JPH02259301A - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler

Info

Publication number
JPH02259301A
JPH02259301A JP8040589A JP8040589A JPH02259301A JP H02259301 A JPH02259301 A JP H02259301A JP 8040589 A JP8040589 A JP 8040589A JP 8040589 A JP8040589 A JP 8040589A JP H02259301 A JPH02259301 A JP H02259301A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
reheater
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8040589A
Other languages
Japanese (ja)
Inventor
Toshiki Furukawa
俊樹 古川
Takayuki Nagashima
孝幸 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8040589A priority Critical patent/JPH02259301A/en
Publication of JPH02259301A publication Critical patent/JPH02259301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve a cooling effect of a reheating device and further improve a thermal efficiency of a plant in a boiler of a waste heat recovery type combined cycle power generating plant by a method wherein a medium pressure part heat exchanger device is arranged in a side-by-side relation between a higher pressure heat exchanger and a low pressure heat exchanger and then medium pressure steam is mixed with steam at an outlet of a turbine high pressure and then guided to the reheating unit. CONSTITUTION:A high pressure steam trap valve, an adjusting valve 34, a reheating steam trap valve and an intercepting valve 37 are closed and steam generated at a high pressure evaporator 14 is guided from a high pressure drum 15 to a condensor 5 through a high pressure bypassing valve 51. In turn, the steam generated at a medium pressure evaporator 42 is flowed from a medium pressure drum 43 into a reheating device 12 through a conduit extending from a low temperature reheating pipe of a high pressure turbine 31 of a steam turbine 3 to the reheater 12 and then a cooling operation is carried out by this steam. The steam passes through the medium and low pressure part turbine bypassing valve 38 and then this steam is discharged to a condensor 5. With such a configuration as above, it is possible to cool the reheater efficiently and at the same time to improve a thermal efficiency of the plant.

Description

【発明の詳細な説明】 〔発明の目的コ (産業上の利用分野) 本発明は、排熱回収式コンバインドサイクル発電プラン
トにおける排熱回収ボイラ、特に再燃式排熱回収ボイラ
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Field of Application) The present invention relates to an improvement of an exhaust heat recovery boiler in an exhaust heat recovery type combined cycle power plant, particularly a reburning type exhaust heat recovery boiler.

(従来の技術) 従来の排熱回収式コンバインドサイクル発電プラントで
は、非再燃の混圧サイクルを採用することが一般に行わ
れれていた。しかし、近年ガスタービンの入口温度の高
温化に伴いガスタービン排ガス温度も約600℃前後と
高くなり、このようにガスタービンの排ガス温度が高(
なると、再燃式排熱回収ボイラと再燃蒸気タービンを組
み合わせた再燃式蒸気サイクルの採用が可能となる。
(Prior Art) Conventional exhaust heat recovery type combined cycle power plants have generally adopted a non-rekindling mixed pressure cycle. However, in recent years, as the inlet temperature of gas turbines has increased, the temperature of gas turbine exhaust gas has also increased to around 600°C.
This makes it possible to adopt a reburning steam cycle that combines a reburning exhaust heat recovery boiler and a reburning steam turbine.

このため、第5図に示すように、再燃式排熱回収ボイラ
1、ガスタービン2、再燃蒸気タービン3及び発電機4
とから主に構成される再燃式排熱回収コンバインドサイ
クル発電プラントが開発されている。
For this reason, as shown in FIG.
A reburning waste heat recovery combined cycle power plant has been developed, which mainly consists of:

このプラントにおいて、ガスタービン2の裔温排ガスは
、排熱回収ボイラ1に導入され、水及び蒸気との熱交換
が行われて外部に排出される。
In this plant, the exhaust gas from the gas turbine 2 is introduced into the exhaust heat recovery boiler 1, where it undergoes heat exchange with water and steam, and is discharged to the outside.

排熱回収ボイラ1への給水は、復水器5に溜まった復水
を低圧給水ポンプ6を介して該排熱回収ボイラ1の低圧
部に供給することによって行われ、この給水は排熱回収
ボイラ1内において、低圧節炭器19で加熱され、一部
は低圧ドラム18に入り低圧蒸発器17で加熱されて蒸
発する。
Water is supplied to the exhaust heat recovery boiler 1 by supplying condensate accumulated in the condenser 5 to the low pressure section of the exhaust heat recovery boiler 1 via the low pressure water supply pump 6. Inside the boiler 1, it is heated by a low-pressure economizer 19, and a part of it enters the low-pressure drum 18, where it is heated and evaporated by the low-pressure evaporator 17.

