JPH02241423A - Self-running cleaner - Google Patents

Self-running cleaner

Info

Publication number
JPH02241423A
JPH02241423A JP1062507A JP6250789A JPH02241423A JP H02241423 A JPH02241423 A JP H02241423A JP 1062507 A JP1062507 A JP 1062507A JP 6250789 A JP6250789 A JP 6250789A JP H02241423 A JPH02241423 A JP H02241423A
Authority
JP
Japan
Prior art keywords
processor
main body
cleaning
sub
suction hose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1062507A
Other languages
Japanese (ja)
Inventor
Hidetaka Yabuuchi
秀隆 藪内
Yasumichi Kobayashi
小林 保道
Osamu Eguchi
修 江口
Shinji Kondo
信二 近藤
Haruo Terai
春夫 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062507A priority Critical patent/JPH02241423A/en
Publication of JPH02241423A publication Critical patent/JPH02241423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To enable automatic following of a self-running cleaner to a body suction hose at the time of manual cleaning by inputting the output signal of a suction hose detecting means to a sub-processor for controlling the movement of the body by the instruction of a main processor determining a moving route. CONSTITUTION:During the running of a body 1, a main processor 40 determines the moving route while receiving the obstruction data by a sub-processor 42 and outputs the moving instruction to sub-processors 43, 44. Then, the sub- processor 43 drive controls a running motor 18 to repeat advance, stop and retreat, and the sub-processor 44 drive-controls a steering motor 23 to change the running direction. In carrying out On/OFF of an electric air blower 2 by a switch in hand, a hose tension detection sensor 33 is operated when a suction hose 9 is pulled, and the sub-processor 43 drives the running motor 18 to run the body 1 by a fixed distance. Simultaneously, the sub-processor 44 detects the delivery direction of the suction hose 9 by a hose direction detection sensor 32 and drive-controls the steering motor 23 to make the running direction regularly coincide with the delivering direction of the suction hose 9.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、清掃機能と移動機能とを備え、自動的に清
掃を行なう自走式掃除機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a self-propelled vacuum cleaner that is equipped with a cleaning function and a moving function and that performs cleaning automatically.

従来の技術 従来より、掃除機に移動機能を付加して清掃時の操作性
の向上を図った掃除機が開発されている。特に最近では
、これにマイクロコンピュータと各種センサ類を搭載し
た、いわゆる自立誘導型の自走式掃除機の開発も行なわ
れている。
2. Description of the Related Art Conventionally, vacuum cleaners have been developed in which a moving function is added to the vacuum cleaner to improve operability during cleaning. Particularly recently, so-called self-propelled self-propelled vacuum cleaners, which are equipped with microcomputers and various sensors, have been developed.

この種の自走式掃除機は、清掃機能として本体底部に吸
込みノズルやブラシ等を備え、移動機能としてモータで
駆動される走行輪や操舵輪等を有し、本体の位置を認識
する位置認識手段と走行時の障害物を検知する障害物検
知手段とにより、清掃区域内を塗りつぶすように移動し
て清掃区域全体を清掃するものである。
This type of self-propelled vacuum cleaner is equipped with a suction nozzle, brush, etc. at the bottom of the main body for the cleaning function, and has running wheels and steering wheels driven by a motor for the movement function, and position recognition that recognizes the position of the main body. The device moves to cover the inside of the cleaning area using the means and the obstacle detection means for detecting obstacles during travel, thereby cleaning the entire cleaning area.

発明が解決しようとする課題 このような従来の自走式掃除機では、以下に示すような
課題があった。
Problems to be Solved by the Invention Such conventional self-propelled vacuum cleaners have had the following problems.

東なわち、1.従来の自走式掃除機では、本体の幅より
狭い通路や家具のすきま等の清掃を行なうことは不可能
であり、このような未清掃部分を清掃するためには吸込
みホースを有する通常の掃除機を別に必要とする。
East, 1. With conventional self-propelled vacuum cleaners, it is impossible to clean passages narrower than the width of the main unit, gaps between furniture, etc., and in order to clean such uncleaned areas, a regular vacuum cleaner equipped with a suction hose is required. Requires a separate machine.

2、障害物検知手段や位置認識手段などからの判断処理
手段に入力される信号が多いために、階段などの床面の
段差を検出しても本体を停止させる処理が遅れることが
ある。
2. Since there are many signals input to the judgment processing means from the obstacle detection means, position recognition means, etc., there may be a delay in the process of stopping the main body even when a step on the floor such as a staircase is detected.

3、床面の材質あるいは汚れ具合いなとの清掃条件によ
って清掃部の切り換えが必要であったり、最適な清掃が
できないために無用な電源の消耗と騒音の発生が生じて
いる。
3. Depending on cleaning conditions such as the material of the floor or how dirty it is, it may be necessary to change the cleaning section, or optimum cleaning may not be possible, resulting in unnecessary power consumption and noise generation.

4、清掃幅に対して本体の形状が大きく取扱にくい。と
いう課題があった。
4. The shape of the main body is large compared to the cleaning width, making it difficult to handle. There was a problem.

そこで、本発明は1台の掃除機で自動清掃機能と手動清
掃機能の両方を兼ね備え、しかも手動清掃時には吸込み
ホースに本体が自動追随する自走式掃除機を実現するこ
とを第1の目的としている。
Therefore, the first object of the present invention is to realize a self-propelled vacuum cleaner that has both automatic cleaning function and manual cleaning function in one vacuum cleaner, and in which the main body automatically follows the suction hose during manual cleaning. There is.

第2の目的は、床面の段差を検出ずれば即本体を停止さ
せることのできるより安全な自走式掃除機を得ることに
ある。
The second purpose is to provide a safer self-propelled vacuum cleaner that can immediately stop the main body if it detects a level difference in the floor surface.

第3の目的は、清掃条件によって清掃部の切り換えが不
要で、無用な電源の消耗と騒音の発生がない自走式掃除
機を得ることにある。
A third object is to provide a self-propelled vacuum cleaner that does not require switching of cleaning sections depending on cleaning conditions, and that does not consume unnecessary power or generate noise.

第4の目的は、本体の形状がコンパクトな自走式掃除機
を実現することにある。
The fourth objective is to realize a self-propelled vacuum cleaner with a compact main body.

