JPH02280101A - Transparent molding having low reflectivity and electrical conductivity - Google Patents

Transparent molding having low reflectivity and electrical conductivity

Info

Publication number
JPH02280101A
JPH02280101A JP1100293A JP10029389A JPH02280101A JP H02280101 A JPH02280101 A JP H02280101A JP 1100293 A JP1100293 A JP 1100293A JP 10029389 A JP10029389 A JP 10029389A JP H02280101 A JPH02280101 A JP H02280101A
Authority
JP
Japan
Prior art keywords
refractive index
oxide
transparent
fine particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1100293A
Other languages
Japanese (ja)
Inventor
Takashige Yoneda
貴重 米田
Tsuneo Wakabayashi
若林 常生
Fumiaki Gunji
郡司 文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1100293A priority Critical patent/JPH02280101A/en
Publication of JPH02280101A publication Critical patent/JPH02280101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain the transparent molding having antireflection and antistatic properties and scratching resistance by providing two layers; a specific conductive layer consisting of inorg. fine particles and a high-refractive index layer on an air side on the surface of the molding. CONSTITUTION:The two layers; the conductive layer consisting of the inorg. fine particles and having <=10<10>(OMEGA/square) surface resistance value and the high- refractive index layer having >=0.1 refractive index difference from the refractive index of the conductive layer are provided on the air side on the surface of the molding formed of a transparent base material. The interference effect of light is utilized by adjusting the refractive indices and film thickness of the two layers; the conductive layer and the high-refractive index layer in this case; in addition, the layer contg. a material having an electrical conductivity is provided. The low reflectiveness is obtd. in this way and the electrical conductivity is obtd. as well. Since the fine particles of the metal oxide are used as the conductive material, the surface scratching resistance and durability are obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低反射性及び導電性を有する透明成形体に関
し、更に詳し、(は、低反射性により反射光による不快
感、眩しさが低減され、しかも導電性を有することによ
り表面での静電気の蓄積、埃りの吸着などを防ぐ効果を
発現する透明成形体に関するものであり、CRTのパネ
ル部および前面板、タッチパネル、ショーケース、メー
ターカバーなど各種ディスプレイ表示体として好適に用
い得るものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a transparent molded body having low reflectivity and conductivity, and more particularly, (is) a transparent molded body having low reflectivity and electrical conductivity. This relates to a transparent molded body that has the effect of preventing the accumulation of static electricity on its surface and the adsorption of dust due to its conductivity. It can be suitably used as various displays such as covers.

[従来の技術] ディスプレイ前面での反射光は、その作業者の眼球疲労
、不快感、から作業能率の低下を招(という問題を生じ
ていて、この種の問題を解消するために、前面に低反射
性を付与し、障害を抑制し得る透明成形体の開発が強(
望まれ、その開発も試みられている。例えば、特開昭5
9−51920号、特開昭59−51923号、特開昭
59−51952号、特開昭59−133268号、特
開昭60−245610号、特開昭61−76328号
、特開昭61−108520号、特開昭63−1911
01号、特公昭61−54066号等の各公報に種々な
る提案がなされている。しかしながら、これらは低反射
性塗膜の形成において紫外線照射装置を必要とするもの
であったり、また表面を直接ノングレア性とするために
成形時に特殊な鋳型を用いた成形法を採用しなければな
らなかった。特に形成される低反射塗膜は長期耐久性に
乏しく、また表面のノングレア処理は表面の硬度を低い
ものとしてしまい、しかもブラウン管などにおいては解
像度を低下させる原因ともなっていた。
[Prior Art] Light reflected from the front of the display causes eye fatigue and discomfort for workers, leading to a decrease in work efficiency. There is a strong need to develop transparent molded bodies that can provide low reflectivity and suppress obstacles (
It is desired and attempts are being made to develop it. For example,
9-51920, JP-A-59-51923, JP-A-59-51952, JP-A-59-133268, JP-A-60-245610, JP-A-61-76328, JP-A-61- No. 108520, JP-A-63-1911
Various proposals have been made in various publications such as No. 01 and Japanese Patent Publication No. 61-54066. However, these require an ultraviolet irradiation device to form a low-reflection coating, and a molding method using a special mold must be used to directly make the surface non-glare. There wasn't. In particular, the formed low-reflection coating has poor long-term durability, and the non-glare treatment on the surface reduces the hardness of the surface, which also causes a reduction in resolution in cathode ray tubes and the like.

さらに、表面にソングレア性を付与する方法の他に、光
の干渉作用を応用して低反射性を発現するという提案も
幾つかなされているが、低反射性に乏しかったり、表面
の耐擦傷性及び耐久性に乏しいものであった。
Furthermore, in addition to the method of imparting song glare to the surface, several proposals have been made to apply light interference to achieve low reflectivity, but these methods lack low reflectivity or have poor scratch resistance on the surface. and had poor durability.

一方、表面に導電性を付与する、さらにはこれと低反射
性とを具備させるという提案もなされている。しかしな
がら、これらは導電性材料を含有する層の上に低屈折率
層を設けるのであって、導電性の発現には著しく不利で
あった。また、耐久性という点においても大きな問題点
を有しているというのが現状である。
On the other hand, proposals have also been made to impart electrical conductivity to the surface, and further to provide it with low reflectivity. However, these methods provide a low refractive index layer on a layer containing an electrically conductive material, which is extremely disadvantageous in achieving electrical conductivity. In addition, the current situation is that there is a major problem in terms of durability.

[発明が解決しようとする課題] 本発明は、かかる現状に鑑みてなされたものであり、し
たがってその目的は、従来技術の有していた問題点を解
消し、反射防止性と帯電防止性とを具備し、しかも耐擦
傷性を有する透明成形体を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the current situation, and its purpose is to solve the problems of the prior art and to improve antireflection and antistatic properties. An object of the present invention is to provide a transparent molded article having the following properties and also having scratch resistance.