一方、他の一部の給水は、高圧給水ポンプ20で加圧さ
れ、高圧節炭器16を経由し加熱されて高圧ドラム15
に送られ、高圧蒸発器14で蒸発して高圧蒸気となる。
On the other hand, some of the other water is pressurized by the high-pressure water supply pump 20 and heated via the high-pressure economizer 16 to form the high-pressure drum 15.
It is sent to the high-pressure evaporator 14 and evaporated into high-pressure steam.

この高圧蒸気は、第1高圧過熱器13から第2^圧過熱
器11を通過して過熱され、高圧蒸気止め弁及び減圧弁
34を通って蒸気タービン3の高圧部タービン31に送
られ、ここで膨脹仕事を行って圧力及び温度が低下し低
温再燃蒸気となる。
This high-pressure steam passes from the first high-pressure superheater 13 to the second ^-pressure superheater 11, is superheated, and is sent to the high-pressure part turbine 31 of the steam turbine 3 through the high-pressure steam stop valve and pressure reducing valve 34, where it is It performs expansion work, lowers pressure and temperature, and becomes low-temperature reburned steam.

この低温再燃蒸気は、逆止弁35を通過して排熱回収ボ
イラ1の内部に設置した再熱器12に送られ、再び加熱
された後、再熱蒸気止め弁及びインターセプト弁37を
通って蒸気タービン3の中圧部タービン32に送られこ
こで膨脹仕事を行う。
This low-temperature reburned steam passes through the check valve 35 and is sent to the reheater 12 installed inside the exhaust heat recovery boiler 1, where it is heated again and then passes through the reheat steam stop valve and intercept valve 37. It is sent to the intermediate pressure turbine 32 of the steam turbine 3, where it performs expansion work.

上記中圧部タービン32の出口蒸気の中に上記低圧ドラ
ム18で発生した低圧蒸気が混入され、蒸気タービン3
の低圧部タービン33に入り膨脹仕事をして復水器5に
排出され、復水器5で蒸気は凝縮して復水となり、低圧
給水ポンプ6により再び排熱回収ボイラ1に給水される
The low pressure steam generated in the low pressure drum 18 is mixed into the outlet steam of the intermediate pressure turbine 32, and the steam turbine 3
The steam enters the low-pressure turbine 33, performs expansion work, and is discharged to the condenser 5. In the condenser 5, the steam is condensed to become condensed water, and the low-pressure water supply pump 6 supplies water to the exhaust heat recovery boiler 1 again.

この時の排熱回収ボイラ1内の熱量−温度線図を第6図
に示す。
A heat quantity-temperature diagram in the exhaust heat recovery boiler 1 at this time is shown in FIG.

これにより、ガスタービン2と蒸気タービン3で発生し
た軸トルクは、−軸に結合された発電機4に伝達されて
発電が行われるのである。
Thereby, the shaft torque generated by the gas turbine 2 and the steam turbine 3 is transmitted to the generator 4 coupled to the -shaft to generate electricity.

なお、36は第2高圧過熱器11からの蒸気を再熱器1
2に導くための高圧部タービンバイパス弁、38は再熱
器・12を出た蒸気を復水器5に導く中低圧部タービン
バイパス弁、39は低圧ドラム18を出た蒸気を復水器
5に導く低圧部タービンバイパス弁である。
Note that 36 transfers the steam from the second high-pressure superheater 11 to the reheater 1.
38 is a medium and low pressure turbine bypass valve that guides the steam exiting the reheater 12 to the condenser 5; 39 is a turbine bypass valve for guiding the steam exiting the low pressure drum 18 to the condenser 5; This is a low pressure turbine bypass valve that leads to

上記−軸形コンバインドサイクルの寒冷起動時の起動曲
線を第7図に示す。
FIG. 7 shows the starting curve of the above-mentioned -shaft type combined cycle during cold starting.