課題を解決するための手段 上記第1の目的を達成するために、本発明の自走式掃除
機は、清掃手段と、走行手段および操舵手段と、判断処
理手段と、本体から導出した吸込みホースと、吸込みホ
ースの状態を検知する吸込みホース検知手段とを本体に
備え、判断処理手段は、本体の移動経路を決定するメイ
ンプロセッサと、メインプロセッサの指令により本体の
前進、後退、停止、方向転換を制御する移動制御用のサ
ブプロセッサとを有し、吸込みホース検知手段の出力信
号が移動制御用のサブプロセッサに入力されていること
を、第1の手段とするものである。
Means for Solving the Problems In order to achieve the first object, the self-propelled vacuum cleaner of the present invention includes a cleaning means, a traveling means and a steering means, a judgment processing means, and a suction hose led out from the main body. and a suction hose detection means for detecting the state of the suction hose, and the judgment processing means includes a main processor that determines the moving route of the main body, and a main processor that determines the movement path of the main body, forward movement, backward movement, stoppage, and direction change of the main body based on instructions from the main processor. The first means includes a movement control sub-processor for controlling the movement control sub-processor, and the output signal of the suction hose detection means is input to the movement control sub-processor.

また第2の目的を達成するために、清掃手段と、走行手
段および操舵手段と、判断処理手段と、床面の段差検出
手段とを本体に備え、判断処理手段は、本体の移動経路
を決定するメインプロセッサと、メインプロセッサの指
令により本体の前進、後退、停止、方向転換を制御する
移動制御用の・す゛ブプロセッサとを有し、段差検出手
段の出力信号が移動制御用のサブプロセッサに入力され
ていることを、第2の手段としている。
In addition, in order to achieve the second objective, the main body includes a cleaning means, a traveling means and a steering means, a judgment processing means, and a step detection means on the floor, and the judgment processing means determines the moving route of the main body. It has a main processor for controlling movement, and a subprocessor for movement control that controls the forward movement, backward movement, stopping, and change of direction of the main body according to commands from the main processor. The second means is that the information has been input.

また第3の目的を達成するために、清掃手段と、走行手
段および操舵手段と、判断処理手段と、清掃条件を検知
する清掃条件検知手段とを本体に備え、判断処理手段は
、漬梳の開始・終了を決定するメインプロセッサと、メ
インプロセッサの指令により清掃手段の電動送風機また
は?ジテータを制御する清掃制御用のサブプロセッサと
を有し、清掃条件を検知する清掃条件検知手段の出力信
号が清掃制御用のサブプロセッサに入力されていること
を、第3の手段としている。
In addition, in order to achieve the third objective, the main body includes a cleaning means, a traveling means and a steering means, a judgment processing means, and a cleaning condition detection means for detecting cleaning conditions, and the judgment processing means is a cleaning means for detecting cleaning conditions. A main processor that determines start and end, and an electric blower as a cleaning means based on instructions from the main processor? The third means includes a sub-processor for cleaning control that controls the gitator, and an output signal of a cleaning condition detection means for detecting cleaning conditions is input to the sub-processor for cleaning control.

また第4の目的を達成するために、本体の底面形状が略
円形を成し、本体底部の直径部に設けた床ノズルと、床
ノズルの前方に設けた駆動輪を有する走行駆動部と、床
ノズルの後方に設けた従輪と、信号回路部と駆動回路部
とからなる制御回路と、電源とを備え、制御回路を2つ
に分離し本体の左右に振り分けて配置することを、第4
の手段としている。
In addition, in order to achieve the fourth object, the bottom surface of the main body has a substantially circular shape, a floor nozzle provided at the diameter part of the bottom of the main body, and a traveling drive section having a drive wheel provided in front of the floor nozzle; The fourth method includes a following wheel provided at the rear of the floor nozzle, a control circuit consisting of a signal circuit section and a drive circuit section, and a power source, and the control circuit is separated into two and distributed to the left and right sides of the main body.
It is used as a means of

作用 第1の手段による自走式掃除機は、吸込みホースを使用
して手動で清掃でき、使用者が吸込みホースを引っ張る
と吸込みホースの状態を吸込みホース検知手段が検知し
て移動制御用のサブプロセッサに信号を送り本体を吸込
みホースに追随移動する。
The self-propelled vacuum cleaner according to the first means of operation can be manually cleaned using a suction hose, and when the user pulls the suction hose, the suction hose detection means detects the state of the suction hose and activates the sub-system for movement control. Sends a signal to the processor and moves the main body to follow the suction hose.

第2の手段によれば、段差検出手段の出力信号が直接移
動制御用のサブプロセッサに入力されているので、メイ
ンプロセッサの状態に関係なく直ちに本体の移動を停止
させる。 第3の手段によれば、清掃条件を検知する清
掃条件検知手段の出力信号が清掃制御用のサブプロセッ
サに入力されているので、メインプロセッサの動作とは
無関係に電動送風機またはアジテータが自動的に制御で
きる。
According to the second means, since the output signal of the step detection means is directly input to the sub-processor for movement control, movement of the main body is immediately stopped regardless of the state of the main processor. According to the third means, since the output signal of the cleaning condition detection means for detecting the cleaning conditions is inputted to the cleaning control sub-processor, the electric blower or agitator is automatically activated regardless of the operation of the main processor. Can be controlled.

第4の手段によれば、本体幅と清掃幅がほぼ−致し、本
体高さを低く構成できる。
According to the fourth means, the width of the main body and the cleaning width are almost the same, and the height of the main body can be configured to be low.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
。第1図〜第3図は本発明の自走式掃除機の全体構成を
示す。本体の底面形状が略円形を成す自走式掃除機の本
体1の内部には、電動送風機2、集塵室3、この集塵室
3の内部に設けたフィルタ4からなる掃除機の基本的な
部分の他に次のようなものが設けられている。5は本体
1の底部の直径部に設けた床ノズルで、駆動モータ6で
駆動される回転ブラシからなるアジテータ7を備えてい
る。8はホース取付台で、第3図に示すように吸込みホ
ース9を本体1の上部に着脱自在に取り付けられる。1
0は電動送風機2の吸引側を床ノズル5の側と吸込みホ
ース9の側のいずれかに切り換える空気通路切換装置で
5下方に床ノズル接続バイブ11が取り付けられ、その
先端が床ノズル5に接続されており、上方には吸込みポ
ース接続バイブ12が取り付けられホース取付台8を介
して吸込みポース9に接続されている。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. 1 to 3 show the overall configuration of a self-propelled vacuum cleaner according to the present invention. The interior of the main body 1 of the self-propelled vacuum cleaner, which has a substantially circular bottom shape, includes an electric blower 2, a dust collection chamber 3, and a filter 4 provided inside the dust collection chamber 3. In addition to this section, the following are provided. Reference numeral 5 denotes a floor nozzle provided at the diameter of the bottom of the main body 1, and is equipped with an agitator 7 consisting of a rotating brush driven by a drive motor 6. Reference numeral 8 denotes a hose mounting base, on which a suction hose 9 can be detachably attached to the upper part of the main body 1, as shown in FIG. 1
0 is an air passage switching device that switches the suction side of the electric blower 2 to either the floor nozzle 5 side or the suction hose 9 side, and a floor nozzle connecting vibe 11 is attached below 5, and its tip is connected to the floor nozzle 5. A suction port connecting vibrator 12 is attached above and connected to the suction port 9 via a hose mount 8.

