JPH02238391A - Measuring apparatus of depth of water - Google Patents

Measuring apparatus of depth of water

Info

Publication number
JPH02238391A
JPH02238391A JP5788189A JP5788189A JPH02238391A JP H02238391 A JPH02238391 A JP H02238391A JP 5788189 A JP5788189 A JP 5788189A JP 5788189 A JP5788189 A JP 5788189A JP H02238391 A JPH02238391 A JP H02238391A
Authority
JP
Japan
Prior art keywords
light
water
optical system
photodetector
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5788189A
Other languages
Japanese (ja)
Other versions
JPH083530B2 (en
Inventor
Kazumitsu Nakajima
中島 一光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1057881A priority Critical patent/JPH083530B2/en
Publication of JPH02238391A publication Critical patent/JPH02238391A/en
Publication of JPH083530B2 publication Critical patent/JPH083530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To facilitate detection of reflected light from the bottom of the water and to measure the depth of the water by one operation by a method wherein a strong scattered light from part of the water near the water surface is suppressed by an optical attenuator of which the amount of attenuation varies with time and thereby the level of the scattered light is fixed at all times. CONSTITUTION:A spread angle of a data light emitted from a pulse light generating source 1 is adjusted by a light-transmission optical system 2. The light 10 going out of the light-transmission optical system 2 is reflected partly on the water surface 11 and then enters the water 12 and strikes on the bottom 13 of the water while it is attenuated by scattering and absorption in the water 12. Part 14 of the light reflected diffusedly by the bottom 13 of the water is attenuated again in the water and then returns into the air and condensed by a light-reception optical system 3. The light condensed by the light-reception optical system 3 is controlled by a wave- shaping unit 5 measured beforehand and it is attenuated by an optical attenuator 4 of which the amount of attenuation varies with time and enters a photodetector 6. An output signal from the photodetector 6 is recorded by a waveform analyzing device 7. The signal recorded by the waveform analyzing device 7 is analyzed by a computer 8 and the depth of the water is calculated therefrom.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水深測定装首に関し、特に光を利用して短時間
で広範囲の水深測定を行なうようにした水深測定装置に
関する. [従来の技術] 従来,水深の測定は超音波を利用した測定が主力である
が,レーザ等の光を利用した測定の可能性が論じられ始
め、諸外国でも実験されつつある. 一般に水中でのft磁波の減衰が激しく、青緑色の光を
利用したちの以外は実用化のめどがたっていない.この
青緑色の光ですら減衰が激しいので、水底で反射される
光よりも浅い水中での散乱光の方がはるかに強く、その
まま受光したのでは水底からの反射光が弱すぎ検知でき
ない.そのため、従来のこの種の水深測定装置では、光
検出器にゲートをかけて水底からの反射光が戻ってくる
直前に光検出器が感度を有するように設定し、水中から
の強い散乱光と水底からの弱い反射光とを時間差を利用
して感度特性を変えて識別するようにしている. [解決すべき課題] 従来の光を利用した水深測定装置は,上述のように光検
出器にゲートをかけることにより水中での強い散乱光の
影響を排除して水底からの反射光による微弱な信号を検
出できるという利点を有するものの、水深が未知の場合
はゲートをかけるタイミングを少しずつ変えながら強い
散乱光を避け,弱い反射光を見付けねばならず、超音波
を利用して測定する方法に比べて短時間で測定できると
いう利点を生かしきれていなかった.本考案は上述した
問題点にかんがみてなされたもので、水深が不明の場合
でも測定操作を繰返すことなく水深を測定することがで
きる水深測定装置の提供を目的とする. [課題の解決手段] 上記目的を達成するために本発明は、パルス光発生源、
該パルス光発生源から射出する光の広がり角を調整して
水中に送出する送光光学系、水底からの反射光を集光す
るための受光光学系,該受光光学系から取出した光の透
過量を時間と共に変化させる光減衰器,該光減哀器に事
前の測定結果により決定した蒔間特性を有する制御波形
信号を供給する波形整形器、前記光減衰器を透過した光
を検出する光検出器、該光検出器からの出力信号を記録
し解析する波形解析装置及びこれらの機器を制御しデー
タ処理を行なう処理手段からなる構成としてある. [実施例] 以下、本発明の一実施例について図面を参照して説明す
る. 第1図は本発明の一実施例のブロック図である.送光系
はパルス光発生源1と送光光学系2とから構成され、受
光系は、受光光学系3,光減衰器4、波形整形器5、光
検出器6から構成されている.そして光検出器6には波
形解析装置7及びデータ処理手段として計算機8が接続
され、計算機8に波形整形器5を接続してフィードバッ
、ク系を形成している。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a water depth measuring device, and more particularly to a water depth measuring device that uses light to measure water depth over a wide range in a short period of time. [Conventional technology] Conventionally, the main method of measuring water depth has been using ultrasonic waves, but the possibility of measuring using light such as lasers has begun to be discussed, and experiments are also being conducted in other countries. In general, ft magnetic waves are severely attenuated underwater, and there is no prospect of practical use other than using blue-green light. Even this blue-green light is severely attenuated, so the scattered light in shallow water is much stronger than the light reflected at the bottom, and if the light is received as is, the reflected light from the bottom is too weak to be detected. Therefore, in conventional water depth measuring devices of this type, the photodetector is gated and set to become sensitive just before the reflected light from the water bottom returns, and the We use the time difference to distinguish between weak reflected light from the water bottom and change the sensitivity characteristics. [Issues to be solved] Conventional water depth measurement devices that use light eliminate the effects of strong scattered light underwater by gating the photodetector as described above, and eliminate the effects of weak light reflected from the bottom of the water. Although it has the advantage of being able to detect signals, if the depth of the water is unknown, it is necessary to gradually change the timing of gate application to avoid strong scattered light and find weak reflected light. The advantage of being able to take measurements in a short time compared to other methods was not fully utilized. The present invention was developed in view of the above-mentioned problems, and the purpose is to provide a water depth measuring device that can measure water depth without repeating measurement operations even when the water depth is unknown. [Means for solving the problems] In order to achieve the above object, the present invention provides a pulsed light generation source,
A light transmitting optical system that adjusts the spread angle of the light emitted from the pulsed light generation source and sends it into the water, a light receiving optical system that collects reflected light from the bottom of the water, and transmission of the light extracted from the light receiving optical system. an optical attenuator that changes the amount of light over time; a waveform shaper that supplies the optical attenuator with a control waveform signal having a Mamatsu characteristic determined based on a prior measurement result; and a light that detects the light that has passed through the optical attenuator. It consists of a detector, a waveform analyzer that records and analyzes the output signal from the photodetector, and processing means that controls these devices and performs data processing. [Example] An example of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. The light transmitting system is composed of a pulsed light generating source 1 and a light transmitting optical system 2, and the light receiving system is composed of a light receiving optical system 3, an optical attenuator 4, a waveform shaper 5, and a photodetector 6. A waveform analyzer 7 and a computer 8 as data processing means are connected to the photodetector 6, and a waveform shaper 5 is connected to the computer 8 to form a feedback system.