起動モータ等の起動装置(図示せず)を介して回転を開
始した後、約30%の回転数でガスタービン2のパージ
運転を行い、点火回転数に戻してガスタービン2の燃焼
器を着火する。その後、回転数を上昇させ途中の回転数
で一定に保持し、これによってガスタービン2の排ガス
で排熱回収ボイラ1を加熱する。
After starting rotation via a starter device (not shown) such as a starter motor, purge operation of the gas turbine 2 is performed at approximately 30% rotation speed, and the ignition speed is returned to ignite the combustor of the gas turbine 2. do. Thereafter, the rotational speed is increased and kept constant at an intermediate rotational speed, thereby heating the exhaust heat recovery boiler 1 with the exhaust gas of the gas turbine 2.

この時の排ガス温度は、再熱器12の設計ガス温度より
も低いので、再熱器12の空炊きが可能となる。
Since the exhaust gas temperature at this time is lower than the design gas temperature of the reheater 12, it is possible to run the reheater 12 dry.

一方、蒸気タービン3の最終段具は、全く蒸気を入れな
いで定格回転数にすると回転摩擦によって加熱されて許
容温度を越えてしまうので、通常は冷却のために温度の
低い蒸気を低圧部から入れており、この場合も途中回転
数で一定に保持して発生した蒸気を使用する必要がある
On the other hand, if the final stage of the steam turbine 3 is brought to its rated speed without any steam input, it will be heated by rotational friction and exceed the allowable temperature. In this case as well, it is necessary to maintain a constant rotational speed midway through the process and use the steam generated.

そのため、第5図に示すように、高圧部タービンバイパ
ス弁36を設け、排熱回収ボイラ1の高圧部で発生した
蒸気を、このバイパス弁36を通過させて再熱器12か
ら中圧部タービン32に導入し、動翼の冷却を行うよう
構成されている。
Therefore, as shown in FIG. 5, a high-pressure section turbine bypass valve 36 is provided, and the steam generated in the high-pressure section of the waste heat recovery boiler 1 is passed through the bypass valve 36 and transferred from the reheater 12 to the intermediate-pressure section turbine. 32 to cool the rotor blades.

(発明が解決しようとする課題) しかしながら、排ガスによるボイラの暖気運転が終了し
、中圧または低圧の主蒸気をタービンに導入できる状態
となると、この保持回転数から回転数を更に上昇させる
のであるが、この時に、排熱回収ボイラ1の人口ガス温
度が、第7図に示すように、急激に上昇してしまい、高
圧蒸気温度もこれに応じて上昇してしまうので、高圧部
タービンバイパス弁36を通過させてこの高温蒸気を再
熱器12に入れても、再熱器12を有効に冷却すること
ができない。
(Problem to be solved by the invention) However, when the warm-up operation of the boiler using exhaust gas is completed and it becomes possible to introduce medium- or low-pressure main steam to the turbine, the rotation speed is further increased from this maintained rotation speed. However, at this time, the artificial gas temperature of the exhaust heat recovery boiler 1 rises rapidly as shown in Fig. 7, and the high-pressure steam temperature also rises accordingly. Even if this high temperature steam is passed through 36 and enters the reheater 12, the reheater 12 cannot be effectively cooled.

また、高温起動時の場合の起動曲線を第8図に示す。Further, FIG. 8 shows a startup curve in the case of high temperature startup.

即ち、着火した後短時間で排熱回収ボイラ1の入口ガス
温度が上昇するので、着火する前に再熱器12に冷却用
蒸気を導入する必要があり、高圧部タービンバイパス弁
36を開くことにより高圧ドラム15の保有熱で発生し
た蒸気を再熱器12に導入することができるが、回転数
が上昇して排熱回収ボイラ1の入口ガス温度が上昇した
時に、上記寒冷起動時と同様に再熱器12を有効に冷却
することができない。
That is, since the inlet gas temperature of the waste heat recovery boiler 1 rises in a short time after ignition, it is necessary to introduce cooling steam into the reheater 12 before ignition, and the high pressure turbine bypass valve 36 must be opened. The steam generated by the heat retained in the high-pressure drum 15 can be introduced into the reheater 12, but when the rotation speed increases and the inlet gas temperature of the exhaust heat recovery boiler 1 rises, the same as in the case of cold startup described above Therefore, the reheater 12 cannot be effectively cooled.

このように、−軸形コンバインドサイクルプラントにお
いて、効率を高めるために第5図に示すような再燃サイ
クルを採用した場合、回転数の上昇に伴い排熱回収ボイ
ラの入口ガス温度が上昇した時、再熱器を効果的に冷却
するための低温の蒸気を確保することができないといっ
た問題点があった。
In this way, when a reburning cycle as shown in Fig. 5 is adopted to improve efficiency in a -shaft type combined cycle plant, when the inlet gas temperature of the exhaust heat recovery boiler rises as the rotation speed rises, There was a problem in that it was not possible to secure low-temperature steam to effectively cool the reheater.

