JPH0225982B2 - - Google Patents

Info

Publication number
JPH0225982B2
JPH0225982B2 JP3828786A JP3828786A JPH0225982B2 JP H0225982 B2 JPH0225982 B2 JP H0225982B2 JP 3828786 A JP3828786 A JP 3828786A JP 3828786 A JP3828786 A JP 3828786A JP H0225982 B2 JPH0225982 B2 JP H0225982B2
Authority
JP
Japan
Prior art keywords
diffusion
aluminum
oxidation resistance
hours
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3828786A
Other languages
Japanese (ja)
Other versions
JPS62199759A (en
Inventor
Hiroshi Takechi
Katsuhiko Yabe
Tadayoshi Wada
Yukinobu Higuchi
Kenichi Asakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3828786A priority Critical patent/JPS62199759A/en
Publication of JPS62199759A publication Critical patent/JPS62199759A/en
Publication of JPH0225982B2 publication Critical patent/JPH0225982B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、耐酸化性と高温強度にすぐれたアル
ミニウム拡散鋼板とその製造法に係り、特に自動
車の排気管や家庭用熱器具等の高温度での耐酸化
性および高温強度を要求される材料に用いられる
アルミニウム拡散鋼板と、その製造法に関するも
のである。 従来の技術 アルミニウムめつき鋼板は、普通鋼板や亜鉛め
つき鋼板に比べ、耐酸化性および耐食性にすぐれ
ているため、自動車部品および家庭用器具等の耐
酸化性および耐食性を必要とする部位の一部に用
いられている。 しかし、通常のアルミニウムめつき鋼板の耐酸
化温度は、600℃以下であつて、これより高い温
度を必要とする部位には使用できない。そこで、
600℃を超える環境に使用できるアルミニウムめ
つき鋼板として、今日では、例えば特公昭53−
15454号公報および特公昭52−33579号公報などに
開示のあるアルミニウムめつき鋼板の原板に、
TiあるいはCrを添加した耐熱性アルミニウムめ
つき鋼板が開発され市販されている。しかし、こ
の開発された耐熱性アルミニウムめつき鋼板でも
使用に耐える最高の耐酸化温度は700℃で、これ
を超える高温下では、めつき表面に点状の赤錆が
多発し、鋼板内部も表面から酸化腐食され使用に
耐えない。 したがつて、最近では、例えば、自動車排気管
材料として使用されているステンレス材
(SUS410系)にかわり、700〜800℃の高温での
耐酸化性や耐食性の他に、ステンレスと同等の高
温強度(600℃での、引張強さ:18Kg/mm2以上、
伸び:35%以上)を高めた、耐酸化性と高温強度
にすぐれたアルミめつき鋼板が従来の耐熱性アル
ミニウムめつき鋼板(600℃での、引張強さ10〜
11Kg/mm2)にかわつて要求され早期の開発が望ま
れている。 この耐酸化性を向上させる技術として、PCT、
WO85/00386号公報の開示がある。この技術は、
原板成分がC0.001〜0.25%、Mn0.2〜0.8%、
P0.015%以下、Ti0.01〜1.0%の溶融アルミニウ
ムめつき鋼板を非酸化性ガス中で温度816〜927
℃、時間5〜50時間熱処理して、めつき層のAl
を鋼板へ拡散させ耐酸化性を向上(704〜982℃)
させることが主であり、高温での強度向上等の技
術についての考慮は全くなく、記載もない。した
がつて、上記の原板成分では、高Cといえども、
Cだけでは高温度の使用環境における安全設計上
必要な高温強度は望めず、耐酸化性だけがすぐれ
ていても、自動車排気管等の高温にさらされる部
材には使用することはできない。 発明が解決しようとする問題点 本発明は以上の実情に鑑み、700〜800℃にも達
する高温度での耐酸化性および高温強度にすぐれ
たアルミニウム拡散鋼板を提供することを目的と
するものである。 問題点を解決するための手段 即ち、本発明者らは耐酸化性と高温強度を有
し、なお且つ、自動車排気管等の実桟作製での必
要特性である加工性および溶接性にもすぐれた材
料を開発すべく、アルミニウムめつき鋼板をベー
スとして研究を行つた結果、800℃の耐酸化性を
満足するには、特定成分範囲のアルミニウムめつ
き鋼板を窒素ガス中で熱処理(以下、加熱拡散処
理という)し、めつき層のAlと地鉄のFeの相互
拡散により鋼板表面にAlを富化した0.5〜10%Al
を含むα−FeのAl拡散層15μ以上とその上にAl、
Fe、Si合金層20μ以上を生成させればよいことが
わかつた。 また、高温強度(600℃での引張強さ:18Kg/
mm2以上、伸び:35%以上)および実桟作製で必要
な特性の加工性ならびに溶接性を満足するには、
高温での結晶粒の粗大化抑制元素となるMn、
P、TiとSiおよびBの1種または2種を鋼に添
加し、なお且つ、耐酸化性、加工性および溶接性
を向上させるために、その添加成分範囲を限定す
る必要があることがわかつた。 さらに、上記の特性を満足する、すぐれた材料
を製造するための条件は、前述のように特定成分
範囲のアルミニウムめつき鋼板を第1図に示す加
熱拡散製造のA(5時間、800℃)、B(100時間、
800℃)、C(100時間、700℃)およびD(10時間、
700℃)で囲まれる図形内の時間と温度の範囲内
にあつて、鋼板表面の酸化を防止し、しかも拡散
層の厚さを増加させる窒素雰囲気中で行えばよい
こともわかつた。 本発明は、以上の知見に基いてなされたもので
あつて、その要旨は、重量%で、Mn0.6〜1.5%、
P0.03〜0.1%、Al0.01〜0.08%、Ti0.08〜0.25%
を含みさらに、Si0.3%以下、B0.003%以下の1
種または2種を含有し、C0.01%以下、N0.004%
以下に制限し、残部が実質的にFeからなる鋼板
表面にAl0.5〜10%を含有するα−FeのAl拡散層
15〜50μを有し、さらにその上にAl、Fe、Si合金
拡散層20〜50μを有することを特徴とする耐酸化
性と高温強度にすぐれたアルミニウム拡散鋼板、
および重量%でMn0.6〜1.5%、P0.03〜0.1%、
Al0.01〜0.08%、Ti0.08〜0.25%を含み、さらに
Si0.3%以下、B0.003%以下の1種または2種を
含有し、C0.01%以下、N0.004%以下に制限し、
残部が実質的にFeからなる鋼板にSi3〜15%を含
むアルミニウムをめつきした鋼板を窒素雰囲気中
で第1図の点A,B,CおよびDで囲まれる範囲
内の温度と時間で熱処理することを特徴とする耐
酸化性と高温強度にすぐれたアルミニウム拡散鋼
板の製造法にある。 但し、A(5時間、800℃)、 B(100時間、800℃)、 C(100時間、700℃)、 D(10時間、700℃)である。 以下に、本発明を詳細に説明する。 作 用 最初に対象となるアルミニウム拡散鋼板の鋼成
分の限定理由について述べる。 先ずMnは常温および高温度における強度を高
める元素であつて、600℃での引張強さを18Kg/
mm2以上確保するには鋼中に0.6%以上添加する必
要がある。しかし、Mnがあまり多くなると、材
料の成形性が悪くなるため、上限を1.5%とした。 Pについては、Mnと同じように室温および高
温度での強度を向上させる元素であつて、その添
加量が多い程、強度は向上する。しかし、その添
加量が0.1%を超えると例えば、スポツト溶接ナ
ゲツト部に割れが生じたり、アーク溶接では、溶
接部の延性が大幅に低下するなど溶接性が悪化す
るため、P添加量の上限を0.1%とした。 また、このP、MnおよびTiが複合添加された
鋼板は、理由は定かではないが、アルミニウムめ
つき浴での反応性が付与され、めつき層のピンホ
ール等の不めつき部分が減少する。したがつて、
このめつき鋼板から作製したアルミニウム拡散鋼
板はAl拡散層を均一でしかも厚く生成させるこ
とができる。ゆえに、これらの特性を満足するP
の下限量は0.03%が必要である。 Alは、Ti添加歩留向上のために溶解予備脱酸
剤として使用される。めつき原板に残存するAl
量が0.01%未満の場合、Tiの添加歩留は悪く、し
かも鋼中のTi濃度も不安定になる。これに対し、
Al量が0.01%以上になるとTi添加歩留は良好で
安定するが、0.08%を超えて多くなるとめつき過
程において鋼板表面に酸化アルミニウムが生成
し、アルミニウムめつき浴のぬれ性を劣化させ、
拡散素材のめつき層に不めつき部分の出現の原因
になる。したがつて、鋼板に残存するAl量を0.01
〜0.08%の範囲にした。 Tiは、鋼中に含まれるC、Nを固定して鋼板
の加工性を改善する。また、Ti添加量が0.08%以
上添加されると高温での加熱拡散処理で原板の結
晶粒の粗大化を抑制する。したがつて、高温下で
の高温強度ならびに、高温環境から常温に冷却し
た材料のすぐれた加工性、高強度、溶接性等を満
足するには、Tiと前述のMn、Pの複合添加が有
効である。しかし、このTi添加が0.25%を超えて
多くなると、拡散素材であるアルミニウムめつき
鋼板のめつきぬれ性が急激に悪くなるため、Ti
添加量の適正範囲を0.08〜0.25%とした。 次に、SiおよびBの1種または2種を含有さ
せ、アルミニウム拡散鋼板の常温および高温での
強度を上昇せしめる。しかし、Siは添加量が多く
なる程、材料強度は上昇するものの、その添加量
が0.3%を超えると拡散素材であるアルミニウム
めつき鋼板の製造過程で、鋼板表面に生成したSi
酸化物によつてめつきのぬれ性が劣化し、不めつ
きが発生して良好な拡散素材を得ることができな
い。したがつてSi添加量を0.3%以下にする必要
がある。 Bは、結晶粒界にB化合物として析出し、高温
時の結晶粒の粗大化の抑制、それにともなう強度
向上効果がある。しかし、添加量が多くなると、
例えば、自動車排気管等の施工にともなう溶接熱
などにより焼入れが行われ、過度に硬化して溶接
部の延性を損う。したがつて、その添加量を
0.003%以下とした。 一方、鋼中のCは、高温強度を高めるに有効な
成分であるが、鋼板へのアルミニウムめつきのぬ
れ性を劣化して不めつき部を発生させ、耐酸化性
を悪化させる。また、高温における鋼板の結晶粒
粗大化防止の元素の一つであるTiの添加量が高
Cの場合、多くなり加工性も劣化させる。また、
加熱拡散処理において、拡散層の生成厚さは、低
Cの方が大きいため、耐酸化性向上には極低Cの
方が望ましい。したがつて、本発明においては、
Cは有害成分であり0.01%以下に規制した。 また、Nは、Tiを必要以上に添加せしめたり、
鋼板のめつきぬれ性を低下させる。また、Cと同
じ侵入型元素であるためAl拡散層の生成を阻害
する有害元素である。よつて、その添加量を
0.004%以下に制限するが少ない程好ましい。 次に、前述の通り、本発明鋼板は、拡散処理に
おいてAl拡散層及びAl、Fe、Si合金層を生ずる
ものであるが、さらに詳しくは、めつき層のAl
が地鉄中に拡散してAlを最大10%迄固溶し、ビ
ツカース硬度で120〜290と軟質なα−FeのAl拡
散層と、最表面層としてAl量が10%を超えて含
有し、ビツカース硬度で600〜1200と硬質なAl、