パルス光発生源1から射出したデータ光は送光光学系2
により広がり角を調整される.送光光学系2から出た光
10は水面11で一部が反射された後に水中12に入り
,水中12にて散乱や吸収により減衰しながら、水底1
3に当たる.木底13により乱反射された光の一部l4
は水中で再度減衰した後に大気中に戻り、受光光学系3
により集光される。
The data light emitted from the pulsed light source 1 is sent to the light transmission optical system 2.
The spread angle is adjusted by Light 10 emitted from the light transmitting optical system 2 enters the water 12 after being partially reflected by the water surface 11, and is attenuated by scattering and absorption in the water 12, until it reaches the water bottom 1.
It corresponds to 3. Part of the light diffusely reflected by the wooden bottom 13 l4
The light returns to the atmosphere after being attenuated again in the water, and the light receiving optical system 3
The light is focused by

受光光学系3で集光された光は予め測定された水の減衰
データを基にデータを設定ざれた波形整形器5により制
御され、時間と共に減衰量の変化する光減衰器4にて゜
減衰されて光検出器6に入る.光検出器6からの出力信
号は波形解析装置7にて記録される. そして波形解析装首7にて記録された信号を計算機8に
て解析し、水深を算出する. 次に、本実施例の動作を光減衰器4と波形整形器5の動
作を中心に説明する. 減衰係数Kw(m川)なる水中12を伝搬する光が距離
L (m)伝搬した後の光の強さAは、A=Ao *e
 x p ( 一Kw*L)(但しAOは、もとの光の
強さである.)となるので、減衰係数の大きな水中12
を透過すると急激に減衰する.従って水底13からの反
射光14は極めて微弱なものになる. 一方,木底13の反射率に比べると水中12の散乱係数
は十分に小さなものであるが、水面11により近い距離
のところ,即ち光が強いところでも散乱される光があり
、水中12での散乱光の強度の方が水底13での反射光
の強度よりも強くなる.更に復路での減衰も考慮すると
木面11に近いところでの散乱光と水底13からの反射
光14とでは、強度に数桁の違いが出ることもある.第
2図にその一例を示す.第2図は光の伝搬距離に対応し
た時間に対する受光強度を示一すグラフである.縦軸は
検出器の受光強度,横軸は光の伝搬距離に対応した吟間
を示す.グラフ内の曲線21は、減衰係数が小さい場合
の例であり、突出した部分22が水底13からの反射光
14である.実際は水底13に光が到達した後の散乱光
はあり得ないが,もっと水深が深い場合の散乱光を想定
して破線23で示した.曲線24は減衰係数の大きな場
合の例である.短時間即ち浅い水深で受光強度が急激に
低下する. 実際の測定においては光検出器6¥Fのダイナミックレ
ンジ等に限度があるので、光検出器6等に何の対策も施
さず出力信号の処理のみによって水面l2付近の強い散
乱光に対処することは困難であるので,一般に光検出器
6の前に光シャッター等をおいて強い散乱光をカットし
たり、光検出器6にゲートをかける等の対策を講じてい
る.ここで,104以土のゲート比を得ることは可能で
あるが、ゲートのタイミングを選び、ゲートONの後の
散乱光の強度が水底からの反射光より弱くなるようにし
て測定せねばならないので、水深が不明の場合は直線2
5に示すようなゲートのタイミング時間を少しずつ変え
て測定しながら水底からの反射光l4を検出しなければ
ならない等の問題がある.ゲー}ONする以前、即ち直
線25より左側では散乱光強度が強くとも光検出器6の
感度がないので測定には影響がない.そこで,第2図に
示すような光の伝搬距敲に対応した時間と共に指数関数
的に変化する散乱光に対し第3図のようにこれと逆の透
過特性を持たせた光減衰器を通すことにより,第4図の
ように時間にかかわらず光検出器6に入る散乱光の強さ
をほぼ一・定にし、水深のいかんにかかわらず水底13
からの反射光14を検出できるようにしている.第3図
の縦軸は光減衰器4の透過率、第4図の縦軸は第2図と
同様に光検出奏6の受光強度である.第4図からもわか
るように水底13からの反射光強度を示す部分27は水
深がどのような場合でも常に散乱光強度を示す部分26
より強くなっており、ゲートのタイミングを変える必要
はない. 第2図に示すように減衰係数の違いにより受光強度は大
きく変わるので,この変化を補償し、蒔間に対してほぼ
一定の受光強度が得られるように波形整形器5により光
減衰器4の透過率を最適にする信号を出している.この
波形整形器5及び光減衰器4に関しては、レーザ増幅器
の飽和特性を補償するために,パーソナルコンピュータ
で制御サレ、リン酸カリ’7ム(KDP (KH2 P
O4  :PotaSSium Dihydrogen
 Phosphate) )等の電気光学素子を使用し
た機器を既に実用化しているので、それを利用すれば容
易にこの装置を構成することができる.波形整形器5の
C号は、自由に設定できるので、事前に測定水域での散
乱光の強度を測定し、散乱光を打ち消す特性を持たせる
ことが可能である. 光減衰器4の使用により光検出器6のゲートは実質的に
は必要がなくなるが、光減衰器4のダイナミックレンジ
に限度があるので,より深い水深の測定を行なうには併
用することが望ましい.しかし、水深が大きく変わらな
い限りは散乱光の強度が水底l3からの反射光14の強
度を北回ることがないのでゲートのタイミングは通常変
える必要はない. [発明の効果] 以上説明したように本発明は、予め測定された木の減衰
データを基にデータを設定された波形整形器により制御
され,時間と共に減衰量の変化する光減衰器により、水
面に近いところからの強い散乱光を抑え,常に散乱光レ
ベルを一定にするようにしたので、水底からの反射光の
検出を容易にし、水深が不明の場合でもただ一度の操作
により水深を測定することができるようになるという効
果がある.
The light collected by the light receiving optical system 3 is controlled by a waveform shaper 5 whose data is set based on water attenuation data measured in advance, and is attenuated by an optical attenuator 4 whose attenuation amount changes over time. and enters the photodetector 6. The output signal from the photodetector 6 is recorded by a waveform analyzer 7. The signal recorded by the waveform analysis head 7 is then analyzed by the computer 8 to calculate the water depth. Next, the operation of this embodiment will be explained focusing on the operations of the optical attenuator 4 and the waveform shaper 5. The intensity A of light propagating through water 12 with an attenuation coefficient Kw (m river) after propagating a distance L (m) is A=Ao *e
x p (1Kw*L) (where AO is the intensity of the original light.) Therefore, underwater 12 with a large attenuation coefficient