本発明は上記に鑑み、再燃サイクルを採用したー軸形排
熱回収コンバインドサイクル発電プラントにおいて、プ
ラント起動時に再熱器を効果的に冷却することができ、
しかも寒冷起動時及び高温起動時に回転摩擦による蒸気
タービン低圧部の温度上昇防止用の冷却用蒸気を効果的
に確保することができ、更にプラント熱効率を向上させ
ることができる排熱回収ボイラを提供することを目的と
する。
In view of the above, the present invention employs a reburning cycle - in an axial heat recovery combined cycle power plant, the reheater can be effectively cooled at the time of plant startup, and
Furthermore, the present invention provides an exhaust heat recovery boiler that can effectively secure cooling steam to prevent temperature rise in the low pressure section of the steam turbine due to rotational friction during cold start-up and high-temperature start-up, and further improve plant thermal efficiency. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明にかかる排熱回収ボイ
ラは、高圧部及び低圧部の熱交換器を備えるとともに、
タービン高圧部からの出口蒸気を内部に配置した再熱器
に導くようにした排熱回収ボイラにおいて、中圧蒸発器
、中圧ドラム及び中圧節炭器とからなる中圧部の熱交換
器を上記高圧部と低圧部の熱交換器との間に並列して介
在させ、この中圧部熱交換器で発生した中圧蒸気を、上
記タービン高圧部からの出口蒸気に混入させて上記再熱
器に導入するよう構成したものである。
(Means for Solving the Problems) In order to achieve the above object, the waste heat recovery boiler according to the present invention includes a heat exchanger for a high pressure section and a low pressure section, and
In an exhaust heat recovery boiler in which outlet steam from a turbine high-pressure section is guided to a reheater disposed inside, a heat exchanger for the intermediate-pressure section consisting of an intermediate-pressure evaporator, an intermediate-pressure drum, and an intermediate-pressure economizer. are interposed in parallel between the heat exchangers of the high-pressure section and the low-pressure section, and the intermediate-pressure steam generated in the intermediate-pressure section heat exchanger is mixed with the outlet steam from the high-pressure section of the turbine to generate the recycle gas. It is configured to be introduced into a heating device.

(作 用) 上記のように構成した本発明によれば、起動時等に中圧
部熱交換器によって発生した低音の中圧蒸気を再熱器の
内部に導いて再熱器を有効に冷却することができ、これ
によって排熱回収ボイラの入口温度が急激に上昇しても
これに対処することができる。
(Function) According to the present invention configured as described above, the low-pitched intermediate pressure steam generated by the intermediate pressure heat exchanger at startup etc. is guided into the inside of the reheater to effectively cool the reheater. As a result, even if the inlet temperature of the exhaust heat recovery boiler suddenly increases, it can be coped with.

(実施例) 以下、本発明の一実施例を第1図乃至第4図を参照して
説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

本実施例は上記第5図に示す従来例に以下のような構成
を付加したものである。
This embodiment has the following configuration added to the conventional example shown in FIG. 5 above.

即ち、高圧給水ポンプ20で加圧された給水は、第1高
圧節炭器45及び第2高圧節炭器46を通過して高圧ド
ラム15に供給され、一方、低圧節炭器19を通過した
給水の一部は、中圧給水ポンプ46で加圧され、中圧節
炭器44で加熱された後、中圧ドラム43に供給される
。そして、中圧蒸気発生器42で発生した蒸気は、この
中圧ドラム43を出て蒸気タービン高圧部31の出口蒸
気に混入した後に再熱器12に供給され、加熱蒸気とな
って蒸気タービン中圧部32に供給されるようなされて
いる。
That is, the water pressurized by the high-pressure water pump 20 passes through the first high-pressure economizer 45 and the second high-pressure economizer 46 and is supplied to the high-pressure drum 15, while the water passes through the low-pressure economizer 19. A portion of the water supply is pressurized by the medium pressure water supply pump 46 and heated by the medium pressure economizer 44, and then supplied to the medium pressure drum 43. The steam generated in the intermediate-pressure steam generator 42 exits the intermediate-pressure drum 43 and mixes with the outlet steam of the steam turbine high-pressure section 31, and then is supplied to the reheater 12, where it becomes heated steam and enters the steam turbine. It is designed to be supplied to the pressure section 32.