Fe、Si合金層(X線回析でFe3Al、FeAl同定)
とを生成するものである。 これらの層は実桟作製において、α−FeのAl
拡散層は厳しい加工に耐えるが、Al量が10%を
超えるAl、Fe、Si合金層は軽い加工で容易に割
れを生じる。この割れは耐酸化性に悪影響を与え
る。したがつて、Al拡散層のAl量は10%以下を
含有する軟質なα−Feにする必要がある。 また、このAl拡散層の耐酸化性につき、大気
中800℃×50時間加熱後1時間の冷却を5回ずつ
くり返して層の厚さとAl量の関係を試験したと
ころ、Al拡散層のAl量が0.5%以上でしかも層厚
が15μ以上であれば、上記の耐酸化性に耐える。
これは、Al拡散層のAlが大気中のO2と反応して
鋼板表面にAl2O3の酸化防止被膜を生成させるか
らである。したがつて、上記の結果からAl拡散
層のAl濃度範囲を0.5〜10%、層厚の下限を15μと
した。また、上限の層厚については、層厚が厚い
程、耐酸化性には良い傾向を示すものの、50μを
超えるAl拡散層の生成は操業効率を低下させる
ため、上限層厚を50μとした。 次に、この鋼板の最表面には、Al、Fe、Siを
含む合金拡散層20〜50μをもうけるものである
が、この合金層中のAlが加熱拡散処理において、
鋼中にAlを拡散させ、Al拡散層の厚さを増して
耐酸化性向上に寄与する。 この合金層の厚さを20〜50μとしたのは、20μ
未満ではアルミニウム拡散鋼板の表面光沢の均一
性が失われ、外観が悪く、しかも、その手ざわり
も悪い。また、50μを超えるものは、表面光沢性
にすぐれているものの、この合金層が硬いため軽
い加工で鋼板表面に容易に割れが発生し、層が厚
いことも重つて合金層の剥離が生じるからであ
る。 次に本発明におけるアルミニウム拡散鋼板の製
造法についてのべる。先ず最初にアルミニウム拡
散鋼板の素材のめつき成分であるAl中のSi量を
3〜15%と限定した理由は次のとおりである。 即ち、素材であるアルミニウムめつき鋼板に不
めつき部分が存在した場合、拡散加熱処理におい
てその部分がAl拡散されず耐酸化性の欠陥とし
て存在する。したがつて、この不めつき部分の発
生を防止する必要がある。 そこで、この不めつき発生の防止につき、Al
めつき浴にSiを添加して融点を下げ、鋼板とのぬ
れ性をよくする適正添加Si量の範囲を調べた結
果、Si量が3%未満では、Alめつき浴と鋼板の
ぬれ性が急激に低下して鋼板表面に多くの不めつ
き部が発生するが、一方Si量が15%を超えて添加
されると、アルミニウムめつき鋼板のAlめつき
層と地鉄との界面近傍に多くの割れが発生し、そ
の部分が不めつき部分と同じような挙動を示して
耐酸化性に悪影響を与えることがわかつた。この
ような理由により、Alめつき浴中のSi量を3〜
15%と定めた。 次に、本発明の製造法において、骨子となる加
熱拡散処理条件の雰囲気および温度、時間の範囲
の決定理由を述べる。 まず、加熱拡散雰囲気として、空気、H2、5
〜75%H2−N2、Arおよび窒素を選び、これらの
雰囲気中で700〜800℃×50時間で拡散処理し、拡
散材表面の外観およびEPMAによる断面研摩材
の線分析を用いて拡散層の厚さを測定した。 この結果、空気中で処理した拡散鋼板の表面に
は、温度700℃以上で点状の赤錆酸化物が多く発
生し耐酸化性が悪い。したがつて、この酸化を防
止するためには、拡散雰囲気は非酸化性のガスが
よいと考えられる。しかし、非酸化性であるH2
および5〜75%H2−N2(混合)雰囲気では、理
由は不明であるが加熱拡散処理材の最表面のAl、
Fe、Si合金層が剥離し、しかもEPMAの結果か
らAl拡散層の生成が極めて少なく、耐酸化性を
向上させるに必要な15μ以上の厚さを満足するに
は、より長時間処理が必要となるためこの雰囲気
は不向きである。 これに対し、窒素およびAr雰囲気中の加熱拡
散処理では、温度が800℃の高温であつても、と
もに、鋼板表面に赤錆および合金層の剥離はな
く、すぐれた表面外観を示す。 しかし、この拡散層について、最表面合金層の
熱歪による微小割れおよびAl拡散層の生成厚さ
について、今のところ理由は不明であるが、窒素
雰囲気中の方がAr中より微小割れは極めて少な
く、しかもAl拡散層の生成が容易であることを
見出した。したがつて、加熱拡散処置を行う雰囲
気は窒素ガスが最適である。よつて本発明におい
ては、熱処理雰囲気ガスとして、窒素を選択し
た。 次に、窒素雰囲気中の加熱拡散処理の条件とし
て、種々の温度と時間について、本発明鋼成分の
アルミニウムめつき鋼板を用いて検討を行つた。
その結果、これらの温度と時間についての適正範
囲は、第1図のA(5時間、800℃)、B(100時間、
800℃)、C(100時間、700℃)およびD(10時間、
700℃)で囲まれる斜線範囲が、鋼板の結晶粒の
粗大化および鋼板表面合金層の微小割れはなく、
Al拡散層を容易に生成し、すぐれた耐酸化性、
高温強度、加工性および溶接性を示す範囲である
ことを見出した。 この図において、CD線は加熱温度700℃の線を
示すものであつて、これ未満の温度では800℃の
耐酸化性を満足するに必要な15μ以上のAl拡散層
を生成させることができない温度域である。 BC線は、加熱温度が700℃以上から800℃以下
で100時間の加熱を示す線である。加熱時間がこ
れより長い場合、Al拡散層は生成して、より厚
くなり、耐酸化性にはよい傾向を示すものの、
100時間を超える加熱時間は、操業効率を低下さ
せるため上限の加熱時間を100時間とした。 AB線は加熱温度800℃の線を示すもので、こ
の線を超える範囲では、Al拡散層の生成は容易
であるものの、高温強度および加工性に大きな悪
影響を与える結晶粒の粗大化が起るため、上限温
度を800℃とした。 またAD線は、座標A(5時間、800℃)と座標
D(10時間、700℃)を結ぶ直線で、この直線より
左方範囲では、800℃の耐酸化性を満足するに必
要な15μ以上のAl拡散層を生成させることができ
ない領域である。 なお、本発明のアルミニウム拡散鋼板の素材で
あるアルミニウムめつき鋼板は、一般的な造塊あ
るいは連続鋳造を経て、熱延、酸洗、冷延、最結
晶焼鈍、ゼンジミア方式の溶融アルミめつきライ
ンにより容易に製造することができる。 以下に実施例により、本発明の効果をさらに具
体的に示す。 実施例 第1表に示す成分の鋼を真空溶解炉(300Kg)
で300Kgの鋼塊を溶製し、これを鍜造して厚さ40
mmとし、次いで、これを熱延して8mmtの熱延板
として、更に冷延により1.6mmtの薄鋼板のコイ
ルを作製した。 このコイルをゼンジミア方式の溶融アルミニウ
ムめつきライン(めつき浴:10%Si−90%Al)
を通して、溶融アルミニウム表面処理鋼板を作製
し、これをタイトコイルに巻込みバツチ式炉に装
入し、窒素雰囲気中で第1表に示す種々の加熱拡
散処理を行い、得られたこれらのアルミニウム拡
散材について評価試験を行つた。 なお、表中のAl拡散層および合金層の厚さは
EPMAによる線分析の結果を用い、結晶粒度番
号の決定はJIS G0552に従つた。 また、実桟作製で重要な因子である成形性と溶
接性、高温下での使用環境の評価試験方法につい
ては、プレス成形性は、80mmΦの直径で深さ40mm
の評価、溶接性は、I開発突合せTIG溶接(電流
95A、電圧11V、速度300mm/分、アーク長1.5mm)
を行い、この溶接部を三次元的な延性評価である
エリクセン試験で評価、高温強度は引張試験温度
600℃で1.6mmt平板試験片(JIS G0567)の引張
強さと伸びを評価し、耐酸化性は、自動車排気管
への適用を考慮して、アルミニウム拡散材(寸
法:1.6t×50w×150Lmm)を42.7mmΦ(直径)とな
る180゜曲げ試験片を作製し、大気中で800℃×50
時間の加熱と1時間の冷却を5回ずつくり返して
行い評価した。 以上の評価試験において、800℃の耐酸化性と
600℃での引張強度が18Kg/mm2以上で伸び35%以
上の高温強度を有し、しかも自動車排気管等の実
桟の作製の際すぐれた成形性および溶接性を合わ
せて示す材料が、本発明の所期の目的にかなうも
のとして評価された。これらの結果を第1表に併
記する。 同表から明らかなように、No.1およびNo.2材の
一般的なアルミキルドおよびキヤツプド鋼アルミ
ニウムめつき鋼板を700℃×50時間の加熱拡散処
理した場合、両鋼とも原板の結晶粒が粗大化し、
しかも高Cのため酸化を防止するAl拡散層の生
成が少なく、プレス成形性、高温強度ならびに耐
酸化性が悪く、アルミニウム拡散鋼板用素材に用
いることはできない。 したがつて、原板成分の限定とその範囲につい
て、適正な加熱拡散条件である750℃×50時間で
見ると、本発明範囲外のNo.4の高C材では、高温
強度は向上するもののAl拡散層の生成が少なく、
耐酸化性が悪い。Mn量の少ないNo.5およびP量
の少ないNo.7材は高温強度がともに低く、Mn量
が多いNo.6材ではプレス成形性が、P量が多いNo.
8材でもプレス成形性および溶接性が悪い。 また、Ti量の少ないNo.9材では、評価特性の
全てが悪く、添加量が多いNo.10あるいはSi量が多
いNo.11の原板は、アルミニウムのめつき過程で鋼
板に不めつき部が発生し、加熱拡散処理において
この部分が欠陥として存在し、耐酸化性試験にお
いて赤錆が発生して耐酸化性は劣化する。 Bについては添加量が多いNo.12材の溶接部の延
性がエリクセン値で5.1mmと悪く、施工にともな
う拡管、曲げ等の加工に耐えない。したがつて、
溶接部を含む加工ではエリクセン値で9mm以上を
確保する必要がある。 また、N量が多いNo.15材は加熱拡散処理でAl
拡散層の厚さが15μ以上生成しないため、耐酸化
性が悪い。 これに対し、No.3、No.13およびNo.14材は本発明
成分範囲内のアルミニウム拡散材料で評価試験の
全ての特性、すなわち、プレス成形性、溶接性、
高温強度および耐酸化性にすぐれている。 次に、本発明成分範囲のアルミニウムめつき鋼
板の適正加熱拡散処理条件範囲について見ると、
No.16〜18材の拡散温度が850℃と高い場合、原板
結晶粒が粗大化して、プレス成形性、溶接性およ
び高温強度が悪い。次に、拡散温度を800〜700℃
に下げ時間を3〜100時間処理したNo.19〜No.30材
では、No.19の800℃×3時間、No.23の750℃×6時
間およびNo.27の700℃×8時間は、処理温度に対
する処理時間が短かく、酸化を防止するAl拡散
層が15μ未満と薄いため耐酸化性が悪い。これに
比べ、No.20〜22、No.24〜26およびNo.28〜30の加熱
拡散処理材はAl拡散層が15μ以上生成し、耐酸化
性を含めた全ての特性評価にすぐれている。 また、No.31およびNo.32材は拡散温度が650℃と
低いため50〜100時間の処理でもAl拡散層の生成
が15μ未満と少なく耐酸化性が悪い。 なお、No.33材は、加熱拡散処理を行わない本発
明成分のアルミニウムめつき鋼板である。したが
つてこの鋼板にはAl拡散層の生成がないため、
耐酸化性は悪い。