When it passes through, it attenuates rapidly. Therefore, the reflected light 14 from the water bottom 13 becomes extremely weak. On the other hand, the scattering coefficient of the underwater 12 is sufficiently small compared to the reflectance of the wooden sole 13, but some light is scattered even at a distance closer to the water surface 11, that is, where the light is strong. The intensity of the scattered light becomes stronger than the intensity of the reflected light at the water bottom 13. Furthermore, if attenuation on the return trip is taken into consideration, there may be several orders of magnitude difference in intensity between the scattered light near the tree surface 11 and the reflected light 14 from the water bottom 13. Figure 2 shows an example. Figure 2 is a graph showing the received light intensity versus time corresponding to the propagation distance of light. The vertical axis shows the intensity of light received by the detector, and the horizontal axis shows the distance corresponding to the light propagation distance. A curve 21 in the graph is an example when the attenuation coefficient is small, and a protruding portion 22 is the reflected light 14 from the water bottom 13. In reality, there is no scattered light after the light reaches the water bottom 13, but the dashed line 23 assumes scattered light when the water is deeper. Curve 24 is an example of a case where the damping coefficient is large. The received light intensity decreases rapidly for a short period of time, that is, at shallow water depths. In actual measurements, there is a limit to the dynamic range of the photodetector 6, etc., so strong scattered light near the water surface 12 should be dealt with only by processing the output signal without taking any measures to the photodetector 6, etc. Since this is difficult, countermeasures are generally taken such as placing an optical shutter or the like in front of the photodetector 6 to cut out the strong scattered light, or placing a gate on the photodetector 6. Here, it is possible to obtain a gate ratio of 104 or higher, but the timing of the gate must be selected so that the intensity of the scattered light after the gate is turned on is weaker than the reflected light from the bottom of the water. , if the water depth is unknown, use straight line 2
There are problems such as the need to detect the reflected light l4 from the water bottom while measuring by changing the gate timing time little by little as shown in 5. Before the game is turned on, that is, on the left side of the straight line 25, even if the scattered light intensity is strong, the photodetector 6 has no sensitivity, so it does not affect the measurement. Therefore, the scattered light that changes exponentially with time corresponding to the propagation distance of the light as shown in Figure 2 is passed through an optical attenuator with opposite transmission characteristics as shown in Figure 3. By doing this, the intensity of the scattered light entering the photodetector 6 is kept almost constant regardless of the time, as shown in FIG.
This makes it possible to detect reflected light 14 from the The vertical axis in FIG. 3 is the transmittance of the optical attenuator 4, and the vertical axis in FIG. 4 is the received light intensity of the photodetector 6, as in FIG. 2. As can be seen from FIG. 4, the part 27 that shows the intensity of reflected light from the water bottom 13 is the part 26 that always shows the intensity of scattered light no matter what the water depth is.