13はホース取付台8を外部からおおう取付台カバーで
、屈曲自在の材料からなり、本体1の外壁に摺動自在に
取り付けられ、開閉自在になっている。そして空気通路
切換装置10はこの取付台カバー13と連動し、取付台
カバー13を閉じた状態では電動送風機2の吸引側は床
ノズル5の側になっている。この取付台カバー13の上
部に設けたつまみ14を手で矢印Aの方向にスライドさ
せて開(と、吸引側が吸込みホース5の側に切り換わる
ものである。15.16は床ノズル5の前方に設けた走
行駆動部17に取り付けられた走行輪で、図には示して
いない減速機を介して走行モータ18によって駆動され
る。19.20は床ノズル5の後方に回転自在に取り付
けられた従輪である。走行駆動部17はこれに取り付け
られた操舵軸21および操舵減速機22を介して操舵モ
ータ23によって駆動されており、これによって左右に
回転し走行方向が変えられる。以上の15〜23によっ
て走行手段および操舵手段を構成している。24は走行
モータ18の回転速度を検出するロータリエンコーダか
らなる走行エンコーダ、25は同じくロータリエンコー
ダからなり操舵モータ23の回転速度を検出する操舵エ
ンコーダである。26は本体1の方向を検知する方向検
知センサで、本実施例ではレートジャイロを用いている
3、そして、走行エンコーダ24が検出した回転速度お
よび方向検知センサ26が検出した本体1の方向から本
体1の走行距離および走行方向を検知して位置を認識す
るようにして、位置認識手段を構成している。27.2
8は本体1の周囲に設けた超音波センサからなる測距セ
ンサで、障害物までの距離を計測する。29は本体1の
外周に取り付けたバンパーで、内部に接触センサを備え
、障害物に接触したことを検知する。測距センサ27.
28と接触センサ29とで障害物検知手段を構成してい
る。30は走行駆動部17の前方に取り付けられた超音
波センサからなる床面センサで、超音波の床面での反射
状態により床面がじゅうたんであるかべ゛rフロrであ
るがの原質の判別と床に段差があるかどうかを検知する
。すなわち、この床面センサ30は段差検出手段と床面
判別手段を兼ねている。31は床ノズル接続バイブ11
に取り付けられたフォトインタラプタからなるゴミ通過
センサで、床ノズル接続バイブ11内を通過するゴミの
量を検知する。上記床面センサ30の床面判別手段とゴ
ミ通過センサ31とで清掃条件検知手段を構成している
。32は吸込みホース9の本体lからの導出方向を検知
するポース方向検知センサで、本実施例ではポテンショ
メータを用いている。33は吸込みホース9が引っ張ら
れたことを検知するホース引張力検知センサで、ホース
取付台8の変位をスイッチで検出している。このホース
方向検知センサ32とホース引張力検知センサ33とで
吸込みホース検知手段を構成している。34は空気通路
切換装置に設けた状態検知スイッチで、取付台カバー1
3の開閉状態を検出する。35は全体の制御を行なう制
御回路で、信号回路部と駆動回路部とを分離し本体1の
左右に振り分けて配置している。36は2個の蓄電池等
からなる電源で、走行駆動部17の上部に配置して重量
バランスにより走行輪15゜16のスリップを極力抑え
ている。37は操作部で、操作スイッチ38と表示ラン
プ、ブザー等の表示器39とを備える。
A mount cover 13 covers the hose mount 8 from the outside, is made of a flexible material, is slidably attached to the outer wall of the main body 1, and can be opened and closed. The air passage switching device 10 is interlocked with the mount cover 13, and when the mount cover 13 is closed, the suction side of the electric blower 2 is on the side of the floor nozzle 5. Slide the knob 14 provided on the top of the mount cover 13 by hand in the direction of arrow A to open it (and the suction side switches to the suction hose 5 side. 15 and 16 are the front side of the floor nozzle 5 The running wheel is attached to the running drive unit 17 provided at The traveling drive unit 17 is driven by a steering motor 23 via a steering shaft 21 and a steering speed reducer 22 attached to the traveling drive unit 17, thereby rotating left and right to change the traveling direction. 23 constitutes a traveling means and a steering means. 24 is a traveling encoder consisting of a rotary encoder that detects the rotational speed of the traveling motor 18, and 25 is a steering encoder also consisting of a rotary encoder and detecting the rotational speed of the steering motor 23. 26 is a direction detection sensor that detects the direction of the main body 1, and in this embodiment, a rate gyro is used. The position recognition means is configured to recognize the position by detecting the traveling distance and traveling direction of the main body 1 from the main body 1.27.2
Reference numeral 8 denotes a distance measuring sensor consisting of an ultrasonic sensor provided around the main body 1, which measures the distance to an obstacle. Reference numeral 29 denotes a bumper attached to the outer periphery of the main body 1, which is equipped with a contact sensor inside to detect contact with an obstacle. Distance sensor 27.
28 and the contact sensor 29 constitute obstacle detection means. Reference numeral 30 denotes a floor sensor consisting of an ultrasonic sensor installed in front of the travel drive unit 17, and the floor sensor 30 detects the nature of the floor surface, which is a carpet, depending on the state of reflection of ultrasonic waves on the floor surface. and detect whether there are steps on the floor. That is, this floor sensor 30 serves both as a step detection means and as a floor discrimination means. 31 is the floor nozzle connection vibe 11
A dust passing sensor consisting of a photointerrupter attached to the floor nozzle connecting vibrator 11 detects the amount of dust passing through the inside of the floor nozzle connecting vibrator 11. The floor surface discrimination means of the floor surface sensor 30 and the dust passage sensor 31 constitute a cleaning condition detection means. Reference numeral 32 denotes a port direction detection sensor for detecting the direction in which the suction hose 9 is led out from the main body 1, and in this embodiment, a potentiometer is used. Reference numeral 33 denotes a hose tension detection sensor that detects when the suction hose 9 is pulled, and detects displacement of the hose mounting base 8 using a switch. The hose direction detection sensor 32 and the hose tension detection sensor 33 constitute a suction hose detection means. 34 is a state detection switch provided on the air passage switching device, and is connected to the mounting base cover 1.
Detects the open/closed state of 3. Reference numeral 35 denotes a control circuit that performs overall control, and a signal circuit section and a drive circuit section are separated and placed on the left and right sides of the main body 1. Reference numeral 36 denotes a power source consisting of two storage batteries, etc., which is arranged above the traveling drive section 17 to minimize slipping of the traveling wheels 15 and 16 by weight balance. Reference numeral 37 denotes an operation section, which includes an operation switch 38 and an indicator 39 such as an indicator lamp or a buzzer.

以上のような全体構成によると、底面形状が略円形を成
す本体1の底部直径部に床ノスル5に設けているので、
本体幅と清掃幅がほぼ一致し、床ノスル5の前方に駆動
輪15.16を、床ノズル5の後方に従輪19.20を
設けているので、本体1の方向転換時にも隅部まで清掃
が可能となり、制御回路35を駆動部、清掃部、電源部
外側の左右のスペースに振り分けて配置しているので、
デッドスペースが生じず本体1の高さは低くコンパクト
になっている。また、制御回路でを信号回路部と駆動回
路部とを分離して配置しているので、駆動回路部から発
生するノイズが信号回路部に影響を与えることも少ない
According to the overall configuration as described above, the floor nostle 5 is provided at the bottom diameter part of the main body 1 whose bottom surface shape is approximately circular.
The width of the main body and the cleaning width are almost the same, and the drive wheel 15.16 is provided in front of the floor nozzle 5, and the follower wheel 19.20 is provided behind the nozzle 5, so even when the direction of the main body 1 is changed, even the corners can be cleaned. Since the control circuit 35 is distributed and arranged in the left and right spaces outside the drive section, cleaning section, and power supply section,
There is no dead space, and the height of the main body 1 is low and compact. Furthermore, since the signal circuit section and the drive circuit section are arranged separately in the control circuit, noise generated from the drive circuit section is less likely to affect the signal circuit section.

第4図は本実施例のシステムブロック図で・マイクロコ
ンピュータからなり判断処理手段を構成するメインプロ
セッサ40に対しての信号の入出力を示している。41
〜44は1チツプマイクロコンピユータからなるサブプ
ロセッサで、パスライン45を介してメインプロセッサ
40と接続している。41は清掃制御用のサブプロセッ
サで、床面センサ30、ゴミ通過センサ31、状態検知
スイッチ34および操作部37の操作スイッチ38から
の入力処理と、電動送風機2、駆動モータ6と接続する
駆動回路46および操作部37の表示器39への出力処
理を行なう。42は障害物検知用のサブプロセッサで、
測距センサ27,28およびバンパー29と増幅器47
を介して接続している。43は走行モータ制御用のサブ
プロセッサで、走行モータ18と走行エンコーダ24と
接続するモータ制御回路48および床面センサ30、ホ
ース引張力検知センサ33と接続している。44は操舵
モータ制御用のサブプロセッサで、操舵モータ23と操
舵エンコーダ25と接続するモータ制御回路49および
ホース方向検知センサ32と接続している。この走行モ
ータ制御用のサブプロセッサ43と操舵モータ制御用の
サブプロセッサ44とが移動制御用のサブプロセッサに
なる。この他、メインプロセッサ40のパスライン45
には、入力ポート50を介して方向検知センサ26の積
分器51と、プログラムおよびデータを記憶する記憶装
置52と、時間を計測するタイマー53か接続している
FIG. 4 is a system block diagram of this embodiment. It shows the input and output of signals to and from the main processor 40, which is a microcomputer and constitutes the judgment processing means. 41
-44 are sub-processors consisting of one-chip microcomputers, and are connected to the main processor 40 via a path line 45. 41 is a sub-processor for cleaning control, which processes inputs from the floor sensor 30, dust passage sensor 31, state detection switch 34, and operation switch 38 of the operation unit 37, and a drive circuit connected to the electric blower 2 and drive motor 6. 46 and the operation section 37 to the display 39. 42 is a sub-processor for detecting obstacles;
Distance sensors 27, 28, bumper 29 and amplifier 47
are connected via. 43 is a sub-processor for controlling the traveling motor, and is connected to a motor control circuit 48 that connects the traveling motor 18 and the traveling encoder 24, the floor sensor 30, and the hose tensile force detection sensor 33. 44 is a sub-processor for controlling the steering motor, and is connected to a motor control circuit 49 that connects the steering motor 23 and the steering encoder 25, and a hose direction detection sensor 32. The sub-processor 43 for controlling the travel motor and the sub-processor 44 for controlling the steering motor become sub-processors for movement control. In addition, the pass line 45 of the main processor 40
An integrator 51 of the direction detection sensor 26, a storage device 52 for storing programs and data, and a timer 53 for measuring time are connected to the input port 50.

以上のように構成した自走式掃除機において四方を壁に
囲まれた部屋を清掃させる場合には、吸込みホース9を
取り外した本体1を壁沿いに置いて操作スイッチ38を
操作する。この状態では取付台カバー13は閉じている
ので空気通路切換装置1t10により電動送風機2の吸
引側は床ノズル5の側に切り換わっている。操作スイッ
チ38が操作されると、メインプロセッサ40は清掃制
御用のサブプロセッサ41に清掃開始指令を出すと同時
に走行モータ制御用のサブプロセッサ43と操舵モータ
制御用のサブプロセッサ44とに移動指令を出し、電動
送風機2が作動し、走行モータ18が駆動され本体1が
走行を開始する。走行中は、メインプロセッサ40は測
距センサ27,28およびバンパー29からの検知信号
に基づいた障害物データを障害物検知用のサブプロセッ
サ42より受取りながら移動経路を決定し、走行モータ
制御用のサブプロセッサ43と操舵モータ制御用のサブ
プロセッサ44とに移動指令を出す。移動指令を受は取
った走行モータ制御用のサブプロセッサ43および操舵
モータ制御用のサブプロセッサ44は、それぞれ走行モ
ータ18を駆動制御することにより前進、停止、後退を
繰り返し、操舵モータ23を駆動制御することにより走
行方向を変更し、本体1は障害物を回避しながら部屋の
周囲の壁に沿って移動しながら床面の清掃を行なう。ま
た、本体1の移動中に床面に階段などの段差が前方に現
れた場合は、床面センサ30からの段差検出信号を走行
モータ制御用のサブプロセッサ43が受取り、直ちに走
行モータ18を停止させた後、これをメインプロセッサ
40に知らせ、新たな移動指令を受取り段差を回避する
。このような走行中は、前述した位置認識手段により移
動軌跡を認識し、これを記憶装置52に記憶している。
When using the self-propelled vacuum cleaner configured as described above to clean a room surrounded by walls on all sides, the main body 1 with the suction hose 9 removed is placed along the wall and the operation switch 38 is operated. In this state, the mount cover 13 is closed, so the suction side of the electric blower 2 is switched to the floor nozzle 5 side by the air passage switching device 1t10. When the operation switch 38 is operated, the main processor 40 issues a cleaning start command to the cleaning control sub-processor 41, and simultaneously issues a movement command to the travel motor control sub-processor 43 and the steering motor control sub-processor 44. Then, the electric blower 2 is activated, the traveling motor 18 is driven, and the main body 1 starts traveling. While driving, the main processor 40 determines the travel route while receiving obstacle data based on detection signals from the distance sensors 27, 28 and the bumper 29 from the obstacle detection sub-processor 42, and determines the travel route. A movement command is issued to the sub-processor 43 and the sub-processor 44 for steering motor control. The travel motor control sub-processor 43 and the steering motor control sub-processor 44 that have received and received the movement command drive and control the travel motor 18 to repeatedly move forward, stop, and retreat, thereby driving and controlling the steering motor 23. By doing so, the running direction is changed, and the main body 1 cleans the floor surface while moving along the surrounding walls of the room while avoiding obstacles. Furthermore, if a step such as a staircase appears on the floor in front while the main body 1 is moving, the sub-processor 43 for controlling the travel motor receives the step detection signal from the floor sensor 30 and immediately stops the travel motor 18. After this, the main processor 40 is notified of this, and a new movement command is received to avoid the step. During such traveling, the movement trajectory is recognized by the position recognition means described above, and this is stored in the storage device 52.

部屋を一周し終わると、位置認識手段によりこれを検知
し、この移動軌跡内部を清掃区域と判断し、この清掃区
域内を障害物を回避しながら(まなく走行して清掃区域
全体を自動清掃する。そして、この自動清掃中は、床ノ
ズル5から吸引されるゴミiがゴミ通過センサ31で検
知され、清掃制御用のサブプロセッサ41は吸引される
ゴミ量が少なければ電動送風機2の吸引力を小さくし、
多ければ吸引力を大きくするよう制御するので、清掃能
力を落とすことな(電源36の無用な消耗を防止すると
ともに吸引時の騒音も最小になる。
When it completes going around the room, it is detected by the position recognition means, and the inside of this movement trajectory is determined to be the cleaning area, and the entire cleaning area is automatically cleaned by running within this cleaning area while avoiding obstacles. During this automatic cleaning, the dust i sucked from the floor nozzle 5 is detected by the dust passage sensor 31, and the cleaning control sub-processor 41 increases the suction force of the electric blower 2 if the amount of dust sucked is small. make it smaller,
If the amount is higher, the suction force is controlled to be larger, so that the cleaning ability is not reduced (useless consumption of the power source 36 is prevented, and noise during suction is also minimized.

また同特に清掃制御用のサブプロセッサ41は床面セン
サ30の床面判別信号を入力し、床面がじゅうたんであ
れば駆動モータ6を制御してアジテータ7を回転させ、
ベアフロアであれば回転を停止トさせる。したがって、
異なる床材が組合わさった場所であっても連続的に清掃
ができる。
In addition, the cleaning control sub-processor 41 inputs the floor surface discrimination signal from the floor sensor 30, and if the floor surface is a carpet, controls the drive motor 6 to rotate the agitator 7.
If it is a bare floor, stop the rotation. therefore,
Continuous cleaning is possible even in areas where different flooring materials are combined.

このように、メインプロセッサ40は清掃の開始・終了
の指令を出すだけで、清掃制御用のナブプロセッサ41
が床面センサ30の床面判別手段とゴミ通過センサ31
からなる清掃条件検知手段からの出力信号によって電動
送風機2または°rジテータ7の駆動モータ6を制御す
るので、メインプロセッサ40が障害物データを見落と
したり指令を出すのが遅れたりすることはない。
In this way, the main processor 40 only issues commands to start and end cleaning, and the nub processor 41 for cleaning control
is the floor surface discrimination means of the floor surface sensor 30 and the dust passage sensor 31
Since the drive motor 6 of the electric blower 2 or the °r gitator 7 is controlled by the output signal from the cleaning condition detection means consisting of the main processor 40, there is no possibility that the main processor 40 will overlook obstacle data or delay issuing a command.

また、この自動清掃では清掃できない部分、例えば家具
と家具のすきまや机の上などを清掃する場合は、吸込み
ホース9を本体1に取り付ける。
In addition, when cleaning parts that cannot be cleaned by automatic cleaning, such as gaps between furniture or the top of a desk, a suction hose 9 is attached to the main body 1.

取付台カバー13を開くと空気通路切換装置10により
電動送風機2の吸引側は吸込みホース9の側に切り換わ
り吸込みホース9での清掃が可能になる。吸込みホース
9に設けた手元スイッチ(図示せず)により電動送風機
2の0N10FFを行ない通常の掃除機と同様に手動で
清掃できる。このとき、吸込みホース9を引っ張るとホ
ース引張力検知センサ33が作動し、これにより走行モ
ータ制御用のサブブロセッ+143は走行モータ18を
駆動して、一定距離だけ本体1を走行させる。
When the mount cover 13 is opened, the air passage switching device 10 switches the suction side of the electric blower 2 to the suction hose 9 side, allowing cleaning with the suction hose 9. A hand switch (not shown) provided on the suction hose 9 turns the electric blower 2 on and off, allowing manual cleaning in the same way as a normal vacuum cleaner. At this time, when the suction hose 9 is pulled, the hose tensile force detection sensor 33 is activated, and the sub-prosset 143 for controlling the travel motor drives the travel motor 18 to cause the main body 1 to travel a certain distance.

同時に、操舵モータ制御用のサブプロセッサ44は吸込
みホース9の導出方向をホース方向検知センサ32によ
り検知し、常に走行方向が吸込みホース9の導出方向と
一致するように操舵モータ23を駆動制御する。このよ
うに、手動清掃時には、移動制御用のサブプロセッサす
なわち走行モータ制御用のサブプロセッサ43と操舵モ
ータ制御用のザブプロセッサ44は、吸込みホース検知
手段すなわちホース引張力検知センサ33とホース方向
検知センサ32の信号を直接入力できるので、迅速な処
理が可能となり使用者の後を遅れることなく追随移動で
きるとともにメインプロセッサ40への負担は全くない
At the same time, the sub-processor 44 for controlling the steering motor detects the direction in which the suction hose 9 is led out using the hose direction detection sensor 32, and drives and controls the steering motor 23 so that the running direction always matches the direction in which the suction hose 9 is led out. In this manner, during manual cleaning, the sub-processor 43 for movement control, that is, the sub-processor 43 for controlling the travel motor, and the sub-processor 44 for controlling the steering motor are connected to the suction hose detection means, that is, the hose tension detection sensor 33 and the hose direction detection sensor. Since 32 signals can be directly input, rapid processing is possible, the main processor 40 can be followed without any delay, and there is no burden on the main processor 40.

また、走行酵方に障害物があるときは測距センサ27,
28またはバンパー29によりこれを検知して停止する
。したがって、吸込みホース9を用いれば本体1はいつ
も使用者の後を追随移動するから、本体1の重量は通常
の掃除機より大きいが、その移動に要する操作力は非常
に小さい。
In addition, when there is an obstacle in the way of traveling, the distance measuring sensor 27,
28 or bumper 29 detects this and stops. Therefore, if the suction hose 9 is used, the main body 1 always moves following the user, so although the main body 1 weighs more than a normal vacuum cleaner, the operating force required for its movement is very small.

周囲を壁で囲まれていない部屋や任意の場所を自動清掃
させる場合等の清掃区域の教示は吸込みホース9を本体
1に取り付けた状態にして一旦上記の手動清掃モードに
し、操作スイッチ38を操作して教示モードに切り換え
る。このモードは見かけの動作は手動清掃時と全く同様
であるが、本体1を吸込みホース9の方向に追随移動さ
せた移動軌跡を位置認識手段により認識し、記憶装置5
2に記憶していく。そして教示が終われば吸込みホース
9を本体1から取り外し、操作スイッチ38を操作して
再スタートさせる。教示した移動軌跡が閉ループであれ
ば、こ清掃区域と判断して、この清掃区域内を障害物を
回避しながらくまなく走行して清掃区域全体を清掃する
。また、教示した移動軌跡が閉ループでない場合、すな
わち部屋の半分だけを清掃させるためにその境界線を教
示した場合などは、再スタート後、壁に沿って移動し、
移動軌跡が閉ループになった時点でその移動軌跡を清掃
区域と判断し、上と同様にその清掃区域全体を清掃する
To teach the cleaning area when automatically cleaning a room that is not surrounded by walls or any other place, attach the suction hose 9 to the main body 1, switch to the manual cleaning mode mentioned above, and operate the operation switch 38. to switch to teaching mode. In this mode, the apparent operation is exactly the same as manual cleaning, but the movement trajectory of the main body 1 in the direction of the suction hose 9 is recognized by the position recognition means, and the storage device 5
I will remember it in 2. When the teaching is finished, the suction hose 9 is removed from the main body 1, and the operation switch 38 is operated to restart the operation. If the taught movement trajectory is a closed loop, this is determined to be the cleaning area, and the robot travels throughout the cleaning area while avoiding obstacles to clean the entire cleaning area. In addition, if the taught movement trajectory is not a closed loop, that is, if the boundary line is taught to clean only half of the room, after restarting, the movement path will move along the wall,
When the movement trajectory becomes a closed loop, the movement trajectory is determined to be a cleaning area, and the entire cleaning area is cleaned in the same manner as above.

発明の効果 以上のように本発明の自走式掃除機は、吸込みホースを
使用して手動で清掃でき、使用者が吸込みホースを引っ
張ると吸込みホースの状態を吸込みホース検知手段が検
知して移動制御用のサブプロセッサに信号を送り本体を
吸込みホースに追随移動するから、1台の掃除機で自動
清掃機能と手動清掃機能の両方を兼ね備え、しかも非常
に使いかっての良い自走式掃除機を実現することができ
る。
Effects of the Invention As described above, the self-propelled vacuum cleaner of the present invention can be manually cleaned using the suction hose, and when the user pulls the suction hose, the suction hose detection means detects the state of the suction hose and moves. Since a signal is sent to the control sub-processor and the main unit moves following the suction hose, it has both automatic and manual cleaning functions in one vacuum cleaner, making it an extremely versatile self-propelled vacuum cleaner. It can be realized.

また、段差検出手段の出力信号が直接移動制御用のサブ
プロセッサに入力されているので、メインプロセッサの
状態に関係なく直ちに本体の移動を停止させるから、床
面の段差を検出すれば即本体を停止させることのできる
より安全な自走式掃除機を得ることができる。
In addition, since the output signal of the level difference detection means is directly input to the sub-processor for movement control, the movement of the main body is immediately stopped regardless of the state of the main processor, so if a level difference on the floor is detected, the main body is immediately stopped. You get a safer self-propelled vacuum cleaner that can be stopped.

また、清掃条件を検知する清掃条件検知手段の出力信号
が清掃制御用のサブプロセッサに入力されているので、
メインプロセッサの動作とは無関係に電動送風機または
アジテータが自動的に制御できるから、清掃条件によっ
て清掃部の切り換えが不要で、無用な電源の消耗と騒音
の発生がない自走式掃除機を得ることができる。
In addition, since the output signal of the cleaning condition detection means for detecting cleaning conditions is input to the cleaning control sub-processor,
To provide a self-propelled vacuum cleaner that eliminates the need to switch cleaning parts depending on cleaning conditions and eliminates unnecessary power consumption and noise generation, since an electric blower or agitator can be automatically controlled regardless of the operation of a main processor. I can do it.

さらに、本体幅と清掃幅がほぼ一致し、本体高さを低く
構成できるから、形状が非常にコンパクトで取扱いが容
易な自走式掃除機を実現することできるものである。
Furthermore, since the width of the main body and the cleaning width are almost the same, and the height of the main body can be made low, it is possible to realize a self-propelled vacuum cleaner that is very compact in shape and easy to handle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す自走式掃除機の水平断面
図、第2図は同自走式掃除機の倒断面図、第3図は同自
走式掃除機の外観図、第4図は同自走式掃除機のシステ
ムブロック図である。 1・・・本体、2・・・電動送風機、3・・・集塵室、
4・・・フィルタ、5・・・床ノズル、9・・・吸込み
ホース、15.16・・・走行輪、17・・・走行駆動
部、18・・・走行モータ、19.20・・・従輪、2
3・・・操舵モータ、30・・・床面センサ、31・・
・ゴミ通過センサ、32・・・ホース方向検知センサ、
33・・・ホース引張力検知センサ、35・・・制御回
路、36・・・電源、4O・・・メインプロセッサ、4
1・・・清掃制御用のサブプロセッサ、43・・・走行
モータ制御用のザブプロセッサ、44・・・操舵モータ
制御用のサブプロセッサ。 代理人の氏名 弁理士 粟野重孝 ほか1名!・−′$
、体 2−を勧迭風抵 3−s襄ヱ 15−  芝行輪
Fig. 1 is a horizontal sectional view of a self-propelled vacuum cleaner showing an embodiment of the present invention, Fig. 2 is a collapsed sectional view of the self-propelled vacuum cleaner, and Fig. 3 is an external view of the self-propelled vacuum cleaner. FIG. 4 is a system block diagram of the self-propelled vacuum cleaner. 1... Main body, 2... Electric blower, 3... Dust collection chamber,
4... Filter, 5... Floor nozzle, 9... Suction hose, 15.16... Traveling wheel, 17... Traveling drive unit, 18... Traveling motor, 19.20... Follower wheel, 2
3... Steering motor, 30... Floor sensor, 31...
- Dust passage sensor, 32... hose direction detection sensor,
33... Hose tensile force detection sensor, 35... Control circuit, 36... Power supply, 4O... Main processor, 4
1... Sub-processor for cleaning control, 43... Sub-processor for driving motor control, 44... Sub-processor for steering motor control. Name of agent: Patent attorney Shigetaka Awano and 1 other person!・−′$
, body 2- admonition wind resistance 3-s yang ヱ15- Shiba-gyo-rin

Claims (4)

【特許請求の範囲】[Claims] (1)清掃手段と、走行手段および操舵手段と、判断処
理手段と、本体から導出した吸込みホースと、吸込みホ
ースの状態を検知する吸込みホース検知手段とを本体に
備え、判断処理手段は、本体の移動経路を決定するメイ
ンプロセッサと、メインプロセッサの指令により本体の
前進、後退、停止、方向転換を制御する移動制御用のサ
ブプロセッサとを有し、吸込みホース検知手段の出力信
号が移動制御用のサブプロセッサに入力されている自走
式掃除機。
(1) The main body includes a cleaning means, a traveling means and a steering means, a judgment processing means, a suction hose led out from the main body, and a suction hose detection means for detecting the state of the suction hose, and the judgment processing means is provided in the main body. It has a main processor that determines the movement route of the main processor, and a sub-processor for movement control that controls the movement forward, backward, stop, and change of direction of the main body according to commands from the main processor, and the output signal of the suction hose detection means is used for movement control. A self-propelled vacuum cleaner that is input to the sub-processor of.
(2)清掃手段と、走行手段および操舵手段と、判断処
理手段と、床面の段差検出手段とを本体に備え、判断処
理手段は、本体の移動経路を決定するメインプロセッサ
と、メインプロセッサの指令により本体の前進、後退、
停止、方向転換を制御する移動制御用のサブプロセッサ
とを有し、段差検出手段の出力信号が移動制御用のサブ
プロセッサに入力されている自走式掃除機。
(2) The main body includes a cleaning means, a traveling means and a steering means, a judgment processing means, and a floor level difference detection means, and the judgment processing means includes a main processor that determines the moving route of the main body, and a main processor that determines the movement route of the main body. The main body moves forward and backward according to commands,
A self-propelled vacuum cleaner comprising a movement control sub-processor that controls stopping and direction change, and an output signal of a step detection means is input to the movement control sub-processor.
(3)清掃手段と、走行手段および操舵手段と、判断処
理手段と、清掃条件を検知する清掃条件検知手段とを本
体に備え、判断処理手段は、清掃の開始・終了を決定す
るメインプロセッサと、メインプロセッサの指令により
清掃手段の電動送風機またはアジテータを制御する清掃
制御用のサブプロセッサとを有し、清掃条件検知手段の
出力信号が清掃制御用のサブプロセッサに入力されてい
る自走式掃除機。
(3) The main body includes a cleaning means, a traveling means and a steering means, a judgment processing means, and a cleaning condition detection means for detecting cleaning conditions, and the judgment processing means is a main processor that determines the start and end of cleaning. , a self-propelled cleaner having a cleaning control sub-processor that controls the electric blower or agitator of the cleaning means according to instructions from the main processor, and an output signal from the cleaning condition detection means being input to the cleaning control sub-processor. Machine.
(4)本体の底面形状が略円形を成し、本体底部の直径
部に設けた床ノズルと、床ノズルの前方に設けた駆動輪
を有する走行駆動部と、床ノズルの後方に設けた従輪と
、信号回路部と駆動回路部とからなる制御回路と、電源
とを備え、制御回路を2つに分離し本体の左右に振り分
けて配置した自走式掃除機。
(4) The bottom surface of the main body has a substantially circular shape, and includes a floor nozzle provided on the diameter of the bottom of the main body, a traveling drive section having a drive wheel provided in front of the floor nozzle, and a follower wheel provided at the rear of the floor nozzle. A self-propelled vacuum cleaner comprising: a control circuit consisting of a signal circuit section and a drive circuit section; and a power source; the control circuit is separated into two parts and distributed to the left and right sides of the main body.
JP1062507A 1989-03-15 1989-03-15 Self-running cleaner Pending JPH02241423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062507A JPH02241423A (en) 1989-03-15 1989-03-15 Self-running cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062507A JPH02241423A (en) 1989-03-15 1989-03-15 Self-running cleaner

Publications (1)

Publication Number Publication Date
JPH02241423A true JPH02241423A (en) 1990-09-26

Family

ID=13202159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062507A Pending JPH02241423A (en) 1989-03-15 1989-03-15 Self-running cleaner

Country Status (1)

Country Link
JP (1) JPH02241423A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017908A (en) * 2007-07-10 2009-01-29 Panasonic Corp Vacuum cleaner
JP2009056216A (en) * 2007-09-03 2009-03-19 Panasonic Corp Vacuum cleaner
JP2013079884A (en) * 2011-10-04 2013-05-02 Atsuo Nozaki Contaminant cleaning device and contaminant cleaning control system using the same
JP2016073396A (en) * 2014-10-03 2016-05-12 株式会社マキタ Self propelled dust collection robot
JP2016165347A (en) * 2015-03-09 2016-09-15 シャープ株式会社 Self-propelled electronic apparatus
JP2017080565A (en) * 2014-06-30 2017-05-18 パナソニックIpマネジメント株式会社 Autonomous travel-type cleaner
US10463219B2 (en) 2014-10-03 2019-11-05 Makita Corporation Self-propelled, dust-collecting robot
US11096535B2 (en) 2018-05-23 2021-08-24 Makita Corporation Robotic vacuum
US11191405B2 (en) 2019-02-06 2021-12-07 Makita Corporation Vacuum cleaner
US11517167B2 (en) 2019-06-28 2022-12-06 Makita Corporation Autonomous cleaning device having an optical sensor
US11707176B2 (en) 2019-03-05 2023-07-25 Makita Corporation Upright vacuum cleaner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236519A (en) * 1986-04-08 1987-10-16 松下電器産業株式会社 Electric cleaner
JPS62295633A (en) * 1986-06-13 1987-12-23 松下電器産業株式会社 Self-propelling type cleaner
JPS63262119A (en) * 1987-04-20 1988-10-28 三洋電機株式会社 Self-propelling type cleaner
JPS6468221A (en) * 1987-09-08 1989-03-14 Matsushita Electric Ind Co Ltd Self-propelled cleaner
JPS6468222A (en) * 1987-09-08 1989-03-14 Matsushita Electric Ind Co Ltd Self-propelled cleaner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62236519A (en) * 1986-04-08 1987-10-16 松下電器産業株式会社 Electric cleaner
JPS62295633A (en) * 1986-06-13 1987-12-23 松下電器産業株式会社 Self-propelling type cleaner
JPS63262119A (en) * 1987-04-20 1988-10-28 三洋電機株式会社 Self-propelling type cleaner
JPS6468221A (en) * 1987-09-08 1989-03-14 Matsushita Electric Ind Co Ltd Self-propelled cleaner
JPS6468222A (en) * 1987-09-08 1989-03-14 Matsushita Electric Ind Co Ltd Self-propelled cleaner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017908A (en) * 2007-07-10 2009-01-29 Panasonic Corp Vacuum cleaner
JP2009056216A (en) * 2007-09-03 2009-03-19 Panasonic Corp Vacuum cleaner
JP2013079884A (en) * 2011-10-04 2013-05-02 Atsuo Nozaki Contaminant cleaning device and contaminant cleaning control system using the same
JP2018065062A (en) * 2014-06-30 2018-04-26 パナソニックIpマネジメント株式会社 Autonomous travel-type cleaner
JP2018065061A (en) * 2014-06-30 2018-04-26 パナソニックIpマネジメント株式会社 Autonomous travel-type cleaner
JP2017080565A (en) * 2014-06-30 2017-05-18 パナソニックIpマネジメント株式会社 Autonomous travel-type cleaner
JP2016073396A (en) * 2014-10-03 2016-05-12 株式会社マキタ Self propelled dust collection robot
US10463219B2 (en) 2014-10-03 2019-11-05 Makita Corporation Self-propelled, dust-collecting robot
US11564545B2 (en) 2014-10-03 2023-01-31 Makita Corporation Self-propelled, dust-collecting robot
JP2016165347A (en) * 2015-03-09 2016-09-15 シャープ株式会社 Self-propelled electronic apparatus
US11096535B2 (en) 2018-05-23 2021-08-24 Makita Corporation Robotic vacuum
US11191405B2 (en) 2019-02-06 2021-12-07 Makita Corporation Vacuum cleaner
US11707176B2 (en) 2019-03-05 2023-07-25 Makita Corporation Upright vacuum cleaner
US11517167B2 (en) 2019-06-28 2022-12-06 Makita Corporation Autonomous cleaning device having an optical sensor

Similar Documents

Publication Publication Date Title
KR101484940B1 (en) Robot cleaner and control method thereof
JP2766461B2 (en) Travel control device for robot cleaner and control method therefor
KR0140499B1 (en) Vacuum cleaner and control method
US5534762A (en) Self-propelled cleaning robot operable in a cordless mode and a cord mode
JP2782923B2 (en) Self-propelled vacuum cleaner
JP2004267236A (en) Self-traveling type vacuum cleaner and charging device used for the same
WO2002062194A1 (en) Automatic floor cleaning device
JP2000060782A (en) Cleaning robot
GB2404438A (en) Air cleaning robot
JPH0732751B2 (en) Self-propelled vacuum cleaner
JP2007330567A (en) Self-traveling type vacuum cleaner
JPS63181727A (en) Self-propelling type cleaner
JPH02241423A (en) Self-running cleaner
JPH0732752B2 (en) Self-propelled vacuum cleaner
JP2017064064A (en) Vacuum cleaner
JPS61281309A (en) Automatic cleaning device
JP2574456B2 (en) Self-propelled vacuum cleaner
JPH01308521A (en) Self-propelled vacuum cleaner
JP2669071B2 (en) Self-propelled vacuum cleaner
KR100982383B1 (en) A control method of moving for automatic vacuum cleaner
KR101043535B1 (en) Automatic cleaner
JPS63222726A (en) Electric cleaner
JP2004049594A (en) Self-propelled vacuum cleaner
JP3036863B2 (en) Traveling robot
JP2006095106A (en) Vacuum cleaner