INDUSTRIAL APPLICATION FIELD The present invention relates to an aluminum diffusion steel sheet with excellent oxidation resistance and high-temperature strength, and a method for manufacturing the same. This article relates to an aluminum diffusion steel sheet used as a material that requires the following: and its manufacturing method. Conventional technology Aluminum-plated steel sheets have superior oxidation and corrosion resistance compared to ordinary steel sheets and galvanized steel sheets, so they are used as one of the parts that require oxidation and corrosion resistance, such as automobile parts and household appliances. It is used in the department. However, the oxidation resistance temperature of ordinary aluminum-plated steel sheets is 600°C or lower, and they cannot be used in areas that require higher temperatures. Therefore,
Today, for example, special public interest steel plates manufactured in 1973 are used as aluminum-plated steel sheets that can be used in environments exceeding 600℃.
For original plates of aluminum plated steel sheets disclosed in Publication No. 15454 and Japanese Patent Publication No. 52-33579,
Heat-resistant aluminum-plated steel sheets containing Ti or Cr have been developed and are commercially available. However, even with this developed heat-resistant aluminum-plated steel sheet, the maximum oxidation resistance temperature that can withstand use is 700℃, and at temperatures exceeding this, red rust spots often appear on the plated surface, and the inside of the steel sheet is also exposed to the surface. It is corroded by oxidation and cannot be used. Therefore, in recent years, for example, stainless steel materials (SUS410 series) have been used as automobile exhaust pipe materials, and in addition to oxidation and corrosion resistance at high temperatures of 700 to 800°C, high-temperature strength equivalent to that of stainless steel has been introduced. (Tensile strength at 600℃: 18Kg/mm2 or more,
Aluminum-plated steel sheets with improved oxidation resistance and high-temperature strength (elongation: 35% or more) are superior to conventional heat-resistant aluminum-plated steel sheets (tensile strength of 10 to 600℃).
11Kg/mm 2 ), and early development is desired. As a technology to improve this oxidation resistance, PCT,
There is a disclosure in WO85/00386. This technology is
Original plate components are C0.001~0.25%, Mn0.2~0.8%,
Molten aluminum plated steel sheet with P0.015% or less and Ti0.01~1.0% in non-oxidizing gas at a temperature of 816~927
℃, heat treatment for 5 to 50 hours to remove Al of the plating layer.
Diffused into steel plate to improve oxidation resistance (704-982℃)
There is no consideration or description of techniques such as improving strength at high temperatures. Therefore, even with the above original plate composition, even though it is high C,
C alone cannot provide the high-temperature strength necessary for safe design in high-temperature usage environments, and even if it has excellent oxidation resistance, it cannot be used for members exposed to high temperatures such as automobile exhaust pipes. Problems to be Solved by the Invention In view of the above-mentioned circumstances, the present invention aims to provide an aluminum diffusion steel sheet that has excellent oxidation resistance and high-temperature strength at temperatures as high as 700 to 800°C. be. Means for Solving the Problems That is, the present inventors have developed a product that has oxidation resistance and high-temperature strength, and also has excellent workability and weldability, which are necessary characteristics for manufacturing actual crosspieces such as automobile exhaust pipes. In order to develop a material with aluminum-plated steel sheets as a base, we conducted research using aluminum-plated steel sheets as a base, and found that in order to satisfy oxidation resistance at 800℃, aluminum-plated steel sheets with a specific composition range must be heat-treated (hereinafter referred to as heating) in nitrogen gas. 0.5 to 10% Al enriched with Al on the surface of the steel sheet through mutual diffusion of Al in the plating layer and Fe in the base metal.
Al diffusion layer of α-Fe containing 15μ or more and Al on top of it,
It was found that it is sufficient to form a Fe, Si alloy layer of 20μ or more. In addition, high temperature strength (tensile strength at 600℃: 18Kg/
mm 2 or more, elongation: 35% or more), and to satisfy the processability and weldability characteristics required for actual crosspiece production.
Mn is an element that suppresses coarsening of crystal grains at high temperatures.
It has been found that in order to add one or both of P, Ti, Si, and B to steel and to improve oxidation resistance, workability, and weldability, it is necessary to limit the range of the added components. Ta. Furthermore, the conditions for manufacturing an excellent material that satisfies the above characteristics are as follows: As mentioned above, aluminum-plated steel sheets with a specific composition range are manufactured by heating diffusion A (5 hours, 800°C) as shown in Figure 1. , B (100 hours,
800℃), C (100 hours, 700℃) and D (10 hours,
It was also found that the process can be carried out within the time and temperature range within the figure (700°C) in a nitrogen atmosphere that prevents oxidation of the steel sheet surface and increases the thickness of the diffusion layer. The present invention was made based on the above findings, and the gist thereof is that Mn is 0.6 to 1.5% by weight,