It is stronger and there is no need to change the gate timing. As shown in Fig. 2, the received light intensity varies greatly depending on the difference in attenuation coefficient, so the waveform shaper 5 adjusts the optical attenuator 4 in order to compensate for this change and obtain a substantially constant received light intensity for Makima. It emits a signal that optimizes transmittance. Regarding the waveform shaper 5 and the optical attenuator 4, in order to compensate for the saturation characteristics of the laser amplifier, a personal computer is used to control the waveform shaper 5 and the optical attenuator 4.
O4: PotaSSium Dihydrogen
Since devices using electro-optical elements such as Phosphate) have already been put into practical use, this device can be easily constructed by using them. Since the number C of the waveform shaper 5 can be set freely, it is possible to measure the intensity of scattered light in the measurement water area in advance and give it a characteristic of canceling the scattered light. Although the use of the optical attenuator 4 essentially eliminates the need for the gate of the photodetector 6, the dynamic range of the optical attenuator 4 is limited, so it is desirable to use it in combination to measure deeper water depths. .. However, unless the water depth changes significantly, the intensity of the scattered light will not exceed the intensity of the reflected light 14 from the water bottom l3, so there is usually no need to change the timing of the gate. [Effects of the Invention] As explained above, the present invention uses an optical attenuator whose attenuation changes over time, which is controlled by a waveform shaper whose data is set based on tree attenuation data measured in advance. By suppressing strong scattered light from places close to the water and keeping the level of scattered light constant, it is easy to detect reflected light from the bottom of the water, making it possible to measure water depth with just one operation even when the water depth is unknown. This has the effect of making it possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は水深
測定の場合に光検出器へ入る光の強度の光の伝搬距離に
対応した時間変化を示すグラフ,第3図は光減衰器の時
間と共に変化する透過率を示すグラフ、第4図は光減衰
器を通った後に光検出器へ入る光の強度の時間変化を示
すグラフである. l:パルス光発生源 2:送光光学系 3:受光光学系   4:光減衰器 5:波形整形器   6:光検出器 7:波形解析装匠  8=計算機 lO:測定用の光   1l:水面 12二水中      13:水底 14:水底からの反射光 21:減衰係数の小さい場合の散乱光の受光強度を示す
曲線 22:水底からの反射光の受光強度を示す曲線23:水
深がより深い場合の散乱光の受光強度を示す曲線 24:減衰係数の大きい場合の散乱光の受光強度を示す
曲線 25:ゲートのタイミング時間 26:光減衰器を通った後の散乱光の受光強度を示す曲
線 27:光減衰器を通った後の水底からの尺射光の受光強
度を示す曲線 代理人 弁理士 渡 辺 喜 平 飯ギ兜屑
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a graph showing the time change of the intensity of light entering a photodetector in the case of underwater depth measurement corresponding to the propagation distance of the light, and Fig. 3 is a graph of the A graph showing the transmittance of the attenuator as it changes over time. Figure 4 is a graph showing the time change in the intensity of light entering the photodetector after passing through the optical attenuator. 1: Pulse light source 2: Light transmitting optical system 3: Light receiving optical system 4: Optical attenuator 5: Waveform shaper 6: Photodetector 7: Waveform analysis device 8 = Computer 1O: Light for measurement 1l: Water surface 12 Diwater 13: Water bottom 14: Reflected light from the water bottom 21: Curve showing the received light intensity of scattered light when the attenuation coefficient is small 22: Curve showing the received light intensity of reflected light from the water bottom 23: When the water depth is deeper Curve 24 showing the received intensity of scattered light: Curve 25 showing the received intensity of scattered light when the attenuation coefficient is large: Gate timing time 26: Curve 27 showing the received intensity of scattered light after passing through the optical attenuator: Curve representing the received intensity of light emitted from the bottom of the water after passing through an optical attenuator Patent attorney Ki Watanabe Hiraigi Kabutsu

