは高さを多層構造に影響されずに正確に測
定することが可能となり。
As explained above, according to the present invention, it is possible to accurately measure the inclination or height of an optical multilayer object such as a wafer made of various multilayer structures during the semiconductor circuit manufacturing process without being affected by the multilayer structure. .

半導体露光装置に於る焦点合せ及びウェハ而の結像面へ
の合せ込みのための傾き制御を正確に実行することが可
能となり、0.8μm以下、特に0.5μm近傍以下の
線幅回路パターンの露光に用いられる高N A i線縮
小霧光装置や、エキシマレーザ縮小露光装置で発生する
と予想される浅い焦点深度に伴なう、露光焦点マージン
の減少に対
It is now possible to accurately perform tilt control for focusing and aligning the wafer to the imaging plane in semiconductor exposure equipment, and it is possible to accurately control the inclination for focusing and aligning the wafer to the imaging plane. To cope with the decrease in exposure focus margin due to the shallow depth of focus that is expected to occur with high NA i-line reduction fog light equipment and excimer laser reduction exposure equipment used for exposure of

【図面の簡単な説明】[Brief explanation of drawings]

第1図ν第2図は各々本発明の一実施例を示す装置構成
図、第:3図は本発明の原理説明のための図、第4図は
従来の課題を説明する図、第5図乃至第7図は本発明の
原理と効果を説明する特性図、第8図及び第9図は従来
技術を説明するための図、第10図は本発明の他の一実
施例を示す構成図。 第11図及び第12図は第10図の実施例を説明するた
めの図、第1:3図は更に本発明の他の一実施例図を示
す構成図、第14図は第13図に示す実施例を説明する
ための図、第15図は更に本発明の他の一実施例を示す
構成図、第16図及び第17図は第14図に示す実施例
を説明するための図である。 1・・・光源、11・・・コリメートレンズ、11′・
・・集光レンズ、20・・・集光レンズ、21.22・
・・レンズ、13,14,210・・・ミラー、16.
1り・・・ハーフミラ−3・・・−次元センサ、3′、
:3″・・・光位置検出器、4・・・ウェハ、5,5′
・・・処理回路、7・・・ステージ、8・・・縮小露光
レンズ、81・・・照明系、 9・・・リチクル。 モ 閉 矛 ? 乙 11ラー婿製は一咲村妃6暖! 21丁−瞑媛l±0メ員−(修撃 消 躬 固 塙 躬 閉 0 )5  I5+ e 5z Iez k N 第 国 /θθ 躬 /Δ η 手 続 補 正 書 件の表示 平成昭和 1年 特許願第100026号 補正をする者 1f件との1係 特許出願人 称 (51Q+株式会ル 立 製 作 所 理 人 正 の 対 象 図面全回 亮 図 I光=7jfr、3″尤洩]検出愚 8痢打小儒(吃トンス゛ 9し千クル 27.221.ンズ  5′処理@略 7ステージ 11′1麺光Lンズ′ 81叩門爪 為 図 =======? 1光源3′光泊iし央出眉L 杢つェハ5処理回路 7
ステージ゛ 8縮小露土レンス″11コリメー1−乃ズ
゛ /3 ミラー 2o楽先しンス為 図 第 ヰ 図 嶌 図 午 阜 図 rY・第2の丸路 為 図 集 図 為 図 嵩 ノ2 図 嶌 !3 図 纂 図 !4 集 /7 図
Fig. 1 ν Fig. 2 is a device configuration diagram showing one embodiment of the present invention, Fig. 3 is a diagram for explaining the principle of the present invention, Fig. 4 is a diagram for explaining the conventional problem, Fig. 5 7 to 7 are characteristic diagrams for explaining the principles and effects of the present invention, FIGS. 8 and 9 are diagrams for explaining the prior art, and FIG. 10 is a configuration showing another embodiment of the present invention. figure. Figures 11 and 12 are diagrams for explaining the embodiment of Figure 10, Figures 1:3 are configuration diagrams showing another embodiment of the present invention, and Figure 14 is similar to Figure 13. FIG. 15 is a configuration diagram showing another embodiment of the present invention, and FIGS. 16 and 17 are diagrams for explaining the embodiment shown in FIG. 14. be. 1... Light source, 11... Collimating lens, 11'.
・・Condensing lens, 20 ・・Condensing lens, 21.22・
...Lens, 13,14,210...Mirror, 16.
1ri...half mirror 3...-dimensional sensor, 3',
:3″...Optical position detector, 4...Wafer, 5,5'
...Processing circuit, 7... Stage, 8... Reduction exposure lens, 81... Illumination system, 9... Liticle. Is it too late? Otsu 11 year old son-in-law is Issakimurahi 6 warm! 21st - Medihime l ± 0 member - (Shugeki extinguishing firmness 塙躬 0 ) 5 I5+ e 5z Iez k N Second country/θθ 躬/Δ η Indication of procedural amendments Heisei/Showa 1st year patent application no. No. 100026 amendment person 1f case Patent applicant name (51Q + Co., Ltd. Ritsu Seisakusho Rijinsho's target drawings I light = 7jfr, 3'' leakage)吃 tons゛ 9 thousand km 27.221. Eyebrow L heather 5 processing circuit 7
Stage 8 Reducing exposure lens 11 Collimation 1-no-Z / 3 Mirror 2 o Rakusen-zu Figure 1 Figure 2 Figure 2 Shima! 3 Compilation! 4 Volume/7 Figure