P0.03~0.1%, Al0.01~0.08%, Ti0.08~0.25%
Including Si0.3% or less, B0.003% or less1
Contains one or two species, C0.01% or less, N0.004%
An α-Fe Al diffusion layer containing 0.5 to 10% Al on the surface of a steel sheet, with the remainder being substantially Fe.
An aluminum diffusion steel sheet with excellent oxidation resistance and high temperature strength, characterized by having a thickness of 15 to 50μ and an Al, Fe, and Si alloy diffusion layer of 20 to 50μ on top of the diffusion layer.
and Mn0.6~1.5%, P0.03~0.1%, by weight%
Contains Al0.01~0.08%, Ti0.08~0.25%, and
Contains one or two of Si 0.3% or less, B 0.003% or less, limited to C 0.01% or less, N 0.004% or less,
A steel plate, the remainder of which is essentially Fe, plated with aluminum containing 3 to 15% Si is heat treated in a nitrogen atmosphere at a temperature and time within the range surrounded by points A, B, C, and D in Figure 1. The present invention provides a method for manufacturing an aluminum diffusion steel sheet that has excellent oxidation resistance and high-temperature strength. However, A (5 hours, 800°C), B (100 hours, 800°C), C (100 hours, 700°C), and D (10 hours, 700°C). The present invention will be explained in detail below. Function First, we will discuss the reason for limiting the steel composition of the target aluminum diffusion steel sheet. First of all, Mn is an element that increases strength at room temperature and high temperature.
To ensure a value of mm 2 or more, it is necessary to add 0.6% or more to the steel. However, if Mn increases too much, the moldability of the material deteriorates, so the upper limit was set at 1.5%. Like Mn, P is an element that improves the strength at room temperature and high temperature, and the greater the amount added, the higher the strength. However, if the amount added exceeds 0.1%, for example, cracks may occur in spot weld nuggets, and in arc welding, weldability will deteriorate, such as a significant decrease in the ductility of the weld, so the upper limit of the amount of P added may be It was set at 0.1%. Additionally, although the reason for this composite addition of P, Mn, and Ti is not clear, steel sheets are given reactivity in aluminum plating baths, and defects such as pinholes in the plating layer are reduced. . Therefore,
An aluminum diffusion steel sheet made from this plated steel sheet can have a uniform and thick Al diffusion layer. Therefore, P that satisfies these properties
The lower limit of 0.03% is required. Al is used as a pre-dissolution deoxidizer to improve Ti addition yield. Al remaining on the plated original plate
If the amount is less than 0.01%, the addition yield of Ti will be poor and the Ti concentration in the steel will also become unstable. On the other hand,
When the Al amount is 0.01% or more, the Ti addition yield is good and stable, but when it exceeds 0.08%, aluminum oxide is generated on the steel plate surface during the plating process, which deteriorates the wettability of the aluminum plating bath.
This may cause unsatisfactory areas to appear in the plating layer of the diffusion material. Therefore, the amount of Al remaining in the steel plate is set to 0.01
~0.08% range. Ti fixes C and N contained in steel and improves the workability of steel sheets. Furthermore, when the amount of Ti added is 0.08% or more, coarsening of crystal grains in the original plate is suppressed by heat diffusion treatment at high temperature. Therefore, in order to satisfy high-temperature strength at high temperatures as well as excellent workability, high strength, and weldability of materials cooled from high-temperature environments to room temperature, composite addition of Ti and the aforementioned Mn and P is effective. It is. However, when this Ti addition exceeds 0.25%, the plating wettability of the aluminum-plated steel sheet, which is the diffusion material, deteriorates rapidly.
The appropriate range of addition amount was set at 0.08 to 0.25%. Next, one or both of Si and B are included to increase the strength of the aluminum diffusion steel sheet at room temperature and high temperature. However, although the material strength increases as the amount of Si added increases, if the amount added exceeds 0.3%, Si will be generated on the surface of the steel sheet during the manufacturing process of aluminum-plated steel sheet, which is a diffusion material.
The wettability of the plating deteriorates due to the oxide, and plating defects occur, making it impossible to obtain a good diffusion material. Therefore, it is necessary to reduce the amount of Si added to 0.3% or less. B precipitates as a B compound at grain boundaries, and has the effect of suppressing coarsening of crystal grains at high temperatures and improving strength accordingly. However, when the amount added is large,
For example, quenching occurs due to the welding heat associated with the construction of automobile exhaust pipes, etc., which causes excessive hardening and impairs the ductility of the welded part. Therefore, the amount added