Claims (1)

【特許請求の範囲】[Claims] パルス光発生源、該パルス光発生源から射出する光の広
がり角を調整して水中に送出する送光光学系、水底から
の反射光を集光するための受光光学系、該受光光学系か
ら取出した光の透過量を時間と共に変化させる光減衰器
、該光減衰器に事前の測定結果により決定した時間特性
を有する制御波形信号を供給する波形整形器、前記光減
衰器を透過した光を検出する光検出器、該光検出器から
の出力信号を記録し解析する波形解析装置及びこれらの
機器を制御しデータ処理を行なう処理手段からなる水深
測定装置。
A pulsed light generation source, a light transmission optical system that adjusts the spread angle of the light emitted from the pulsed light generation source and sends it into the water, a light reception optical system that collects reflected light from the bottom of the water, and from the light reception optical system. an optical attenuator that changes the transmitted amount of the extracted light over time; a waveform shaper that supplies the optical attenuator with a control waveform signal having time characteristics determined based on a prior measurement result; A water depth measurement device comprising a photodetector for detection, a waveform analysis device for recording and analyzing output signals from the photodetector, and processing means for controlling these devices and processing data.
JP1057881A 1989-03-13 1989-03-13 Water depth measuring device Expired - Lifetime JPH083530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057881A JPH083530B2 (en) 1989-03-13 1989-03-13 Water depth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057881A JPH083530B2 (en) 1989-03-13 1989-03-13 Water depth measuring device