Claims (1)

【特許請求の範囲】 1、被測定物体に照射した光の反射光の情報から傾きも
しくは高さを検出する方法において、照射光の入射角度
を85度以上にしたことを特徴とする光学的多層物体の
傾きもしくは高さの検出方法。 2、上記照射光はS偏光成分のみから成る直線偏光を用
いることを特徴とする請求項1記載の光学的多層物体の
傾きもしくは高さ検出方法。 3、上記正反射光は固定された平面鏡でほぼ垂直に反射
され、再び被測定物体に照射され、その正反射光のみを
取り出し、被測定物体の傾きもしくは高さを検出するこ
とを特徴とする請求項1記載の光学的多層物体の傾きも
しくは高さ検出方法。 4、上記正反射光を当該正反射光と可干渉性の固定の参
照光と干渉させ、この干渉情報のピッチから傾きを、当
該ピッチと位相から高さ情報を検出することを特徴とす
る光学的多層物体の傾きもしくは高さ検出方法。 5、上記参照光は当該参照光と干渉させられる上記照射
光および正反射光とほぼ同一光路を通過するごとく構成
したことを特徴とする請求項4記載の光学的多層物体の
傾きもしくは高さ検出方法。 6、光源と、当該光源より出射した光を光学的に多層構
造を有する被測定物体の表面に、主光線の入射角が85
°以上で入射せしめる照射手段と、被測定物で正反射し
た光の情報を検出する検出手段と、当該検出手段で得ら
れた信号から、被測定物体の傾きもしくは高さを導出す
る処理回路とを備えたことを特徴とする光学的多層物体
の傾きもしくは高さ検出装置。 7、上記光源もしくはは照射手段は被測定物に照射する
光をS偏光ならしめるS偏光手段を備えたことを特徴と
する請求項6記載の光学的多層物体の傾きもしくは高さ
検出装置。 8、光源と、当該光源より出射した光を光学的に多層構
造を有する被測定物体の表面に、主光線の入射角が85
°以上で入射せしめる照射手段と、被測定物で正反射し
た光をほぼ垂直に反射せしめ、桝び被測定物に照射せし
める反射照射手段と、被測定物により再び正反射した光
の情報を検出する検出手段と、当該検出手段で得られた
信号から被測定物体の傾き、もしくは高さを導出する処
理回路とを備えたことを特徴とする光学的多層物体の傾
きもしくは高さ検出装置。 9、上記正反射光と可干渉性の固定の参照光を発生する
参照光発生手段を具備し、上記正反射光と当該参照光を
上記検出手段により干渉縞の形で検出し、得られた干渉
信号のピッチと位相から、傾きもしくは高さを導出する
処理回路を備えたことを特徴とする請求項6記載の光学
的多層物体の傾きもしくは高さ検出装置。 10、上記参照光発生手段により発生した参照光は被測
定物体面で反射しない点を除き、当該参照光と干渉させ
られる上記照射光および正反射光とほぼ同一光路を通過
するごとく構成したことを特徴とする請求項9記載の光
学的多層物体の傾きもしくは高さ検出装置。 11、原画となるマスクと、当該マスクに露光照明光を
照射する照明光学系と、当該マスクを通過した光を被露
光物体上にマスクの像として結像する投影光学系と、上
記被露光物体の表面に、第2の光源より出射した光を主
光線の入射角が85°以上でかつ上記マスクの結像位置
もしくは近傍に入射せしめる照射手段と、被露光物体で
正反射した光の情報を検出する検出手段と、当該検出手
段で得られた信号から被測定物体の傾きもしくは高さを
導出する処理回路とを備えたことを特徴とする投影露光
装置。
[Claims] 1. A method for detecting inclination or height from information on reflected light of light irradiated onto an object to be measured, characterized in that the incident angle of the irradiated light is 85 degrees or more. A method of detecting the inclination or height of an object. 2. The method for detecting the inclination or height of an optical multilayer object according to claim 1, wherein the irradiation light uses linearly polarized light consisting only of an S-polarized component. 3. The specularly reflected light is reflected almost perpendicularly by a fixed plane mirror and irradiated onto the object to be measured again, and only the specularly reflected light is extracted to detect the inclination or height of the object to be measured. A method for detecting the inclination or height of an optical multilayer object according to claim 1. 4. An optical system characterized in that the specularly reflected light is caused to interfere with a fixed reference beam that is coherent with the specularly reflected light, and the inclination is detected from the pitch of this interference information, and the height information is detected from the pitch and phase. A method for detecting the inclination or height of a multilayered object. 5. Inclination or height detection of an optical multilayer object according to claim 4, wherein the reference light is configured to pass through substantially the same optical path as the irradiation light and specularly reflected light that are caused to interfere with the reference light. Method. 6. The light source and the light emitted from the light source are applied to the surface of the object to be measured which has an optical multilayer structure, so that the angle of incidence of the principal ray is 85
irradiation means for making the light enter the object at a temperature of at least 100°C, a detection means for detecting information about the light specularly reflected by the object to be measured, and a processing circuit for deriving the inclination or height of the object to be measured from the signal obtained by the detection means. An optical multilayer object tilt or height detection device characterized by comprising: 7. The optical multilayer object inclination or height detection device according to claim 6, wherein the light source or the irradiation means includes S-polarization means for converting the light irradiated onto the object to be S-polarized into S-polarization. 8. The light source and the light emitted from the light source are applied to the surface of the object to be measured which has an optical multilayer structure, and the angle of incidence of the principal ray is 85.