It was set to 0.003% or less. On the other hand, C in steel is an effective component for increasing high-temperature strength, but it deteriorates the wettability of aluminum plating on steel sheets, causing unplated areas and deteriorating oxidation resistance. Furthermore, when the amount of Ti added is high, which is one of the elements for preventing grain coarsening in steel sheets at high temperatures, the amount increases and the workability also deteriorates. Also,
In the heat diffusion treatment, the thickness of the diffusion layer generated is larger when the carbon is low, so extremely low carbon is preferable for improving oxidation resistance. Therefore, in the present invention,
C is a harmful component and is regulated to 0.01% or less. In addition, N may cause Ti to be added more than necessary,
Decreases the plating wettability of steel sheets. Furthermore, since it is an interstitial element like C, it is a harmful element that inhibits the formation of an Al diffusion layer. Therefore, the amount added
It is limited to 0.004% or less, but the lower the content, the better. Next, as mentioned above, the steel sheet of the present invention produces an Al diffusion layer and an Al, Fe, Si alloy layer in the diffusion treatment.
diffuses into the base steel and forms a solid solution of up to 10% of Al, forming a soft α-Fe Al diffusion layer with a Vickers hardness of 120 to 290, and an outermost layer containing more than 10% Al. , hard Al with a Bitkers hardness of 600 to 1200,
Fe, Si alloy layer (Fe 3 Al, FeAl identified by X-ray diffraction)
It generates. These layers are made of α-Fe Al
Although the diffusion layer can withstand severe processing, Al, Fe, and Si alloy layers containing more than 10% Al easily crack under light processing. This cracking adversely affects oxidation resistance. Therefore, the amount of Al in the Al diffusion layer needs to be soft α-Fe containing 10% or less. In addition, regarding the oxidation resistance of this Al diffusion layer, we tested the relationship between the thickness of the layer and the amount of Al by heating it in the atmosphere at 800°C for 50 hours and then cooling it for 1 hour five times. is 0.5% or more and the layer thickness is 15μ or more, the above oxidation resistance can be met.
This is because Al in the Al diffusion layer reacts with O 2 in the atmosphere to form an anti-oxidation film of Al 2 O 3 on the surface of the steel sheet. Therefore, based on the above results, the Al concentration range of the Al diffusion layer was set to 0.5 to 10%, and the lower limit of the layer thickness was set to 15μ. Regarding the upper limit layer thickness, although the thicker the layer, the better the oxidation resistance tends to be. However, the formation of an Al diffusion layer exceeding 50 μm reduces operational efficiency, so the upper limit layer thickness was set at 50 μm. Next, on the outermost surface of this steel plate, an alloy diffusion layer containing Al, Fe, and Si of 20 to 50 μm is formed.
Diffuses Al into steel and increases the thickness of the Al diffusion layer, contributing to improved oxidation resistance. The thickness of this alloy layer was set to 20 to 50μ.
If it is less than that, the uniformity of the surface gloss of the aluminum diffusion steel sheet is lost, the appearance is poor, and the feel is also poor. In addition, although those with a thickness exceeding 50μ have excellent surface gloss, this alloy layer is hard and cracks easily occur on the steel plate surface with light processing, and the thick layer also causes the alloy layer to peel off. It is. Next, a method for manufacturing an aluminum diffusion steel sheet according to the present invention will be described. First of all, the reason why the amount of Si in Al, which is a plating component of the aluminum diffusion steel sheet material, was limited to 3 to 15% is as follows. That is, if an unsatisfied portion exists in the aluminum-plated steel sheet that is the raw material, Al is not diffused in that portion during the diffusion heat treatment and it exists as an oxidation-resistant defect. Therefore, it is necessary to prevent the occurrence of this unsightly part. Therefore, in order to prevent the occurrence of defects, Al
Adding Si to the plating bath lowers the melting point and improves the wettability with the steel plate.As a result of investigating the range of the appropriate amount of Si to add, it was found that if the Si content is less than 3%, the wettability between the Al plating bath and the steel plate is poor. The Si content decreases rapidly and many imperfections occur on the surface of the steel sheet, but on the other hand, when the amount of Si added exceeds 15%, the amount of Si increases near the interface between the Al-plated layer and the base steel of the aluminum-plated steel sheet. It was found that many cracks occurred and the cracked areas behaved in the same way as unsealed areas, adversely affecting oxidation resistance. For these reasons, the amount of Si in the Al plating bath should be
It was set at 15%. Next, the reasons for determining the atmosphere, temperature, and time range of the main heating diffusion treatment conditions in the manufacturing method of the present invention will be described. First, air, H 2 , 5