更に、第2高圧過熱器11の出口には、起動時に高圧蒸
気を復水器5に逃がすための高圧蒸気バイパス弁51を
設置したバイパスライン53が設けられ、また蒸気ター
ビン3の高圧部タービン31の出口にも、蒸気を復水器
5に逃がす再熱器バイパス弁52を設置したバイパスラ
イン54が設けられている。
Furthermore, a bypass line 53 is provided at the outlet of the second high-pressure superheater 11 and is equipped with a high-pressure steam bypass valve 51 for releasing high-pressure steam to the condenser 5 during startup. A bypass line 54 equipped with a reheater bypass valve 52 for releasing steam to the condenser 5 is also provided at the outlet.

以下、上記実施例の作用について説明する。Hereinafter, the operation of the above embodiment will be explained.

第7図に示す寒冷起動の場合、起動モータ等の起動装置
(図示せず)を会して回転を開始した後、約30〜50
%の回転数でパージ運転を行い、点火回転数に戻して燃
焼器を着火する。その後、回転数を上昇させて排熱回収
ボイラ1のウオーミングのため途中回転数で一定に保持
する。
In the case of cold starting as shown in Fig. 7, after the starting device (not shown) such as a starting motor is connected and rotation is started, approximately 30 to 50
Perform purge operation at % rotation speed, return to ignition speed and ignite the combustor. Thereafter, the rotational speed is increased and kept at a constant rotational speed in the middle for warming the exhaust heat recovery boiler 1.

この時、第2図に示すように、高圧蒸気止め弁及び加減
弁34と再熱蒸気止め弁及びインターセプト弁37を閉
じておく。すると、高圧蒸発器14で発生した蒸気は、
高圧ドラム15を出て第1高圧過熱器13及び第2高圧
過熱器11を通過して過熱された後、高圧蒸気バイパス
弁51を通ヮて復水器らに排出され、低圧蒸発器17で
発生した蒸気は、低圧ドラム18を出た後、低圧タービ
ンバイパス弁39を通って復水器5に排出される。
At this time, as shown in FIG. 2, the high pressure steam stop valve and control valve 34 and the reheat steam stop valve and intercept valve 37 are closed. Then, the steam generated in the high-pressure evaporator 14 is
After leaving the high-pressure drum 15 and passing through the first high-pressure superheater 13 and the second high-pressure superheater 11 to be superheated, the steam is discharged through the high-pressure steam bypass valve 51 to the condenser, etc., and then to the low-pressure evaporator 17. After leaving the low pressure drum 18, the generated steam passes through the low pressure turbine bypass valve 39 and is discharged to the condenser 5.

一方、中圧蒸発器42で発生した蒸気は、中圧ドラム4
3を出て蒸気タービン3の高圧部タービン31の出口管
(低温再燃管)から再熱器、12に入り、この再熱器1
2を冷却した後、ここを出て中低圧部タービンバイパス
弁38を通って復水器5に排出される。
On the other hand, the steam generated in the medium pressure evaporator 42 is transferred to the medium pressure drum 4.
3 and enters the reheater 12 from the outlet pipe (low-temperature reburning pipe) of the high-pressure turbine 31 of the steam turbine 3, and enters the reheater 12.
After cooling the air 2, it exits here and is discharged to the condenser 5 through the medium and low pressure turbine bypass valve 38.

第4図に排熱回収ボイラ1内の熱量−温度線図を示す。FIG. 4 shows a heat quantity-temperature diagram in the exhaust heat recovery boiler 1.

寒冷起動の場合には、この状態で中圧蒸気の圧力が上昇
し、タービンの冷却に必要な所定の圧力になった時点で
、第3図に示すように、再熱蒸気止め弁及びインターセ
プト弁37を必要な開度だけ開き、これによって再熱器
12の内部及び蒸気タービン3の中低圧部に蒸気タービ
ン冷却用蒸気を流すことができる。
In the case of cold startup, the pressure of the intermediate pressure steam increases in this state, and when it reaches the predetermined pressure required for cooling the turbine, the reheat steam stop valve and intercept valve are closed as shown in Figure 3. 37 by a necessary opening degree, thereby allowing steam for cooling the steam turbine to flow into the inside of the reheater 12 and the medium and low pressure section of the steam turbine 3.

これにより、再熱器12の冷却用蒸気及び蒸気タービン
3の冷却用蒸気を確保することができるので、回転数を
上昇させて定格回転数にすることができる。
Thereby, the cooling steam for the reheater 12 and the cooling steam for the steam turbine 3 can be secured, so the rotation speed can be increased to the rated rotation speed.

なお、この回転上昇時に、排熱回収ボイラ1の入口ガス
温度が上昇するが、再熱器12のチューブの中を上記の
ように低温の蒸気が流れて冷却されているので、このチ
ューブが破損してしまうことが防止される。
Note that when this rotation increases, the inlet gas temperature of the exhaust heat recovery boiler 1 rises, but since the low temperature steam flows through the tube of the reheater 12 as described above and is cooled, this tube is not damaged. This will prevent you from doing so.

また、回転が上昇する時に、高圧部タービン31の中に
蒸気が入っていると、回転摩擦によって温度が上昇して
しまうので、再熱器バイパス弁52を開いて復水器5と
導通させて高圧部タービン31の中を真空にしておくこ
とにより、この温度上昇を防止することができる。
Additionally, if steam is present in the high-pressure turbine 31 when the rotation increases, the temperature will rise due to rotational friction, so the reheater bypass valve 52 is opened to communicate with the condenser 5. By keeping the inside of the high-pressure turbine 31 in a vacuum, this temperature rise can be prevented.

一方、第8図に示す高温起動の場合、着火の前に中低圧
部タービンバイパス弁38を開いて蒸気を復水器5に逃
がしておくことにより、中圧ドラム43の保有熱によっ
て発生した蒸気を再熱器12に導入し、再熱器12の冷
却用蒸気とすることができる。
On the other hand, in the case of high-temperature startup as shown in FIG. can be introduced into the reheater 12 and used as cooling steam for the reheater 12.

しかしながら、この場合再熱器12から出てくる蒸気は
温度が高いので、この蒸気を中圧部タービン32に導入
しても蒸気タービン低圧部の冷却とはならない。このよ
うに再熱器12の出口温度が所定の温度よりも高いとき
には、低圧蒸気バイパス弁53を開くことにより、低圧
ドラム18の保有熱量により発生した低圧蒸気を低圧部
タービン33の冷却用蒸気とすることができる。
However, in this case, the steam coming out of the reheater 12 has a high temperature, so even if this steam is introduced into the intermediate pressure section turbine 32, the low pressure section of the steam turbine will not be cooled. In this way, when the outlet temperature of the reheater 12 is higher than a predetermined temperature, by opening the low pressure steam bypass valve 53, the low pressure steam generated by the heat capacity of the low pressure drum 18 is used as cooling steam for the low pressure turbine 33. can do.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のような構成であるので、プラントの起動
等に中圧の低温蒸気を再熱器の冷却に使用することがで
きるので、効果的に再熱器を冷却することができる。
Since the present invention has the above-described configuration, medium-pressure low-temperature steam can be used to cool the reheater during plant startup, etc., so that the reheater can be effectively cooled.

また、寒冷起動時には、再熱器を出た蒸気を中圧部ター
ビンの人口から入れ、高温起動時には、低圧蒸気を低圧
部タービン入口から入れることにより、蒸気タービンの
冷却用蒸気を確保するようにすることができる。
In addition, during cold start-up, steam from the reheater is input from the intermediate-pressure turbine inlet, and during high-temperature start-up, low-pressure steam is input from the low-pressure turbine inlet to secure steam for cooling the steam turbine. can do.

更に、中圧蒸発器、中圧ドラム及び中圧節炭器を設置す
ることにより、第4図に示す蒸気/水側の線とガス側の
線との間の面積を、第6図に示す従来例よりも小さくす
ることができるので、コンバインドサイクルのプラント
熱効率を、例えば相対値で約1%程度高めることができ
るといった効果がある。
Furthermore, by installing an intermediate pressure evaporator, an intermediate pressure drum, and an intermediate pressure economizer, the area between the steam/water side line shown in Figure 4 and the gas side line can be changed as shown in Figure 6. Since it can be made smaller than the conventional example, there is an effect that the plant thermal efficiency of the combined cycle can be increased by, for example, about 1% in relative value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を備えた再燃式排熱回収コン
バインドサイクル発電プラントの概略構成図、第2図及
び第3図は第1図における寒冷起動時の作動状態図、第
4図は第1図の排熱回収ボイラ内の熱量−温度線図を示
すグラフ、第5図は従来例を示すだ第1図相当図、第6
図は寒冷起動時における起動曲線を示すグラフ、第7図
は高温起動時における起動曲線を示すグラフ、第8図は
第5図の排熱回収ボイラ内の熱量−温度線図を示すグラ
フである。 1・・・排熱回収ボイラ、2・・・ガスタービン、3・
・・蒸気タービン、4・・・発電機、5・・・復水器、
11・・・第2高圧過熱器、12・・・再熱器、13・
・・第1高圧過熱器、14・・・高圧蒸発器、15・・
・高圧ドラム、16・・・高圧節炭器、17・・・低圧
蒸発器、18・・・低圧ドラム、19・・・低圧節炭器
、31・・・高圧部タービン、32・・・中圧部タービ
ン、33・・・低圧部タービン、34・・・高圧蒸気止
め弁及び加減弁、37・・・再熱蒸気止め弁及びインタ
ーセプト弁、38・・・中低圧部タービンバイパス弁、
39・・・低圧タービンバイパス弁、41・・・第2高
圧節炭器、42・・・中圧蒸発器、43・・・中圧ドラ
ム、44・・・中圧節炭器、45・・・第1高圧節炭器
、46・・・中圧給水ポンプ、51・・・高圧蒸気バイ
パス弁、52・・・再熱器バイパスL 53,54・・
・バイパスライン。
Figure 1 is a schematic configuration diagram of a reburning type exhaust heat recovery combined cycle power plant equipped with an embodiment of the present invention, Figures 2 and 3 are operating state diagrams during cold startup in Figure 1, and Figure 4. is a graph showing the heat quantity-temperature diagram in the exhaust heat recovery boiler of Fig. 1, Fig. 5 is a graph showing the conventional example, Fig. 6 is a diagram equivalent to Fig. 1,
Figure 7 is a graph showing the startup curve during cold startup, Figure 7 is a graph showing the startup curve during high temperature startup, and Figure 8 is a graph showing the heat quantity-temperature diagram in the exhaust heat recovery boiler of Figure 5. . 1...Exhaust heat recovery boiler, 2...Gas turbine, 3.
...Steam turbine, 4... Generator, 5... Condenser,
11...Second high pressure superheater, 12...Reheater, 13.
...First high pressure superheater, 14...High pressure evaporator, 15...
- High pressure drum, 16... High pressure economizer, 17... Low pressure evaporator, 18... Low pressure drum, 19... Low pressure economizer, 31... High pressure part turbine, 32... Medium Pressure section turbine, 33... Low pressure section turbine, 34... High pressure steam stop valve and adjustment valve, 37... Reheat steam stop valve and intercept valve, 38... Medium and low pressure section turbine bypass valve,
39...Low pressure turbine bypass valve, 41...Second high pressure economizer, 42...Intermediate pressure evaporator, 43...Intermediate pressure drum, 44...Intermediate pressure economizer, 45...・First high pressure economizer, 46... Medium pressure water supply pump, 51... High pressure steam bypass valve, 52... Reheater bypass L 53, 54...
・Bypass line.

Claims (1)

【特許請求の範囲】[Claims] 高圧部及び低圧部の熱交換器を備えるとともに、タービ
ン高圧部からの出口蒸気を内部に配置した再熱器に導く
ようにした排熱回収ボイラにおいて、中圧蒸発器、中圧
ドラム及び中圧節炭器とからなる中圧部の熱交換器を上
記高圧部と低圧部の熱交換器との間に並列して介在させ
、この中圧部熱交換器で発生した中圧蒸気を、上記ター
ビン高圧部からの出口蒸気に混入させて上記再熱器に導
入するよう構成したことを特徴とする排熱回収ボイラ。
In an exhaust heat recovery boiler that is equipped with a heat exchanger for a high-pressure section and a low-pressure section, and that directs outlet steam from the turbine high-pressure section to an internal reheater, it is equipped with an intermediate-pressure evaporator, an intermediate-pressure drum, and an intermediate-pressure drum. A heat exchanger for the intermediate pressure section consisting of a energy saver is interposed in parallel between the heat exchangers for the high pressure section and the low pressure section, and the intermediate pressure steam generated in the heat exchanger for the intermediate pressure section is transferred to the above heat exchanger. An exhaust heat recovery boiler characterized in that it is configured to be mixed with outlet steam from a turbine high pressure section and introduced into the reheater.
JP8040589A 1989-03-31 1989-03-31 Waste heat recovery boiler Pending JPH02259301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040589A JPH02259301A (en) 1989-03-31 1989-03-31 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040589A JPH02259301A (en) 1989-03-31 1989-03-31 Waste heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH02259301A true JPH02259301A (en) 1990-10-22

Family

ID=13717384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040589A Pending JPH02259301A (en) 1989-03-31 1989-03-31 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH02259301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280612A (en) * 1992-12-02 1994-10-04 Stein Ind Sa Method and equipment for recovering heat particularly for combined cycle
WO1995032509A2 (en) * 1994-05-25 1995-11-30 Battelle Memorial Institute Method and apparatus for improving the performance and steam mixing capabilities of a nuclear power electrical generation system
US6220013B1 (en) 1999-09-13 2001-04-24 General Electric Co. Multi-pressure reheat combined cycle with multiple reheaters
US6474069B1 (en) 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
WO2011069374A1 (en) * 2009-12-11 2011-06-16 中冶京诚工程技术有限公司 System for semi-wet treating furnace slag, recovering waste heat and generating power and method thereof
CN104713065A (en) * 2015-03-18 2015-06-17 江苏河海新能源股份有限公司 Novel boiler waste heat recycling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57317A (en) * 1980-05-30 1982-01-05 Kawasaki Heavy Ind Ltd Method and device for heat exchange
JPS63273701A (en) * 1987-05-06 1988-11-10 株式会社日立製作所 Exhaust gas boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57317A (en) * 1980-05-30 1982-01-05 Kawasaki Heavy Ind Ltd Method and device for heat exchange
JPS63273701A (en) * 1987-05-06 1988-11-10 株式会社日立製作所 Exhaust gas boiler

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280612A (en) * 1992-12-02 1994-10-04 Stein Ind Sa Method and equipment for recovering heat particularly for combined cycle
JP2611133B2 (en) * 1992-12-02 1997-05-21 スタン・アンデユストリイ Heat recovery unit for combined cycle
WO1995032509A2 (en) * 1994-05-25 1995-11-30 Battelle Memorial Institute Method and apparatus for improving the performance and steam mixing capabilities of a nuclear power electrical generation system
WO1995032509A3 (en) * 1994-05-25 1995-12-21 Battelle Memorial Institute Method and apparatus for improving the performance and steam mixing capabilities of a nuclear power electrical generation system
US6220013B1 (en) 1999-09-13 2001-04-24 General Electric Co. Multi-pressure reheat combined cycle with multiple reheaters
US6474069B1 (en) 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
US6519944B2 (en) 2000-10-18 2003-02-18 General Electric Company Method of generating a transient plant power boost in a gas turbine apparatus
WO2011069374A1 (en) * 2009-12-11 2011-06-16 中冶京诚工程技术有限公司 System for semi-wet treating furnace slag, recovering waste heat and generating power and method thereof
CN104713065A (en) * 2015-03-18 2015-06-17 江苏河海新能源股份有限公司 Novel boiler waste heat recycling device

Similar Documents

Publication Publication Date Title
US5428950A (en) Steam cycle for combined cycle with steam cooled gas turbine
JP3681464B2 (en) Combined cycle system
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
KR100284392B1 (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant.
US5442908A (en) Combined combustion and steam turbine power plant
US5412937A (en) Steam cycle for combined cycle with steam cooled gas turbine
RU2516068C2 (en) Gas turbine plant, heat recovery steam generator and method to operate heat recovery steam generator
KR102165976B1 (en) Gas turbine plant and its operating method
JP3716188B2 (en) Gas turbine combined plant
JP2012117517A (en) Heat exchanger for combined cycle power plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
US11719156B2 (en) Combined power generation system with feedwater fuel preheating arrangement
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPH02259301A (en) Waste heat recovery boiler
JPH08210151A (en) Power plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP2602951B2 (en) How to start a combined cycle plant
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JP2002021508A (en) Condensate supply system
JP2001214758A (en) Gas turbine combined power generation plant facility
JP2642954B2 (en) How to start a reheat combined plant
JPH11148315A (en) Combined cycle power plant
KR102473756B1 (en) Combined power plant and operating method of the same
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH01313605A (en) Combined power generating set