[課題を解決するための手段] 即ち、本発明は、透明基材から成形されてなる成形体で
あって、該成形体の表面の空気側に無機微粒子よりなる
表面抵抗値10” (Ω/口)以下の導電性層(A)、
該(A)の屈折率と屈折率差が0.1以上の高屈折率層
(B)の2層を設けてなる低反射性及び導電性を有する
透明成形体を提供するものである。
[Means for Solving the Problems] That is, the present invention provides a molded body formed from a transparent base material, the molded body having a surface resistance value of 10" (Ω/) made of inorganic fine particles on the air side of the surface of the molded body. mouth) the following conductive layer (A),
The object of the present invention is to provide a transparent molded article having low reflectivity and conductivity, which is provided with two layers: the refractive index of the refractive index of the refractive index of the refractive index of the refractive index of the refractive index of the refractive index (A) and the high refractive index layer (B) having a refractive index difference of 0.1 or more.

本発明は、導電性層(A)および高屈折率層(B)の2
層の屈折率及び膜厚を調節して、光の干渉作用を利用す
ることにより、目的の一つである低反射性が発現され、
導電性を有する材料を含有する層を設けることによって
、他の一つの目的である導電性を発現させようとするも
のである。而して、本発明の特徴はこの導電性材料を含
有する層が空気側第1層目に設けられてなることである
。このように、導電性材料を含有する層が空気側第1層
に存在するということは後記するような効果が発現され
る。
The present invention comprises two layers: a conductive layer (A) and a high refractive index layer (B).
By adjusting the refractive index and film thickness of the layer and utilizing the interference effect of light, one of the objectives, low reflectivity, is achieved.
By providing a layer containing a conductive material, another objective is to be achieved, which is conductivity. The feature of the present invention is that the layer containing this conductive material is provided as the first layer on the air side. In this way, the presence of the layer containing the conductive material in the air-side first layer produces effects as described later.

導電性層(A)を形成するための導電性材料としては、
導電性樹脂、無機微粒子等を用い得るが、その選択は所
望の導電性のレベル、例えば帯電防止、静電防止、半導
電性、導電性或は高導電性等に応じて任意に行なわれる
。而して、表面の耐擦傷性、耐久性を考慮する場合、導
電性樹脂は比較的に表面耐擦傷性に劣ることから一般的
には透明基材に対しては不向であるといえる。したがっ
て、無機微粒子を使用するのが好適な場合が多く、特に
導電層(A)の表面抵抗値が10” (Ω/口)以下と
する点において、金属酸化物の微粒子が導電性材料とし
ては良好なものが多い。かかる導電性材料としては、例
えば酸化スズ、酸化亜鉛、酸化インジウム等が挙げられ
、これらの少なくとも1種が用いられる、これらは導電
性を高める目的で各種の化合物がドープされていても問
題ないことは勿論である。導電層(A)の表面抵抗値が
1010(Ω/口)を越えると充分な帯電防止性能が発
現出来ないため問題がある。
As the conductive material for forming the conductive layer (A),
Conductive resins, inorganic fine particles, etc. may be used, and their selection is made arbitrarily depending on the desired level of conductivity, such as antistatic, antistatic, semiconductive, conductive, or high conductivity. When considering surface abrasion resistance and durability, conductive resins are generally unsuitable for transparent substrates because they have relatively poor surface abrasion resistance. Therefore, it is often preferable to use inorganic fine particles, and in particular, metal oxide fine particles are suitable as a conductive material when the surface resistance value of the conductive layer (A) is 10" (Ω/hole) or less. Examples of such conductive materials include tin oxide, zinc oxide, indium oxide, etc., and at least one of these is used, and these can be doped with various compounds for the purpose of increasing conductivity. Of course, there is no problem even if the conductive layer (A) has a surface resistance value of more than 1010 (Ω/hole), which causes a problem because sufficient antistatic performance cannot be exhibited.

一方の高屈折率層CB)の高屈折率材料も各種の化合物
が知られているが本発明における高屈折率材料は導電性
層(A)の屈折率に比して高屈折率を与える材料から選
択する。この屈折率差は、原理的には(空気側第1層の
屈折率)く(空気側第2層の屈折率)であれば良いが優
れた低反射性を発現するには両層の屈折率の差が0.1
以上であることが必要である。高屈折率材料としては樹
脂あるいは無機微粒子等であってよ(、材料の選択は目
的に応じて行われる。而して、樹脂よりは無機微粒子の
方が屈折率値の高い材料が多く、−殻内には選択範囲が
広い。
Various compounds are known for the high refractive index material of the high refractive index layer CB), but the high refractive index material in the present invention is a material that provides a refractive index higher than that of the conductive layer (A). Choose from. In principle, this refractive index difference should be (the refractive index of the first layer on the air side) and (the refractive index of the second layer on the air side), but in order to achieve excellent low reflectivity, the refractive index of both layers must be The difference in rate is 0.1
It is necessary that it is above. The high refractive index material may be resin or inorganic fine particles (the material is selected depending on the purpose.There are many materials with higher refractive index values of inorganic fine particles than resins, - There is a wide selection within the shell.

特に、無機微粒子の中でも金属酸化物微粒子が最も好適
に用い得て、かかる金属酸化物微粒子としては、例えば
酸化チタン、酸化ジルコニウム、酸化アンチモン、酸化
タンタル、酸化スズ、酸化インジウム、酸化アルミニウ
ム等が挙げられ、これらは1種に限定することな(2種
以上を併用することもできる。空気側の導電性層(A)
、高屈折率層(B)のいずれにおいても無機微粒子の大
きさは目的に応じて任意であって良いがあまり大きすぎ
ると得られた被膜がHAZEになり易いため平均粒子径
は3001以下であるのが好ましい。また、導電性層(
A)において導電性を発現するための無機微粒子径につ
いてはあまり小さすぎると導電性が悪くなるため1 n
m以上であることが望ましい。
Particularly, metal oxide fine particles can be most preferably used among inorganic fine particles, and examples of such metal oxide fine particles include titanium oxide, zirconium oxide, antimony oxide, tantalum oxide, tin oxide, indium oxide, aluminum oxide, etc. These are not limited to one type (two or more types can also be used in combination. Air-side conductive layer (A)
In any of the high refractive index layers (B), the size of the inorganic fine particles may be arbitrary depending on the purpose, but if it is too large, the obtained film will likely become HAZE, so the average particle size is 3001 or less. is preferable. In addition, a conductive layer (
In A), the inorganic fine particle size for developing conductivity is 1 n because if it is too small, the conductivity will deteriorate.
It is desirable that it is more than m.

本発明の透明成形体を得るには種々の方法を採用し得る
。例えば、真空蒸着、スパッタ法、イオンブレーティン
グ法等のPVD法、CVD法、コーティング組成物の塗
布法等が挙げられる。
Various methods can be employed to obtain the transparent molded article of the present invention. Examples include PVD methods such as vacuum evaporation, sputtering, and ion-blating methods, CVD methods, and methods for applying coating compositions.

かかる各種の方法において、作業性、コストの点、ある
いは複雑な形状の透明成形体に適応し得るという点でコ
ーティング組成物の塗布法が有利である。従って、安価
で、形状の複雑な本発明の透明成形体を得るには、導電
性材料、あるいは高屈折率材料を含有する組成物を透明
基材から成形され成形体の表面に塗布して被膜層を形成
する方法が最も最適である。
Among these various methods, the method of applying a coating composition is advantageous in terms of workability, cost, and ability to be applied to transparent molded bodies of complex shapes. Therefore, in order to obtain the transparent molded article of the present invention which is inexpensive and has a complicated shape, a composition containing a conductive material or a high refractive index material is applied to the surface of the molded article formed from a transparent base material to form a coating. The method of forming layers is the most optimal.

本発明の透明成形体をコーティング組成物の塗布法で得
るには単に導電性材料、あるいは高屈折率材料が溶解あ
るいは分散したコーティング組成物を透明基材に塗布す
れば良いが、かかる場合の組成物の調製に際し、無機微
粒子はコロイド状のものであっても何ら問題はない。ま
た、組成物は塗布に好適となすために、溶剤によって溶
液状とするが、導電性材料、高屈折率材料を溶解、分散
させる溶剤としては各種の溶剤が使用可能である。例え
ば、アルコール系、エステル系、ケトン系、エーテル系
、ハロゲン化炭化水素系、芳香族系溶剤等が挙げられる
が、これらの単独、あるいは混合系のいずれであっても
問題はない。組成物において、材料の濃度は任意であっ
てよ(、目的とする被膜層の厚さに応じて決定される。
In order to obtain the transparent molded article of the present invention by the method of applying a coating composition, it is sufficient to simply apply a coating composition in which a conductive material or a high refractive index material is dissolved or dispersed to a transparent substrate. When preparing a product, there is no problem even if the inorganic fine particles are colloidal. Further, in order to make the composition suitable for coating, it is made into a solution using a solvent, and various solvents can be used to dissolve and disperse the conductive material and the high refractive index material. Examples include alcohol-based, ester-based, ketone-based, ether-based, halogenated hydrocarbon-based, and aromatic solvents, but there is no problem whether they are used alone or in combination. In the composition, the concentration of the materials can be arbitrary (depending on the desired thickness of the coating layer).

ここで、目的とする被膜層の厚さとは本発明においては
、基本的には基材及び2つの層の間で光学干渉が生じる
膜厚のことである。
Here, in the present invention, the desired thickness of the coating layer basically refers to the thickness at which optical interference occurs between the base material and the two layers.

本発明において、優れた性能を有する導電性層(A)及
び高屈折率層(B)を形成するには造膜性も重要な要因
の一つである。従って、コーティング組成物の塗布法に
おいては、造膜性を高めるために樹脂あるいは無機微粒
子、さらにはそれらを含む組成物に他の成分を添加する
ことができる。かかる他の成分として好適なものはシリ
コン化合物が挙げられ、シリコン化合物の添加は形成さ
れる被膜層の耐擦傷性を損なうことがないという点で良
好な添加成分である。シリコン化合物としては、メチル
シリケート、エチルシリケート、n−プロピルシリケー
ト、i−プロピルシリケート、n−ブチルシリケート、
5ee−ブチルシリケートおよびt−ブチルシリケート
などのテトラアルコキシシラン類、およびその加水分解
物さらにはメチルトリメトキシシラン、メチルトリエト
キシシラン、メチルトリメトキシエトキシシラン、メチ
ルトリアセトキシシラン、メチルトリブトキシシラン、
エチルトリメトキシシラン、エチルトリエトキシシラン
、ビニルトリメトキシシラン、ビニルトリエトキシシラ
ン、ビニルトリアセトキシシラン、ビニルトリメトキシ
エトキシシラン、フェニルトリメトキシシラン、フェニ
ルトリエトキシシラン、フェニルトリアセトキシシラン
、γ−クロロプロピルメトキシシラン、γ−クロロプロ
ピルトリエトキシシラン、γ−クロロプロピルトリアセ
トキシシラン、 3,3.3− トリフロロプロピルト
リメトキシシラン、γ−メタクリルオキシプロピルトリ
メトキシシラン、γ−アミノプロピルトリメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、γ−メル
カプトプロピルトリメトキシシラン、γ−メルカプトプ
ロピルトリエトキシシラン、N−β−(アミノエチル)
−丁−アミノプロピルトリメトキシシラン、β−シアノ
エチルトリエトキシシラン、メチルトリフエノキシシラ
ン、クロロメチルトリメトキシシラン、り四ロメチルト
リエトキシシラン、グリシドキシメチルトリメトキシシ
ラン、グリシドキシメチルトリエトキシシラン、α−グ
リシドキシエチルトリメトキシシラン、α−グリシドキ
シエチルトリエトキシシラン、β−グリシドキシエチル
トリメトキシシラン、β−グリシドキシエチルトリエト
キシシラン、α−グリシドキシプロピルトリメトキシシ
ラン、α−グリシドキシプロビルトリエトキシシラン、
β−グリシドキシプロビルトリメトキシシラン、β−グ
リシドキシプロピルトリエトキシシラン、γ−グリシド
キシプロビルトリメトキシシラン、γ−グリシドキシプ
ロビルトリエトキシシラン、γ−グリシドキシブロビル
トリブロボキシシラン、γ−グリシドキシプロビルトリ
ブトキシシラン、γ−グリシドキシプロビルトリメトキ
シエトキシシラン、γ−グリシドキシプロビルトリフエ
ノキシシラン、α−グリシドキシブチルトリメトキシシ
ラン、α−グリシドキシブチルトリエトキシシラン、β
−グリシドキシブチルトリメトキシシラン、β−グリシ
ドキシブチルトリエトキシシラン、γ−グリシドキシブ
チルトリメトキシシラン、γ−グリシドキシブチルトリ
エトキシシラン、δ−グリシドキシブチルトリメトキシ
シラン、δ−グリシドキシブチルトリエトキシシラン、
(3,4−エポキシシクロヘキシル)メチルトリメトキ
シシラン、(3,4−エポキシシクロヘキシル)メチル
トリエトキシシラン、β−(3,4−エポキシシクロヘ
キシル)エチルトリメトキシシラン、β−(3,4−エ
ポキシシクロヘキシル)エチルトリエトキシシラン、β
−(3,4−エポキシシクロヘキシル)エチルトリプロ
ポキシシラン、β−(3,4−エポキシシクロヘキシル
)エチルトリブトキシシラン、β−(3,4−エポキシ
シクロヘキシル)エチルトリメトキシエトキシシラン、
β−(3,4−エポキシシクロヘキシル)エチルトリフ
エノキシシラン、γ−(3,4−エポキシシクロヘキシ
ル)プロピルトリメトキシシラン、γ−(3,4−エポ
キシシクロヘキシル)プロピルトリエトキシシラン、δ
−(3,4−エポキシシクロヘキシル)ブチルトリメト
キシシラン、δ−(3,4−エポキシシクロヘキシル)
ブチルトリエトキシシランなどのトリアルコキシシラン
、トリアジルオキシシランまたはトリフエノキシシラン
類またはその加水分解物およびジメチルジメトキシシラ
ン、フェニルメチルジメトキシシラン、ジメチルジェト
キシシラン、フェニルメチルジェトキシシラン、γ−ク
ロロプロピルメチルジメトキシシラン、γ−クロロプロ
ピルメチルジェトキシシラン、ジメチルジアセトキシシ
ラン、γ−メタクリルオキシプロピルメチルジメトキシ
シラン、γ−メタクリルオキシプロピルメチルジェトキ
シシラン、γ−メルカプトプロピルメチルジメトキシシ
ラン、γ−メルカブトプロビルメチルジエトキシシラン
、γ−アミノプロピルメチルジメトキシシラン、γ−ア
ミノプロピルメチルジェトキシシラン、メチルビニルジ
メトキシシラン、メチルビニルジェトキシシラン、グリ
シドキシメチルメチルジメトキシシラン、グリシドキシ
メチルメチルジェトキシシラン、α−グリシドキシエチ
ルメチルジメトキシシラン、α−グリシドキシエチルメ
チルジェトキシシラン、β−グリシドキシエチルメチル
ジメトキシシラン、β−グリシドキシエチルメチルジェ
トキシシラン、α−グリシドキシプロビルメチルジメト
キシシラン、α−グリシドキシプロピルメチルジェトキ
シシラン、β−グリシドキシプロビルメチルジメトキシ
シラン、β−グリシドキシプロビルメチルジェトキシシ
ラン、γ−グリシドキシプロビルメチルジメトキシシラ
ン、γ−グリシドキシプロビルメチルジェトキシシラン
、γ−グリシドキシブロビルメチルジブロボキシシラン
、γ−グリシドキシブロビルメチルジプトキシシラン、
γ−グリシドキシプロビルメチルジメトキシエトキシシ
ラン、γ−グリシドキシプロピルメチルジフェノキシシ
ラン、γ−グリシドキシプロビルエチルジメトキシシラ
ン、γ−グリシドキシプロビルエチルジェトキシシラン
、γ−グリシドキシブロビルエチルジブロボキシシラン
、γ−グリシドキシプロビルビニルジメトキシシラン、
γ−グリシドキシプロビルビニルジェトキシシラン、γ
−グリシドキシプロビルフエニルジメトキシシラン、γ
−グリシドキシプロビルフエニルジエトキシシラン、な
どジアルコキシシランまたはジアシルオキシシラン等が
例示される。
In the present invention, film-forming properties are also one of the important factors in forming a conductive layer (A) and a high refractive index layer (B) having excellent performance. Therefore, in the method of applying the coating composition, other components may be added to the resin or inorganic fine particles, or to the composition containing them, in order to improve film-forming properties. A suitable example of such other components is a silicon compound, which is a good additive component in that the addition of the silicon compound does not impair the scratch resistance of the formed coating layer. Examples of silicon compounds include methyl silicate, ethyl silicate, n-propyl silicate, i-propyl silicate, n-butyl silicate,
Tetraalkoxysilanes such as 5ee-butylsilicate and t-butylsilicate, and their hydrolysates, as well as methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane,
Ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyl Methoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3.3-trifluoropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ -Aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N-β-(aminoethyl)
-di-aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, methyltriphenoxysilane, chloromethyltrimethoxysilane, tetraromethyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxy Silane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxy Silane, α-glycidoxyprobyltriethoxysilane,
β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxybrobyl Tribroboxysilane, γ-glycidoxypropyl tributoxysilane, γ-glycidoxypropyltrimethoxyethoxysilane, γ-glycidoxypropyltriphenoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β
-Glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ - glycidoxybutyltriethoxysilane,
(3,4-epoxycyclohexyl)methyltrimethoxysilane, (3,4-epoxycyclohexyl)methyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, β-(3,4-epoxycyclohexyl) ) Ethyltriethoxysilane, β
-(3,4-epoxycyclohexyl)ethyltripropoxysilane, β-(3,4-epoxycyclohexyl)ethyltributoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxyethoxysilane,
β-(3,4-epoxycyclohexyl)ethyltriphenoxysilane, γ-(3,4-epoxycyclohexyl)propyltrimethoxysilane, γ-(3,4-epoxycyclohexyl)propyltriethoxysilane, δ
-(3,4-epoxycyclohexyl)butyltrimethoxysilane, δ-(3,4-epoxycyclohexyl)
Trialkoxysilanes such as butyltriethoxysilane, triazyloxysilane or triphenoxysilanes or their hydrolysates, dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyljethoxysilane, phenylmethyljethoxysilane, γ-chloropropyl Methyldimethoxysilane, γ-chloropropylmethyljethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyljethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyl Billmethyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyljethoxysilane, methylvinyldimethoxysilane, methylvinyljethoxysilane, glycidoxymethylmethyldimethoxysilane, glycidoxymethylmethyljethoxysilane , α-glycidoxyethylmethyldimethoxysilane, α-glycidoxyethylmethyljethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylmethyljethoxysilane, α-glycidoxyprobil Methyldimethoxysilane, α-glycidoxypropylmethyljethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylmethyljethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ -glycidoxypropylmethyljethoxysilane, γ-glycidoxybrobylmethyldibroboxysilane, γ-glycidoxybrobylmethyldipoxysilane,
γ-glycidoxypropylmethyldimethoxyethoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropyl ethyldimethoxysilane, γ-glycidoxypropyl ethyljethoxysilane, γ-glycid xybrobylethyldibroboxysilane, γ-glycidoxypropylbylvinyldimethoxysilane,
γ-glycidoxypropylvinyljethoxysilane, γ
-glycidoxypropylphenyldimethoxysilane, γ
-Glycidoxyprobylphenyldiethoxysilane, etc. Dialkoxysilanes or diacyloxysilanes are exemplified.

上記例示のシリコン化合物は1種あるいは数種の混合物
をそのままあるいは加水分解して用いる。加水分解に際
しては、単に純水の添加で良いが、酸の存在下で水を加
えてもよい。酸としては、塩酸、硫酸、硝酸、酢酸、ス
ルホン酸等が用いられる。さらに、形成される被膜層の
耐擦傷性を高めるために従来から公知の硬化触媒等を加
えることもできる。
The silicon compounds exemplified above may be used alone or in a mixture of several kinds, either as they are or after being hydrolyzed. During hydrolysis, pure water may be simply added, but water may also be added in the presence of an acid. As the acid, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, sulfonic acid, etc. are used. Furthermore, a conventionally known curing catalyst or the like may be added in order to improve the scratch resistance of the formed coating layer.

また、樹脂としては目的に応じて、溶解性、相溶性、分
子量(分布、重合度)、含有する官能基、高次構造等を
考慮して最適なものを選択できる。さらに、レベリング
性を高めるために界面活性剤等を加えたり、形成される
被膜層を改質し得る他の添加剤、紫外線吸収剤、滑剤等
を加えてもよい。
Further, depending on the purpose, the most suitable resin can be selected in consideration of solubility, compatibility, molecular weight (distribution, degree of polymerization), functional groups contained, higher-order structure, etc. Furthermore, a surfactant or the like may be added to improve the leveling property, or other additives, ultraviolet absorbers, lubricants, etc. that can modify the formed coating layer may be added.

コーティング組成物から本発明の被膜層を形成する方法
において、塗布方法としてはスピンコード、デイツプコ
ート、流し塗り、スプレーコート、はけ塗り等従来公知
の方法を採用することができる。優れた性能を有する被
膜層を形成するには、塗布後に焼成するのが望ましく、
焼成時間、焼成温度は基材の耐熱性、材料の種類等を考
慮して、最適条件が決定される。また1層毎に、あるい
は2層を同時に焼成することができる。
In the method of forming the coating layer of the present invention from the coating composition, conventionally known coating methods such as spin cord, dip coating, flow coating, spray coating, and brush coating can be employed. In order to form a coating layer with excellent performance, it is desirable to bake it after application.
The optimum conditions for the firing time and firing temperature are determined in consideration of the heat resistance of the base material, the type of material, etc. Further, it is possible to fire one layer at a time or two layers at the same time.

本発明における透明成形体は透明基材から成形されてな
るが、透明基材としてはガラスおよびプラスチックであ
り、ガラスとしては普通板ガラスはもとより、各種加工
硝子、特にディスプレイ表示体としてブラウン管のパネ
ル部などが好適である。
The transparent molded body in the present invention is formed from a transparent base material, and the transparent base materials include glass and plastic, and examples of glass include not only ordinary plate glass but also various processed glasses, especially the panel part of a cathode ray tube as a display body, etc. is suitable.

またζプラスチックはその材質として、ポリメチルメタ
クリレート、ポリカーボネート、ポリジエチレングリコ
ールアリルカーボネート、ポリスチレン、ポリ塩化ビニ
ル、ポリウレタン、不飽和ポリエステル等が挙げられる
Examples of the material of the ζ plastic include polymethyl methacrylate, polycarbonate, polydiethylene glycol allyl carbonate, polystyrene, polyvinyl chloride, polyurethane, and unsaturated polyester.

[実施例] 以下に実施例により本発明を具体的に説明するが本発明
はこれらの実施例に限定されるものではない。
[Examples] The present invention will be specifically explained below using Examples, but the present invention is not limited to these Examples.

実施例において得られた透明成形体の評価方法について
は次ぎの通りである。
The method for evaluating the transparent molded bodies obtained in the examples is as follows.

(1)低反射性の°評価 GAMMA分光反射スペクトル測定器により基材表面の
片面の視感反射率を測定。
(1) Evaluation of low reflectivity The luminous reflectance of one side of the substrate surface was measured using a GAMMA spectroscopic reflectance spectrometer.

(2)導電性の評価 ハイレスタ抵抗測定器(三菱油化製)により基材表面の
表面抵抗値を測定。
(2) Evaluation of conductivity The surface resistance value of the substrate surface was measured using a Hiresta resistance measuring device (manufactured by Mitsubishi Yuka).

(3)耐擦傷性、耐久性の評価 1kgの荷重下に消ゴムで基材表面を100回往復後、
その表面の傷の付き方を調査。
(3) Evaluation of scratch resistance and durability After moving back and forth on the base material surface 100 times with an eraser under a load of 1 kg,
Investigate how the surface gets scratched.

耐擦傷性の評価の基準は以下の通り A:傷が全(つかない。The criteria for evaluating scratch resistance are as follows: A: There are no scratches.

B:傷が少しつ(。B: A few scratches (.

C:多くの傷がつく。C: Many scratches occur.

また、耐久性として、上記の耐擦傷性評価後、低反射性
、導電性を評価。
In addition, as for durability, after evaluating the scratch resistance mentioned above, low reflectivity and conductivity were evaluated.

実施例1 E高屈折率層用コーティング組成物(U液)の調製] 四塩化チタン30gをn−ブタノール970gに徐々に
滴下して、溶解せしめて調製した。(以下、U−1液と
略) [導電付層用コーティング組成物(T液の調製] テトラエトキシシラン50gをエタノール200gに溶
解した。次にこれに、1%塩酸水溶液46gを徐々に滴
下し、3日間熟成して部分加水分解物を得た。これに2
00gのエタノール分散アンチモンドープ酸化錫ゾル液
(濃度3%、平均粒子径1100n )を加えて調製し
た。(以下、T−1液と略) 予め洗浄されたガラス板(loamX 10cm (厚
さ3mm) )を室温25℃、湿度45%の環境下でU
−1液に浸漬した。浸漬後、10cm/winの速さで
引き上げ、100  ℃、10分焼成した。次ぎに、こ
のガラス板をT−1に浸漬後、4cm/minの速さで
引き上げ、500  ℃、30分焼成した。このように
して、2層の被膜層の形成されたガラス板を得た。、こ
のガラス板について前記の評価方法に従って評価し、そ
の結果を第1表に示す。
Example 1 Preparation of Coating Composition for E High Refractive Index Layer (U Solution) 30 g of titanium tetrachloride was gradually dropped into 970 g of n-butanol to dissolve it. (Hereinafter, abbreviated as U-1 liquid) [Coating composition for conductive layer (preparation of T liquid) 50 g of tetraethoxysilane was dissolved in 200 g of ethanol. Next, 46 g of 1% aqueous hydrochloric acid solution was gradually added dropwise to this. A partially hydrolyzed product was obtained by aging for 3 days.
00 g of ethanol-dispersed antimony-doped tin oxide sol (concentration: 3%, average particle size: 1100 nm) was added to prepare the sample. (Hereinafter, abbreviated as T-1 liquid) A pre-cleaned glass plate (loam x 10cm (thickness 3mm)) was heated under U at a room temperature of 25℃ and humidity of 45%.
-Immersed in liquid 1. After dipping, it was pulled up at a speed of 10 cm/win and baked at 100° C. for 10 minutes. Next, this glass plate was immersed in T-1, pulled up at a speed of 4 cm/min, and fired at 500°C for 30 minutes. In this way, a glass plate on which two coating layers were formed was obtained. This glass plate was evaluated according to the evaluation method described above, and the results are shown in Table 1.

比較例1 比較例として、実施例1に用いたガラス板について被膜
槽を形成することなく、評価し、その結果を第1表に示
す。
Comparative Example 1 As a comparative example, the glass plate used in Example 1 was evaluated without forming a coating tank, and the results are shown in Table 1.

第1表 実施例2 実施例1におけるガラス板をテレビ用ブラウン管のパネ
ルについて評価し、その結果を第2表に示す。
Table 1 Example 2 The glass plate in Example 1 was evaluated on a television cathode ray tube panel, and the results are shown in Table 2.

比較例2 比較例として、実施例゛2に用いたテレビ用ブラウン管
のパネル部について被膜層を形成することなく評価し、
その結果を第2表に示す。
Comparative Example 2 As a comparative example, the panel portion of the television cathode ray tube used in Example 2 was evaluated without forming a coating layer.
The results are shown in Table 2.

第2表 板について評価し、その結果を第3表に示す。Table 2 The plates were evaluated and the results are shown in Table 3.

[U−2液の調製] テトラエトキシシラン10gをエタノール40gに溶解
した。これに、1%塩酸水溶液9gを徐々に滴下し、3
日間熟成して部分加水分解物を得た。
[Preparation of U-2 liquid] 10 g of tetraethoxysilane was dissolved in 40 g of ethanol. 9 g of 1% hydrochloric acid aqueous solution was gradually added dropwise to this, and 3
A partially hydrolyzed product was obtained by aging for 1 day.

次に、これとTJ−1液1000gとを混合してU−2
液を調製した。
Next, mix this and 1000g of TJ-1 liquid to make U-2.
A liquid was prepared.

第3表 実施例3 実施例1におけるU−1液を下記のU−2液に変えた他
は実施例1と同様にして、2層の被膜層の形成されたガ
ラス板を得た。このガラス実施例4〜5 実施例3に用いたU−2液に変えて下表のU液(高屈折
率層用コーティング組成物)を用いた他は実施例3と同
様にして、2層の被膜層の形成されたガラス板を得た。
Table 3 Example 3 A glass plate on which two coating layers were formed was obtained in the same manner as in Example 1 except that the liquid U-1 in Example 1 was replaced with the liquid U-2 below. Examples 4 to 5 of this glass were prepared in the same manner as in Example 3, except that liquid U (coating composition for high refractive index layer) shown in the table below was used in place of liquid U-2 used in example 3. A glass plate having a coating layer formed thereon was obtained.

このガラス板について評価し、その結果を第4表に示す
This glass plate was evaluated and the results are shown in Table 4.

第4表 このガラス板について評価し、その結果を第5表に示す
Table 4 This glass plate was evaluated and the results are shown in Table 5.

第5表 実施例6〜8 実施例1に用いたU−1液に変えて下表のU液(高屈折
率層用コーティング組成物)を用いた他は実施例1と同
様にして、2層の被膜層の形成されたガラス板を得た。
Table 5 Examples 6 to 8 In the same manner as in Example 1, except that Liquid U (coating composition for high refractive index layer) shown in the table below was used instead of Liquid U-1 used in Example 1. A glass plate was obtained with a coating layer formed thereon.

実施例9〜11 実施例1におけるT−1液に浸漬、引き上げ後の 50
0℃、30分焼成を、実施例9は 100℃、実施例1
0は 200℃、実施例11は 400℃に変えた他は
同様にして、2層の被膜層の形成されたガラス板を得た
Examples 9 to 11 After immersion in T-1 liquid in Example 1 and pulling up 50
Baking was performed at 0°C for 30 minutes, Example 9 was fired at 100°C, Example 1
A glass plate on which two coating layers were formed was obtained in the same manner except that the temperature was changed to 200° C. for Example 1 and 400° C. for Example 11.

このガラス板について評価し、その結果を第6表に示す
This glass plate was evaluated and the results are shown in Table 6.

第6表 このガラス板について評価し、その結果を第7表に示す
Table 6 This glass plate was evaluated and the results are shown in Table 7.

第7表 実施例12〜14 実施例1におけるT−1液に変えて下表のT液(導電性
層用コーティング組成物)を用いた他は実施例1と同様
にして、2層の被膜層の形成されたガラス板を得た。
Table 7 Examples 12 to 14 A two-layer coating was prepared in the same manner as in Example 1, except that the T-liquid (coating composition for conductive layer) shown in the table below was used in place of the T-1 liquid in Example 1. A layered glass plate was obtained.

実施例15〜16 実施例1におけるT−1液に変えて下表のT液を用いた
他は実施例1と同様にして、2層の被膜層の形成された
ガラス板を得た。
Examples 15 to 16 Glass plates on which two coating layers were formed were obtained in the same manner as in Example 1, except that the T liquid shown in the table below was used instead of the T-1 liquid in Example 1.

実施例17〜19 実施例1における透明成形体としてのガラス板に変えて
下表のようなプラスチックを用い、T−1液に浸漬、引
き上げ後の焼成温度を下表のようにした他は実施例1と
同様にして、2層の被膜層の形成されたガラス板を得た
Examples 17 to 19 The same procedure was carried out except that the glass plate as the transparent molded body in Example 1 was replaced with a plastic as shown in the table below, and the firing temperature after immersion in T-1 liquid and lifting was as shown in the table below. A glass plate on which two coating layers were formed was obtained in the same manner as in Example 1.

このガラス板について評価し、その結果を第7表に示す
This glass plate was evaluated and the results are shown in Table 7.

第8表 このプラスチック板について評価し、その結果を第9表
に示す。
Table 8 This plastic plate was evaluated and the results are shown in Table 9.

第9表 [発明の効果] ■優れた導電性を有することから、静電作用による埃の
付着を防ぐ。
Table 9 [Effects of the Invention] ■Since it has excellent conductivity, it prevents dust from adhering to it due to electrostatic action.

■優れた低反射性を有することから、反射光による不快
感、眩しさが低減される。
■Since it has excellent low reflectivity, discomfort and glare caused by reflected light are reduced.

■優れた耐擦傷性を有し、しかも耐久性も良好である。■It has excellent scratch resistance and is also durable.

■数多くの材料の選択が可能であり、性能の幅を広(設
定できる。
■Many materials can be selected, allowing for a wide range of performance (configurable).

という特徴がある。特に、低反射性に関しては表面の凹
凸による光の散乱効果によるものではな(、光の干渉作
用を利用するため、透過率を損なうことなく低反射性を
達成できる。従って、この透明成形体は高透過率、低反
射性のため、透明基材の応用範囲をさらに拡大し、特に
、CRT、 コンピューター用表示部等に応用すること
により、画像は周囲の影響を受けず見やすすく、鮮明な
ものとなるという効果が認められる。
There is a characteristic that In particular, the low reflectivity is not due to the light scattering effect due to surface irregularities (because it utilizes the interference effect of light, low reflectivity can be achieved without impairing transmittance. Therefore, this transparent molded body Due to its high transmittance and low reflectivity, the range of applications of transparent substrates has been further expanded.In particular, by applying it to CRTs, computer displays, etc., images can be easily seen and clear without being affected by the surroundings. The effect is recognized as follows.

さらに、各種透明基材に応用可能な技術であるため、基
材により用途が限定されることがないという効果も有す
るものである。
Furthermore, since the technique can be applied to various transparent base materials, it also has the effect that the application is not limited by the base material.

Claims (9)

【特許請求の範囲】[Claims] (1)透明基材から成形されてなる成形体であって、該
成形体の表面の空気側に無機微粒子よりなり表面抵抗値
10^1^0(Ω/□)以下の導電性層(A)、該(A
)の屈折率と屈折率差が0.1以上の高屈折率層(B)
の2層を設けてなる低反射性及び導電性を有する透明成
形体。
(1) A molded body formed from a transparent base material, on the air side of the surface of the molded body, a conductive layer (A ), said (A
) High refractive index layer (B) with a refractive index difference of 0.1 or more
A transparent molded body having low reflectivity and conductivity, which is formed by providing two layers.
(2)透明基材がガラスである請求項1記載の透明成形
体。
(2) The transparent molded article according to claim 1, wherein the transparent base material is glass.
(3)透明基材がプラスチックである請求項1記載の透
明成形体。
(3) The transparent molded article according to claim 1, wherein the transparent base material is plastic.
(4)導電層(A)の無機微粒子が酸化亜鉛、酸化スズ
、酸化インジウムから選ばれる少なくとも1種である請
求項1記載の透明成形体。
(4) The transparent molded article according to claim 1, wherein the inorganic fine particles of the conductive layer (A) are at least one selected from zinc oxide, tin oxide, and indium oxide.
(5)導電層(A)の無機微粒子が平均粒子径1〜30
0nmである請求項1または4記載の透明成形体。
(5) The inorganic fine particles of the conductive layer (A) have an average particle diameter of 1 to 30
The transparent molded article according to claim 1 or 4, which has a particle diameter of 0 nm.
(6)高屈折率層(B)が無機酸化物微粒子を含む請求
項1記載の透明成形体。
(6) The transparent molded article according to claim 1, wherein the high refractive index layer (B) contains inorganic oxide fine particles.
(7)高屈折率層(B)の無機酸化物微粒子が平均粒子
径1〜300nmである請求項6記載の透明成形体。
(7) The transparent molded article according to claim 6, wherein the inorganic oxide fine particles of the high refractive index layer (B) have an average particle diameter of 1 to 300 nm.
(8)高屈折率層(B)の無機酸化物微粒子が酸化チタ
ン、酸化ジルコニウム、酸化アンチモ ン、酸化タンタル、酸化亜鉛、酸化スズ、酸化インジウ
ム、酸化アルミニウムから選ばれる少なくとも1種であ
る請求項6または7記載の透明成形体。
(8) The inorganic oxide fine particles of the high refractive index layer (B) are at least one selected from titanium oxide, zirconium oxide, antimony oxide, tantalum oxide, zinc oxide, tin oxide, indium oxide, and aluminum oxide. or 7. The transparent molded article according to 7.
(9)透明基材から成形されてなる成形体がガラスより
成形されてなるディスプレイ表示体である請求項1記載
の透明成形体。
(9) The transparent molded body according to claim 1, wherein the molded body formed from the transparent base material is a display body formed from glass.
JP1100293A 1989-04-21 1989-04-21 Transparent molding having low reflectivity and electrical conductivity Pending JPH02280101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100293A JPH02280101A (en) 1989-04-21 1989-04-21 Transparent molding having low reflectivity and electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100293A JPH02280101A (en) 1989-04-21 1989-04-21 Transparent molding having low reflectivity and electrical conductivity

Publications (1)

Publication Number Publication Date
JPH02280101A true JPH02280101A (en) 1990-11-16

Family

ID=14270130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100293A Pending JPH02280101A (en) 1989-04-21 1989-04-21 Transparent molding having low reflectivity and electrical conductivity

Country Status (1)

Country Link
JP (1) JPH02280101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056428U (en) * 1991-05-17 1993-01-29 福井めがね工業株式会社 Eyeglass frame deformation prevention plate
US5698258A (en) * 1992-06-04 1997-12-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a cathode-ray tube including first and second transparent layers of high and low refractive indices formed on a face plate to thereby lower electromagnetic wave emission and reduce external light reflection
JPWO2003003074A1 (en) * 2001-06-29 2004-10-21 Jsr株式会社 Antireflection film laminate and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056428U (en) * 1991-05-17 1993-01-29 福井めがね工業株式会社 Eyeglass frame deformation prevention plate
US5698258A (en) * 1992-06-04 1997-12-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a cathode-ray tube including first and second transparent layers of high and low refractive indices formed on a face plate to thereby lower electromagnetic wave emission and reduce external light reflection
JPWO2003003074A1 (en) * 2001-06-29 2004-10-21 Jsr株式会社 Antireflection film laminate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4765729A (en) Anti-reflection optical article
US6958172B2 (en) Hybrid film, antireflection film comprising it, optical product, and method for restoring the defogging property of hybrid film
JP2611093B2 (en) Optical member having cured film
EP0203730B1 (en) Anti-reflection optical article and process for preparation thereof
EP1735645B1 (en) Anti-reflective coating composition and coating film with excellent stain resistance
JP3201654B2 (en) Coating composition
JP4081862B2 (en) Thin film and antireflection film using the same
US20070148352A1 (en) Antireflective film and production method thereof
JP2002071903A (en) Optical member with antireflection film
JP2009199022A (en) Optical member
JP2000117902A (en) Sheet or film
JP2000119634A (en) Antifouling composition and optical item having antifouling property
JP3353058B2 (en) Optical member having cured coating film
JP2629813B2 (en) Low reflection transparent molded body
JPH02280101A (en) Transparent molding having low reflectivity and electrical conductivity
JPH01261469A (en) Transparent conductive coating film
JP2003202407A (en) Optical member with antireflection film and manufacturing method therefor
JP2906472B2 (en) Transparent molded body
JPS63193971A (en) Transparent electrically conductive film
JP2004224965A (en) Coating composition
JPH0769481B2 (en) High refractive index hard coat film
JP2503039B2 (en) Transparent coating composite
JPH11140207A (en) Production of hard coat film
JP3240685B2 (en) Articles with anti-reflective properties
WO2022209092A1 (en) Eyeglass lens and eyeglasses