~75% H2 - N2 , Ar, and nitrogen were selected and diffused at 700-800℃ for 50 hours in these atmospheres, and the appearance of the surface of the diffusing material and line analysis of the cross-sectional abrasive material by EPMA were used to evaluate the diffusion process. The layer thickness was measured. As a result, many point-like red rust oxides are generated on the surface of the diffusion steel sheet treated in air at temperatures of 700°C or higher, resulting in poor oxidation resistance. Therefore, in order to prevent this oxidation, it is considered that the diffusion atmosphere should be a non-oxidizing gas. However, H2, which is non-oxidizing
For unknown reasons, in a 5-75% H 2 -N 2 (mixed) atmosphere, Al on the outermost surface of the heat-diffused material
The Fe and Si alloy layers are peeled off, and the EPMA results show that the formation of an Al diffusion layer is extremely small, and a longer treatment time is required to achieve the thickness of 15μ or more required to improve oxidation resistance. This atmosphere is therefore unsuitable. On the other hand, in the heat diffusion treatment in nitrogen and Ar atmospheres, even at a high temperature of 800°C, there is no red rust or peeling of the alloy layer on the surface of the steel sheet, and the surface appearance is excellent. However, regarding this diffusion layer, the reason for the formation of microcracks due to thermal strain in the outermost alloy layer and the thickness of the Al diffusion layer is currently unknown, but microcracks are much more likely to occur in a nitrogen atmosphere than in an Ar atmosphere. It has been found that the Al diffusion layer is easy to generate. Therefore, the optimal atmosphere for the heating and diffusion treatment is nitrogen gas. Therefore, in the present invention, nitrogen was selected as the heat treatment atmosphere gas. Next, various temperatures and times were investigated as conditions for heat diffusion treatment in a nitrogen atmosphere using an aluminum-plated steel sheet of the steel composition of the present invention.
As a result, the appropriate ranges for these temperatures and times are A (5 hours, 800°C) and B (100 hours,
800℃), C (100 hours, 700℃) and D (10 hours,
700℃), there is no coarsening of the steel plate's crystal grains and no microcracks in the steel plate's surface alloy layer.
Easily generates Al diffusion layer, has excellent oxidation resistance,
It has been found that this range is indicative of high-temperature strength, workability, and weldability. In this figure, the CD line indicates the line at the heating temperature of 700°C, and at temperatures below this it is not possible to generate an Al diffusion layer of 15μ or more, which is necessary to satisfy the oxidation resistance of 800°C. area. The BC line is a line indicating heating for 100 hours at a heating temperature of 700°C or higher and 800°C or lower. If the heating time is longer than this, an Al diffusion layer will form and become thicker, showing a good tendency for oxidation resistance.
A heating time exceeding 100 hours lowers operational efficiency, so the upper limit heating time was set at 100 hours. The AB line indicates the line at a heating temperature of 800°C; above this line, Al diffusion layers are easily formed, but grains become coarser, which has a significant negative impact on high-temperature strength and workability. Therefore, the upper limit temperature was set at 800℃. The AD line is a straight line connecting coordinate A (5 hours, 800°C) and coordinate D (10 hours, 700°C), and in the range to the left of this straight line, the 15μ This is a region where the above Al diffusion layer cannot be generated. The aluminum-plated steel sheet, which is the material of the aluminum diffusion steel sheet of the present invention, is processed through general ingot-forming or continuous casting, followed by hot rolling, pickling, cold rolling, crystallization annealing, and Sendzimir method molten aluminum plating line. It can be easily manufactured by EXAMPLES The effects of the present invention will be illustrated in more detail with reference to Examples below. Example: Steel with the components shown in Table 1 was melted in a vacuum melting furnace (300Kg).
A 300Kg steel ingot was melted and forged to a thickness of 40Kg.
This was then hot-rolled into a hot-rolled sheet of 8 mmt, and further cold-rolled to produce a coil of a thin steel sheet of 1.6 mmt. This coil is attached to a Sendzimir method molten aluminum plating line (plating bath: 10%Si-90%Al).
A molten aluminum surface-treated steel sheet was prepared through the process, which was wound into a tight coil and placed in a batch furnace, and various heat diffusion treatments shown in Table 1 were performed in a nitrogen atmosphere. Evaluation tests were conducted on the material. In addition, the thickness of the Al diffusion layer and alloy layer in the table is
Using the results of line analysis by EPMA, the grain size number was determined in accordance with JIS G0552. In addition, regarding the evaluation test method of formability and weldability, which are important factors in making actual bars, and the usage environment under high temperature, press formability is 80mmΦ diameter and 40mm depth.
The evaluation and weldability of I-developed butt TIG welding (current
95A, voltage 11V, speed 300mm/min, arc length 1.5mm)
This welded part was evaluated using the Erichsen test, which is a three-dimensional ductility evaluation, and the high temperature strength was determined at the tensile test temperature.
The tensile strength and elongation of a 1.6 mmt flat plate specimen (JIS G0567) were evaluated at 600℃, and the oxidation resistance was determined using an aluminum diffusion material (dimensions: 1.6t x 50w x 150Lmm) in consideration of application to automobile exhaust pipes. A 180° bending test piece with a diameter of 42.7 mm was prepared and heated at 800°C x 50 in the atmosphere.
Heating for 1 hour and cooling for 1 hour were repeated 5 times for evaluation. In the above evaluation tests, 800℃ oxidation resistance and
A material that has a tensile strength of 18 Kg/mm 2 or higher at 600°C and a high-temperature strength with an elongation of 35% or higher, and also exhibits excellent formability and weldability when making actual crosspieces such as automobile exhaust pipes. This was evaluated as meeting the intended purpose of the present invention. These results are also listed in Table 1. As is clear from the table, when No. 1 and No. 2 general aluminum-killed and capped steel aluminum-plated steel sheets were heat-diffused at 700°C for 50 hours, the crystal grains of the original sheets became coarse for both steels. turned into
Moreover, due to the high carbon content, the formation of an Al diffusion layer that prevents oxidation is small, and the press formability, high temperature strength, and oxidation resistance are poor, and it cannot be used as a material for aluminum diffusion steel sheets. Therefore, regarding the limitation and range of the base plate components, when looking at the appropriate heating and diffusion conditions of 750°C x 50 hours, the No. 4 high C material, which is outside the scope of the present invention, has improved high temperature strength but Al Less formation of diffusion layer,
Poor oxidation resistance. Material No. 5 with a small amount of Mn and No. 7 with a small amount of P both have low high temperature strength, material No. 6 with a large amount of Mn has poor press formability, but material No. 6 with a large amount of P has low strength.
Even with No. 8 material, press formability and weldability are poor. In addition, material No. 9 with a small amount of Ti had poor evaluation characteristics in all cases, and material No. 10 with a large amount of added Si or No. 11 with a large amount of Si had a defective part on the steel plate during the aluminum plating process. occurs, this portion exists as a defect in the heat diffusion treatment, red rust occurs in the oxidation resistance test, and the oxidation resistance deteriorates. As for B, the ductility of the welded part of material No. 12, which has a large additive amount, is poor at 5.1 mm in Erichsen value, and cannot withstand processing such as pipe expansion and bending during construction. Therefore,
For processing including welded parts, it is necessary to ensure an Erichsen value of 9 mm or more. In addition, No. 15 material with a large amount of N has Al
Oxidation resistance is poor because the diffusion layer is not thicker than 15μ. On the other hand, materials No. 3, No. 13 and No. 14 are aluminum diffusion materials within the composition range of the present invention and have all the properties of the evaluation test, namely press formability, weldability,
Excellent high temperature strength and oxidation resistance. Next, looking at the range of appropriate heating and diffusion treatment conditions for aluminum-plated steel sheets having the composition range of the present invention,
When the diffusion temperature of materials No. 16 to 18 is as high as 850°C, the original plate crystal grains become coarse, resulting in poor press formability, weldability, and high-temperature strength. Next, increase the diffusion temperature to 800-700℃
For materials No. 19 to No. 30 that were lowered for 3 to 100 hours, No. 19 at 800℃ for 3 hours, No. 23 at 750℃ for 6 hours, and No. 27 at 700℃ for 8 hours. , the treatment time is short relative to the treatment temperature, and the Al diffusion layer that prevents oxidation is thin, less than 15μ, so oxidation resistance is poor. In comparison, heat-diffusion treated materials No. 20-22, No. 24-26 and No. 28-30 produced an Al diffusion layer of 15μ or more and were excellent in all property evaluations including oxidation resistance. . Furthermore, since the diffusion temperature of materials No. 31 and No. 32 is as low as 650° C., the formation of an Al diffusion layer is less than 15 μm even after treatment for 50 to 100 hours, and the oxidation resistance is poor. Note that material No. 33 is an aluminum-plated steel sheet containing the ingredients of the present invention that is not subjected to heat diffusion treatment. Therefore, since this steel sheet does not have an Al diffusion layer,
Oxidation resistance is poor.

【表】【table】

【表】 ◎:本発明例
* 不メツキ部有
[Table] ◎: Example of the present invention
*Some unmet parts exist

【表】【table】

【表】 発明の効果 以上の実施例から明らかなように、本発明によ
れば、耐酸化性、高温強度、加工性および溶接性
のすべてを兼ね備えた耐酸化性と高温強度にすぐ
れたアルミニウム拡散鋼板の提供を可能にしたも
ので、産業上貢献するところ極めて大なるものが
ある。
[Table] Effects of the Invention As is clear from the above examples, according to the present invention, an aluminum diffusion material having excellent oxidation resistance and high temperature strength, which has all of oxidation resistance, high temperature strength, workability, and weldability. It made it possible to provide steel plates, and it has made an extremely large contribution to industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造法における加熱拡散処
理の温度と時間の関係を示す図である。
FIG. 1 is a diagram showing the relationship between temperature and time of the heating diffusion treatment in the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】 1 重量%で、Mn0.6〜1.5%、P0.03〜0.1%、
Al0.01〜0.08%、Ti0.08〜0.25%を含みさらに
Si0.3%以下、B0.003%以下の1種または2種を
含有し、C0.01%以下、N0.004%以下に制限し、
残部が実質的にFeからなる鋼板の表面にAl0.5〜
10%を含有するα−FeのAl拡散層15〜50μを有
し、さらにその上にAl、Fe、Si合金拡散層20〜
50μを有することを特徴とする耐酸化性と高温強
度にすぐれたアルミニウム拡散鋼板。 2 重量%で、Mn0.6〜1.5%、P0.03〜0.1%、
Al0.01〜0.08%、Ti0.08〜0.25%を含み、さらに
Si0.3%以下、B0.003%以下の1種または2種を
含有し、C0.01%以下、N0.004%以下に制限し、
残部が実質的にFeからなる鋼板表面にSi3〜15%
を含むアルミニウムをめつきした鋼板を窒素雰囲
気中で、第1図の点A,B,CおよびDで囲まれ
る範囲内の温度と時間で熱処理することを特徴と
する耐酸化性と高温強度にすぐれたアルミニウム
拡散鋼板の製造法。 但し、A(5時間、800℃) B(100時間、800℃) C(100時間、700℃) D(10時間、700℃)
[Claims] 1% by weight, Mn0.6-1.5%, P0.03-0.1%,
Contains Al0.01~0.08%, Ti0.08~0.25% and more
Contains one or two of Si 0.3% or less, B 0.003% or less, limited to C 0.01% or less, N 0.004% or less,
Al0.5~ on the surface of the steel plate, the remainder of which is essentially Fe.
It has an Al diffusion layer of 15 to 50 μ of α-Fe containing 10%, and a 20 to 50 μ of Al, Fe, and Si alloy diffusion layer on top of it.
An aluminum diffusion steel sheet with excellent oxidation resistance and high-temperature strength, characterized by its 50μ. 2 In weight%, Mn0.6-1.5%, P0.03-0.1%,
Contains Al0.01~0.08%, Ti0.08~0.25%, and
Contains one or two of Si 0.3% or less, B 0.003% or less, limited to C 0.01% or less, N 0.004% or less,
3~15% Si on the surface of the steel plate, the remainder of which is essentially Fe
oxidation resistance and high-temperature strength by heat-treating a steel plate plated with aluminum containing Excellent method for manufacturing aluminum diffusion steel sheets. However, A (5 hours, 800℃) B (100 hours, 800℃) C (100 hours, 700℃) D (10 hours, 700℃)
JP3828786A 1986-02-25 1986-02-25 Aluminum-diffused steel sheet having excellent oxidation resistance high-temperature strength and its production Granted JPS62199759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3828786A JPS62199759A (en) 1986-02-25 1986-02-25 Aluminum-diffused steel sheet having excellent oxidation resistance high-temperature strength and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3828786A JPS62199759A (en) 1986-02-25 1986-02-25 Aluminum-diffused steel sheet having excellent oxidation resistance high-temperature strength and its production

Publications (2)

Publication Number Publication Date
JPS62199759A JPS62199759A (en) 1987-09-03
JPH0225982B2 true JPH0225982B2 (en) 1990-06-06

Family

ID=12521092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3828786A Granted JPS62199759A (en) 1986-02-25 1986-02-25 Aluminum-diffused steel sheet having excellent oxidation resistance high-temperature strength and its production

Country Status (1)

Country Link
JP (1) JPS62199759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518600A (en) * 2015-05-26 2018-07-12 ポスコPosco HPF molded member having excellent peel resistance and method for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037412B2 (en) * 2008-04-16 2012-09-26 新日本製鐵株式会社 steel sheet
JP5444650B2 (en) * 2008-07-11 2014-03-19 新日鐵住金株式会社 Plated steel sheet for hot press and method for producing the same
KR101569509B1 (en) * 2014-12-24 2015-11-17 주식회사 포스코 Hot press formed parts having less galling in the coating during press forming, and method for the same
WO2019171157A1 (en) * 2018-03-09 2019-09-12 Arcelormittal A manufacturing process of press hardened parts with high productivity
KR102180811B1 (en) 2018-12-03 2020-11-20 주식회사 포스코 A hot press formed part having excellent resistance against hydrogen embrittlement, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518600A (en) * 2015-05-26 2018-07-12 ポスコPosco HPF molded member having excellent peel resistance and method for producing the same

Also Published As

Publication number Publication date
JPS62199759A (en) 1987-09-03

Similar Documents

Publication Publication Date Title
JP5218703B2 (en) Hot-dip Al-plated steel sheet excellent in heat blackening resistance and method for producing the same
JP7244720B2 (en) Galvanized steel sheet with excellent spot weldability and its manufacturing method
JP4464720B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP7238161B2 (en) Ferritic stainless steel plate
JP4937816B2 (en) Cold rolled steel sheet for enamel processing and method for producing enamel processed product
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
US11767573B2 (en) Ferritic stainless steel sheet and method of producing same, and al or al alloy coated stainless steel sheet
KR20150073531A (en) Steel sheet for hot press forming with excellent corrosion resistance and weldability, forming part and method for manufacturing thereof
EP3395979B1 (en) Austenite-based molten aluminum-plated steel sheet having excellent properties of plating and weldability, and method for manufacturing same
EP2659019B1 (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
JP2006037215A (en) Steel sheet for enameling having good adhesion to enameling, production method therefor, and enameled product
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
CN115885052A (en) Method for producing a flat steel product with an aluminum-based corrosion protection coating and flat steel product with an aluminum-based corrosion protection coating
JPH0225982B2 (en)
JPH02301541A (en) Spring steel excellent in corrosion resistance and corrosion fatigue strength
JP2001271148A (en) HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
JP4458610B2 (en) Hot-dip aluminized steel sheet with excellent high-temperature oxidation resistance
JPS63118011A (en) Production of ferritic stainless steel materials having excellent corrosion resistance of weld zone
JPH11350099A (en) Manufacture of aluminum plated steel sheet excellent in darkish discoloration resistance and workability
JPH022939B2 (en)
JP2000178693A (en) Ferritic stainless steel sheet having high temperature strength at intermittent heating and oxide scale practically free from peeling
JP7479209B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JP3267325B2 (en) Method for producing high-strength hot-dip aluminized steel sheet for fire resistance
JP7479210B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JP7475205B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term