Publications (2)

Publication Number Publication Date
JPH02238391A true JPH02238391A (en) 1990-09-20
JPH083530B2 JPH083530B2 (en) 1996-01-17

Family

ID=13068331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057881A Expired - Lifetime JPH083530B2 (en) 1989-03-13 1989-03-13 Water depth measuring device

Country Status (1)

Country Link
JP (1) JPH083530B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534458A (en) * 1991-07-26 1993-02-09 Penta Ocean Constr Co Ltd Underwater distance measuring apparatus using laser light
JP2013124882A (en) * 2011-12-13 2013-06-24 Mitsubishi Electric Corp Laser radar device
CN104749579A (en) * 2015-04-02 2015-07-01 太原理工大学 Channel depth measuring method based on chaotic laser device and correlative method thereof
CN106404119A (en) * 2016-11-22 2017-02-15 华南师范大学 Vehicle fording depth detection system and method
EP3260880A4 (en) * 2015-02-18 2018-10-17 Nec Corporation Signal-processing device and processing method, recording medium, and target detection device and detection method
CN110133670A (en) * 2018-02-09 2019-08-16 中国人民解放军战略支援部队信息工程大学 A kind of airborne laser sounding receives the denoising method and its system of waveform
US10684362B2 (en) 2011-06-30 2020-06-16 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11231502B2 (en) 2011-06-30 2022-01-25 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11313678B2 (en) 2011-06-30 2022-04-26 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11392014B2 (en) 2017-12-15 2022-07-19 Nec Corporation Projection device, interface device, and projection method
US11933899B2 (en) 2011-06-30 2024-03-19 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244035U (en) * 1975-09-23 1977-03-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244035U (en) * 1975-09-23 1977-03-29

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534458A (en) * 1991-07-26 1993-02-09 Penta Ocean Constr Co Ltd Underwater distance measuring apparatus using laser light
US11313678B2 (en) 2011-06-30 2022-04-26 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11624814B2 (en) 2011-06-30 2023-04-11 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11933899B2 (en) 2011-06-30 2024-03-19 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11725937B2 (en) 2011-06-30 2023-08-15 The Regents Of The University Of Colorado, A Body Corporate Remote measurement of shallow depths in semitransparent media
US11231502B2 (en) 2011-06-30 2022-01-25 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US10684362B2 (en) 2011-06-30 2020-06-16 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
JP2013124882A (en) * 2011-12-13 2013-06-24 Mitsubishi Electric Corp Laser radar device
US10761185B2 (en) 2015-02-18 2020-09-01 Nec Corporation Signal processing device, signal processing method, recording medium, target detection device, and target detection method
EP3260880A4 (en) * 2015-02-18 2018-10-17 Nec Corporation Signal-processing device and processing method, recording medium, and target detection device and detection method
CN104749579A (en) * 2015-04-02 2015-07-01 太原理工大学 Channel depth measuring method based on chaotic laser device and correlative method thereof
CN106404119B (en) * 2016-11-22 2023-09-26 华南师范大学 Automobile wading depth detection system and method
CN106404119A (en) * 2016-11-22 2017-02-15 华南师范大学 Vehicle fording depth detection system and method
US11392014B2 (en) 2017-12-15 2022-07-19 Nec Corporation Projection device, interface device, and projection method
CN110133670A (en) * 2018-02-09 2019-08-16 中国人民解放军战略支援部队信息工程大学 A kind of airborne laser sounding receives the denoising method and its system of waveform

Also Published As

Publication number Publication date
JPH083530B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
EP0703445B1 (en) Method and apparatus for measuring concentration of absorptive constituent in scattering medium
JPH02238391A (en) Measuring apparatus of depth of water
WO2003031948A2 (en) Method and apparatus for determining absorption of electromagnetic radiation by a material
CN101699265A (en) Device and method for measuring scattering particles by using dynamic polarized light
US7652773B2 (en) Enhanced detection of acousto-photonic emissions in optically turbid media using a photo-refractive crystal-based detection system
DK0561867T3 (en) Method for measuring ultrasound propagation time by the pulse reflection method
US4922467A (en) Acoustic detection apparatus
Kartashov et al. Principles of construction and assessment of technical characteristics of multi-frequency atmospheric sodar in the humidity measurement mode
JP2006189392A (en) Absorption measuring apparatus
EP1069426B1 (en) Method and device for measuring concentration of absorbing component of scattering/absorbing body
JP2006084392A (en) Online crystal grain diameter measuring device, and measuring method using laser ultrasonic wave
CN207516312U (en) The Laser-Ultrasonic Nondestructive Testing System of laser injection fibre and coherent detection
JPH0750076B2 (en) Object detection device based on acoustic signal and object detection method based on acoustic signal
RU2300077C1 (en) Remote method of measuring thickness of oil product thick films onto water surface
JP3184368B2 (en) Sample evaluation device by ultrasonic vibration measurement
JPH11304909A (en) Laser radar with electro-optical correction device for signal light
Doyle et al. Depth measurement for corner cracks of arbitrary angle using Rayleigh waves
Terzić et al. Pulsed photoacoustic measurements of large optical absorption coefficients
SU1130779A1 (en) Atmosphere optical probing device
CN110231313B (en) Online zero calibration method and device for laser gas analyzer
US8711344B1 (en) Method for remotely measuring fluctuations in the optical index of refraction of a medium
SU1073639A1 (en) Method of measuring atmosphere refraction index structural constant
WO2002103347A2 (en) Grain-size measurement
JPH0554897B2 (en)
Faure et al. Optical determination of the attenuation of a surface wave generated at the critical-angle