irradiation means that causes the light to enter at an angle of at least 100 degrees, a reflective irradiation means that reflects the light specularly reflected by the object to be measured almost vertically and irradiates it onto the object to be measured, and detects information on the light that is specularly reflected again by the object to be measured. What is claimed is: 1. An optical multilayer object tilt or height detecting device comprising: a detecting means for detecting the tilt of the object to be measured; and a processing circuit for deriving the tilt or height of the object from the signal obtained by the detecting means. 9. A reference light generating means for generating a fixed reference light coherent with the specularly reflected light is provided, and the specularly reflected light and the reference light are detected by the detecting means in the form of interference fringes. 7. The optical multilayer object tilt or height detection device according to claim 6, further comprising a processing circuit for deriving the tilt or height from the pitch and phase of the interference signal. 10. The reference light generated by the reference light generating means is configured to pass through almost the same optical path as the irradiation light and specularly reflected light that are caused to interfere with the reference light, except that the reference light is not reflected at the surface of the object to be measured. An optical multilayer object tilt or height detection device according to claim 9. 11. A mask serving as an original image, an illumination optical system that irradiates the mask with exposure illumination light, a projection optical system that forms an image of the mask on the object to be exposed using the light that has passed through the mask, and the object to be exposed. irradiation means for causing the light emitted from the second light source to enter the mask at or near the image formation position of the mask with an incident angle of the principal ray of 85° or more; and information on the light specularly reflected by the object to be exposed. 1. A projection exposure apparatus comprising: a detection means for detecting; and a processing circuit for deriving the inclination or height of an object to be measured from a signal obtained by the detection means.
JP1100026A 1989-04-21 1989-04-21 Projection exposure method and apparatus Expired - Fee Related JP2796347B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1100026A JP2796347B2 (en) 1989-04-21 1989-04-21 Projection exposure method and apparatus
US07/623,438 US5227862A (en) 1989-04-21 1990-04-20 Projection exposure apparatus and projection exposure method
EP90906337A EP0426866B1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
KR1019900702643A KR930011884B1 (en) 1989-04-21 1990-04-20 Projection exposure device and projection exposure method
DE69027738T DE69027738T2 (en) 1989-04-21 1990-04-20 PROJECTION AND PLAYBACK CONTROL AND PROJECTION AND PLAYBACK METHOD
PCT/JP1990/000520 WO1990013000A1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
US07/936,661 US5392115A (en) 1989-04-21 1992-08-28 Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal
US08/315,841 US6094268A (en) 1989-04-21 1994-09-30 Projection exposure apparatus and projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100026A JP2796347B2 (en) 1989-04-21 1989-04-21 Projection exposure method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8097987A Division JP2861927B2 (en) 1996-04-19 1996-04-19 Method and apparatus for detecting inclination or height of optical multilayer object

Publications (2)

Publication Number Publication Date
JPH02280313A true JPH02280313A (en) 1990-11-16
JP2796347B2 JP2796347B2 (en) 1998-09-10

Family

ID=14263027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100026A Expired - Fee Related JP2796347B2 (en) 1989-04-21 1989-04-21 Projection exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP2796347B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005705A1 (en) * 1997-07-23 1999-02-04 Applied Materials, Inc. Wafer out-of-pocket detection tool
US6197117B1 (en) 1997-07-23 2001-03-06 Applied Materials, Inc. Wafer out-of-pocket detector and susceptor leveling tool
US6975384B2 (en) 2002-03-26 2005-12-13 Canon Kabushiki Kaisha Exposure apparatus and method
CN107560565A (en) * 2017-08-24 2018-01-09 南京理工大学 The surface shape detection apparatus and detection method of carrier frequency interference are tilted based on dynamic sharing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530269B (en) * 2019-08-23 2021-03-16 扬州大学 Laser triangle and optical lever combined monocular vision measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005705A1 (en) * 1997-07-23 1999-02-04 Applied Materials, Inc. Wafer out-of-pocket detection tool
US6099596A (en) * 1997-07-23 2000-08-08 Applied Materials, Inc. Wafer out-of-pocket detection tool
US6197117B1 (en) 1997-07-23 2001-03-06 Applied Materials, Inc. Wafer out-of-pocket detector and susceptor leveling tool
US6274878B1 (en) 1997-07-23 2001-08-14 Applied Materials, Inc. Wafer out-of-pocket detection method
US6975384B2 (en) 2002-03-26 2005-12-13 Canon Kabushiki Kaisha Exposure apparatus and method
CN107560565A (en) * 2017-08-24 2018-01-09 南京理工大学 The surface shape detection apparatus and detection method of carrier frequency interference are tilted based on dynamic sharing

Also Published As

Publication number Publication date
JP2796347B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JP2897276B2 (en) Positioning method and exposure apparatus
JP2514037B2 (en) Detection optical system
US5818588A (en) Displacement measuring method and apparatus using plural light beam beat frequency signals
US6122058A (en) Interferometer system with two wavelengths, and lithographic apparatus provided with such a system
EP0721608B1 (en) Method of repetitively imaging a mask pattern on a substrate
JP4055827B2 (en) Radiation dose determination method for lithographic apparatus, test mask and apparatus for carrying out the method
JP2001514804A (en) Alignment apparatus and lithographic apparatus including such an apparatus
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
JPH0455243B2 (en)
JPS63275912A (en) Detecting device of surface displacement
JPH02280313A (en) Detection of inclination or height of optical multiplier object, device therefor and projection aligner
JP5137526B2 (en) Shape measuring apparatus, shape measuring method, and exposure apparatus
JPH02167409A (en) Position detecting device
JP2000012445A (en) Position detecting method and apparatus, and aligner equipped with the apparatus
JP2861927B2 (en) Method and apparatus for detecting inclination or height of optical multilayer object
JP2814538B2 (en) Alignment device and alignment method
JPH08219718A (en) Plane position detector
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
US20160025480A1 (en) Interferometric level sensor
JPH06232026A (en) Aligner
JP2808595B2 (en) Position detecting apparatus and projection exposure apparatus using the same
JP2786270B2 (en) Interferometric tilt or height detecting device, reduction projection type exposure device and method thereof
JPH0828319B2 (en) Projection exposure device
JPH0428217A (en) Positioning device
JPH05196567A (en) Complex reflectivity measurement method and device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees