JPH0223730A - Light-branching unit - Google Patents

Light-branching unit

Info

Publication number
JPH0223730A
JPH0223730A JP63174164A JP17416488A JPH0223730A JP H0223730 A JPH0223730 A JP H0223730A JP 63174164 A JP63174164 A JP 63174164A JP 17416488 A JP17416488 A JP 17416488A JP H0223730 A JPH0223730 A JP H0223730A
Authority
JP
Japan
Prior art keywords
light
optical
station
signal
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63174164A
Other languages
Japanese (ja)
Inventor
Toshiyasu Tanaka
田中 敏保
Shoji Mukohara
向原 彰司
Toyohiro Kobayashi
豊博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTOSU KK
Mitsubishi Electric Corp
Original Assignee
OPUTOSU KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTOSU KK, Mitsubishi Electric Corp filed Critical OPUTOSU KK
Priority to JP63174164A priority Critical patent/JPH0223730A/en
Priority to PCT/JP1989/000702 priority patent/WO1990000838A1/en
Priority to ES8902465A priority patent/ES2014778A6/en
Priority to DE68925811T priority patent/DE68925811T2/en
Priority to KR1019900700523A priority patent/KR920009386B1/en
Priority to AU38761/89A priority patent/AU614861B2/en
Priority to CA000605465A priority patent/CA1312119C/en
Priority to EP89908254A priority patent/EP0378704B1/en
Priority to DE68928935T priority patent/DE68928935T2/en
Priority to AT89908254T priority patent/ATE134807T1/en
Priority to AT93200764T priority patent/ATE176969T1/en
Priority to US07/465,230 priority patent/US5133031A/en
Priority to EP93200764A priority patent/EP0550421B1/en
Publication of JPH0223730A publication Critical patent/JPH0223730A/en
Priority to NO901140A priority patent/NO901140D0/en
Priority to NO952139A priority patent/NO952139D0/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To eliminate the needs for forming a loop for connecting respective stations and attain simple constitution by attaining optical communication in both ways without using an expensive optical transmission prism, passing a signal through the station concerned when a fault occurs in one of the stations so as to attain communication for the adjacent station. CONSTITUTION:A light-leading path for transmission light 16 in which an optical signal pass in both ways plays a role in terms of the bypass of the optical signal, and a light-leading path for reception light 17 receives the signal from an optical fiber 12 in both ways, which can be added and connected. First to third light-receiving ports 17a-17c are given to the light-leading path 17. First to third light-transmitting ports 18a-18c are provided in a light-leading path for transmission light 18 which transmits optical signals to two ways and optical fiber 12, and the branching light-leading path part B of a communication node 22 is composed of the light-leading path 16 and the light-leading paths for reception and transmission 17 and 18. The light-leading path part B and an optical fiber 11 are connected by connection end parts 13 and 14, and the both end connection parts are in a ternary state by the fiber 11 and the light-leading path part B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光分岐器に関するものであり、特に。[Detailed description of the invention] [Industrial application field] This invention relates to an optical splitter, and more particularly.

−本の光ファイバーで双方向に光信号の送信及び受信が
可能な光分岐器に関するものである。
- This relates to an optical branching device that can transmit and receive optical signals in both directions using a single optical fiber.

〔従来の技術〕[Conventional technology]

第7図は1例えば、特開昭62−73225号公報の「
光スィッチ」に示された従来の光通信装置の分岐通信装
置であり、第7図(a)は透過プリズムを光路に入れた
状態、第7図1b)は透過プリズムを光路から外した状
態を示す平面図である。第8図は従来の光伝送システム
を示す構成図である。
FIG. 7 shows 1, for example, "
This is a branching communication device of the conventional optical communication device shown in ``Optical Switch.'' Figure 7(a) shows the state with the transmission prism in the optical path, and Figure 7(1b) shows the state with the transmission prism removed from the optical path. FIG. FIG. 8 is a block diagram showing a conventional optical transmission system.

以下、「通信ノード」とは分岐器または分岐器局をいい
、単に局ともいう。
Hereinafter, the term "communication node" refers to a turnout or turnout station, and is also simply referred to as a station.

第7図において、(1)は光信号の進行方向である光路
を切換える光スィッチ、(2)は光スィッチ(1)内に
移動可能に装着されている光透過性の優れた光学的な透
過プリズムである。この透過プリズム(2)は複数の局
のうちのいずれかの局が故障を起した場合等に、当該局
内を光信号が通過できるように光路部に配設しである。
In Fig. 7, (1) is an optical switch that switches the optical path, which is the traveling direction of the optical signal, and (2) is an optical transmitter with excellent light transmission that is movably installed in the optical switch (1). It's a prism. This transmission prism (2) is disposed in the optical path so that an optical signal can pass through the station in the event that one of the plurality of stations fails.

(3)及び(4)は光スィッチ(1)の上り光入力端及
び下り光入力端、(5)及び(6)は光スィッチ(1)
の下り光出力端及び上り光出力端である。
(3) and (4) are the upstream and downstream optical input ends of the optical switch (1), (5) and (6) are the optical switch (1)
They are the downstream optical output end and the upstream optical output end of the.

第8図において、(7)からHは各々通信装置(局)で
あり、(7)はB局、(8)は0局、(9)はD局、α
1はA局である。αBは光信号を伝達する光ファイバー
である。
In FIG. 8, (7) to H are communication devices (stations), (7) is B station, (8) is 0 station, (9) is D station, α
1 is station A. αB is an optical fiber that transmits optical signals.

従来の光通信装置は上記のように構成されておシ、光通
信装置の分岐通信装置として透過プリズム(2)を用い
た光スィッチ(1)を使用していた。この動作について
以下に説明する。
A conventional optical communication device is configured as described above, and uses an optical switch (1) using a transmission prism (2) as a branch communication device of the optical communication device. This operation will be explained below.

光スィッチ(1)の上シ光入力端(3)に入った光は透
過プリズム(2)を通過し、下り光出力端(5)から川
る(第7図+8)参照)。この光が2例えば、第8図の
B局(7)を通って、再び光スィッチ(1)の下り光入
力端(4)に入り、透過プリズム(2)を通過後、上り
光出力端(6)から次の局である0局(8)の光スィッ
チ(1)に光伝送される。このようにして、AAc0か
らの光信号は光ファイバー+I11を通し、順次各局を
通、9D局(9)へと伝送される。そして、正常時には
、3局+71. 0局(8)、  D局(9)の各局に
おいて、光信号を増幅して、光路での光の吸収及び散乱
等による減衰を補償している。
The light entering the upper light input end (3) of the optical switch (1) passes through the transmission prism (2) and flows out from the downward light output end (5) (see Figure 7+8). This light passes through, for example, the B station (7) in Figure 8, enters the downstream light input end (4) of the optical switch (1) again, and after passing through the transmission prism (2), the upstream light output end ( 6) to the optical switch (1) of the next station, station 0 (8). In this way, the optical signal from AAc0 passes through the optical fiber +I11, passes through each station in order, and is transmitted to station 9D (9). During normal operation, 3 stations + 71. At each station, 0 station (8) and D station (9), the optical signal is amplified to compensate for attenuation due to light absorption, scattering, etc. in the optical path.

もし、これらの各局のうちのいずれかの局で故障等が生
じた場合には、当該局用の光スィッチ(1)内の透過プ
リズム(2)を駆動装置(図示せず)を用いて移動させ
、光スィッチ(1)の上り光入力端(3)に入った光を
直接上り光出力端(6)から出していた(第7図(b)
参照)。そして、故障した局で光を分岐及び増幅するこ
とな(2次の正常な局に伝送していた。
If a failure occurs in any of these stations, move the transmission prism (2) in the optical switch (1) for that station using a drive device (not shown). The light entering the upstream light input end (3) of the optical switch (1) was directly output from the upstream light output end (6) (Fig. 7(b)).
reference). Then, the light was not branched and amplified at the failed station (it was transmitted to the secondary normal station).

このように、従来の装置ではA局a1→B局(7)→C
局(8)→D局(9)→AAc1というように光信号が
一方向に伝送するループを形成していた。
In this way, in the conventional device, A station a1 → B station (7) → C
A loop was formed in which optical signals were transmitted in one direction, such as station (8)→D station (9)→AAc1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の光通信装置では、複数の局を接続し
て一つの光伝送システムを形成する場合に、いずれかの
局が故障したときには、光スィッチfl)により、当該
局を通過(パススルー)させて。
In the conventional optical communication device as described above, when connecting multiple stations to form one optical transmission system, if one of the stations fails, the optical switch fl) connects the station to pass through (pass-through). ) Let me.

隣局に光信号を伝送していた。It was transmitting an optical signal to a neighboring station.

しかし、この種の従来の装置では、光通信装置の分岐通
信装置である光スィッチ(1)には高価で量産し難い光
学的透過プリズム(2)が使用されていた。
However, in this type of conventional device, an optical transmission prism (2), which is expensive and difficult to mass-produce, is used in the optical switch (1), which is a branch communication device of an optical communication device.

オた。光伝送システムを形成する場合に、各局間を連結
し一方向のループを形成する必要があり。
Ota. When forming an optical transmission system, it is necessary to connect each station to form a unidirectional loop.

光信号の送信方向に方向性が要求されていた。Directionality was required in the transmission direction of optical signals.

更に、いずれかの局が故障した場合に、透過プリズム(
2)を移動させる駆動機構が必要であり、装置自体が高
価で大型になっていた。
Furthermore, if any station fails, the transmission prism (
2) A drive mechanism is required to move the device, making the device itself expensive and large.

このために、この種の光通信装置では、高価な光学的透
過プリズムを用いることな(、簡易で光信号の送信及び
受信が双方向にできる光分岐通信が望まれていた。
For this reason, in this type of optical communication device, there has been a demand for optical branching communication that is simple and allows bidirectional transmission and reception of optical signals (without using expensive optical transmission prisms).

そこで、この発明は、双方向に光通信ができ。Therefore, this invention enables bidirectional optical communication.

しかも、いずれかの局が故障等した場合にも当該局全通
過(パススルー)させて、隣局への光信号の伝送を可能
とするとともに、システム構成時に各局間の連結をルー
プ形成する必要がない光分岐器の提供を課題とするもの
である。
Moreover, even if one of the stations breaks down, it is possible to pass through all stations and transmit optical signals to neighboring stations, and it is also necessary to form a loop between each station when configuring the system. The objective is to provide an optical splitter that does not require

〔課題を解決するための手段〕 この発明にかかる光分岐器は、光通信用の光ファイバー
U、σ2と接続する3接続端部α鴎、α41. (1!
9のうち、2接続端部(I3. (14)が2例えば、
三系統に分岐され、また、残りの1接続端部(l!9が
二系統に分岐される。前記三系統のうちの一つの系統が
前記2接続部!+1. t14間を双方向からの光信号
が通過可能な通過光用導光路0e、前記三系統の他の1
つの系統が前記2接続端部α壕、α着方向からの光信号
を各々受光する第1の受光口(17a)及び第2の受光
口(17b)、並びに前記二系統に分岐したうちの一方
の系統が、前記1接続端部a!9方向からの光信号を受
光する第3の受光口(17(りを有する受信光用導光路
11ηと、前記三系統の残りの一系統が前記2接続端部
α罎、α心方向へ光信号を各々送出する第1の送光口(
18a)及び第2の送光口(18b)、並びに前記二系
統に分岐した他方の系統が、前記1接続端部(L噴方向
へ光信号を送出する第3の送光口(18c)とを有する
送信光用導光路α梯と、更に、前記受信光用導光路an
の第1の受光口(17a)及び第2の受光口(17t+
)及び第3の受光口(17c)からの光信号を受け電気
信号に変換する受光素子Uと。
[Means for Solving the Problems] The optical branching device according to the present invention has three connecting ends α41, α41, . (1!
9, 2 connection ends (I3. (14) are 2 e.g.
The remaining one connection end (l!9) is branched into two systems.One of the three systems connects the two connection points !+1.t14 from both directions. A light guide path 0e for passing light through which an optical signal can pass, and another one of the three systems mentioned above.
One of the two systems is branched into the two connection end α grooves, the first light receiving port (17a) and the second light receiving port (17b) that receive optical signals from the α destination direction, and one of the two systems branched out. The system is the one connection end a! A receiving light guide path 11η having a third light receiving port (17) for receiving optical signals from nine directions, and the remaining one of the three systems connect to the two connecting ends α, and transmit light toward the α center. The first light transmitting port (
18a) and the second light transmission port (18b), and the other system branched into the two systems connects to the first connection end (the third light transmission port (18c) that transmits the optical signal in the L jet direction). a transmission light light guide path α ladder having the above-mentioned light guide path α for receiving light;
The first light receiving port (17a) and the second light receiving port (17t+
) and a light receiving element U that receives an optical signal from the third light receiving port (17c) and converts it into an electrical signal.

前記受光素子αlからの電気信号を増幅する増幅回路−
と、電気信号を光信号に変換して前記送信光用導光路(
田の第1の送光口(18a)及び第2の送光口(18b
)及び第3の送光口(18c)に光信号を発光する発光
素子QBとを有するエネルギー変換部(A)とからなる
ものである。
an amplifier circuit for amplifying the electric signal from the light receiving element αl;
and converts the electric signal into an optical signal and transmits the light guide path for the transmitted light (
The first light transmitting port (18a) and the second light transmitting port (18b)
) and a light emitting element QB that emits an optical signal at the third light transmitting port (18c).

〔作用〕[Effect]

この発明の光分岐器においては、光通信用の光ファイバ
ーαBと接続する2接続端部α3. (14を、2接続
端部am、(1◆間を双方向からの光信号が通過可能な
通過光用導光路aSと、2接続端部0.a4方向からの
光信号を各々受光する第1の受光口(17a)及び第2
の受光口(17b)を有する受信光用導光路(1rIと
、2接続端部0.a4方向へ光信号を各々送光する第1
の送光口(18a)及び第2の送光口(18111)を
有する送信光用導光路6sとの三系統に分岐し、また、
残りの1接続端部alを、前記1接続端部a!9方向か
らの光信号を受光する第3の受光口(17c)を有する
受信光用導光路(I?)と、1接続端部05方向へ光信
号を送光する第3の送光口(18c)を有する送信光用
導光路霞との二系統に分岐し、エネルギー変換部(A)
で受信光用導光路αηの第1の受光口(17a)及び第
2の受光口(17b)及び第3の受光口(17c)から
の光信号を受光素子翰で電気信号に変換し、この電気信
号を増幅回路−で増幅するとともに2発光素子211で
電気信号を光信号に変換して送信光用導光路+ISO第
1の送光口(18a)及び第2の送光口(tab)及び
第3の送光口(18c)に発光するものであるから、単
線からなる光ファイバーaυ内を伝送する光信号を双方
向で受信でき、その光信号を電気信号に光電変換するこ
とができる。そして、各種の電気信号を電光変換して光
信号として双方向に送信することができる。しかも、光
信号の一部はそのまま通過光用導光路ae内を通過(パ
ススルー)して隣局等に伝送するときができる。また、
同様K。
In the optical branching device of the present invention, two connecting ends α3, . (14 is the 2 connection end am, (1 The first light receiving port (17a) and the second light receiving port (17a)
a receiving light guide path (1rI) having a light receiving port (17b), and a first connecting end 0.a for transmitting optical signals in the 4 direction, respectively.
The light guide path 6s for transmission light has a light transmission port (18a) and a second light transmission port (18111), and is branched into three systems, and
The remaining one connection end al is connected to the one connection end a! A receiving light light guide path (I?) having a third light receiving port (17c) that receives optical signals from 9 directions, and a third light transmitting port (1?) that transmits the optical signal toward the 1 connection end 05 direction. 18c), and the energy conversion section (A).
The optical signals from the first light receiving port (17a), the second light receiving port (17b), and the third light receiving port (17c) of the received light guide path αη are converted into electrical signals by the light receiving element. The electric signal is amplified by the amplifier circuit -, and the electric signal is converted into an optical signal by the two light emitting elements 211, and the light guide path for transmitting light + the ISO first light transmitting port (18a), the second light transmitting port (tab), and Since the light is emitted from the third light transmitting port (18c), the optical signal transmitted through the single-wire optical fiber aυ can be received in both directions, and the optical signal can be photoelectrically converted into an electric signal. Various electrical signals can be converted into electrical signals and transmitted bidirectionally as optical signals. Moreover, a part of the optical signal can pass through the light guide path ae for transmitted light and be transmitted to a neighboring station or the like. Also,
Similarly K.

単線からなる光フアイバー12内を伝送する光信号を受
信できると七もに、各種の電気信号を電光変換して光信
号として送信することができる。
If it is possible to receive an optical signal transmitted through the optical fiber 12 made of a single wire, it is possible to convert various electrical signals into electro-optical signals and transmit them as optical signals.

〔実施例〕〔Example〕

第1図はこの発明の一実施例である光分岐器の通信ノー
ドを示す回路図、第2図は第1図の通信ノードの分岐光
路部の接続端部近傍を示す断面図である。
FIG. 1 is a circuit diagram showing a communication node of an optical branching device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the vicinity of a connection end of a branch optical path section of the communication node in FIG.

図において、 fillは従来同様の光信号を伝送する
光ファイバー、a2は光ファイバーαDによって連続接
続されている場合でも追加接続可能な光ファイバー、(
ハ)はこの実施例の分岐器である通信ノードである。こ
の通信ノード翰は分岐導光路部(B)とエネルギー変換
部(A)とからなっている。(I9は光信号を電気信号
に変換するフォトダイオード等の受光素子、翰は受光素
子(19により光電変換された電気信号を増幅する増幅
回路、6!lは定電圧電源、c!41は増幅回路(イ)
からの信号によシ作動する出力用のトランジスタである
。Qllは各種の電気信号を光信号に電光変換する発光
ダイオード(LED)等の発光素子、翰は発光素子91
)への電流を制限する抵抗である。上記の光信号を電気
信号に光電変換し増幅する動作及び電気信号を光信号に
電光変換する動作との両動作を通信ノード翰のエネルギ
ー変換部(A)が行なう。αeは双方向に光信号が通過
可能な通過光用導光路であり、光信号のバイパス的な役
割を果す。αηは双方向及び追加接続可能な光ファイバ
ーσaからの光信号を各々受光する受信光用導光路であ
り、第1の受光口(17a)、第2の受光口(17’b
) 、第3の受光口(17c)を有する。+111は双
方向及び追加接続可能な光ファイバー圓に光信月を各々
送光する送信光用導光路であり、第1の送光口(18a
)、第2の送光口(18’b)、第3の送光口(18c
)を有する。上記の通過光用導光路11eと受信光用導
光路aηと送信光用導光路+11とで通信ノード(イ)
の分岐導光路部(B)を構成している。
In the figure, fill is an optical fiber that transmits optical signals similar to conventional ones, a2 is an optical fiber that can be additionally connected even if it is continuously connected by optical fiber αD, (
C) is a communication node which is a branch in this embodiment. This communication node frame consists of a branch light guide section (B) and an energy conversion section (A). (I9 is a light-receiving element such as a photodiode that converts an optical signal into an electrical signal, the handle is a light-receiving element (19 is an amplifier circuit that amplifies the electrical signal photoelectrically converted, 6!l is a constant voltage power supply, and c!41 is an amplification Circuit (a)
This is an output transistor that is activated by a signal from the Qll is a light emitting element such as a light emitting diode (LED) that converts various electrical signals into optical signals, and the handle is a light emitting element 91.
) is a resistor that limits the current to the The energy conversion section (A) of the communication node performs both the operations of photoelectrically converting and amplifying the optical signal into an electric signal and the operation of electro-optically converting the electric signal into an optical signal. αe is a light guide path for passing light through which an optical signal can pass in both directions, and serves as a bypass for the optical signal. αη is a received light guide path that receives optical signals from the optical fiber σa, which can be bidirectionally connected and additionally connected, and includes a first light receiving port (17a) and a second light receiving port (17'b).
), and has a third light receiving port (17c). +111 is a light guide path for transmitting light that sends light signals to optical fiber circles that can be bidirectionally connected and additionally connected, and the first light sending port (18a
), second light transmitting port (18'b), third light transmitting port (18'c)
). Communication node (A) with the above-mentioned light guide path 11e for passing light, light guide path aη for receiving light, and light guide path +11 for transmitting light.
This constitutes a branch light guide path section (B).

Q3及びa4は光ファイバーαBと分岐導光路部(B)
との接続端部である。この光ファイバー+I11と分岐
導光路部(B)との関係は第2図のようになっており。
Q3 and a4 are optical fiber αB and branch light guide section (B)
This is the connecting end. The relationship between this optical fiber +I11 and the branch light guide section (B) is as shown in FIG.

この両接続端部は通過光用導光路t1Gと受信光用導光
路αηと送信光用導光路filとの三分岐状態になって
いる。また、 tL!9は追加接続可能な光ファイバー
naと分岐導光路部(B)との接続端部であシ、この接
続可能な光ファイバーa’trと分岐導光路部(Blと
の関係は、第3図のようになっておシ、この接続端部a
!9は受信光用導光路(I?)と送信光用導光路α樽と
の二分岐状態になっている。
Both connection ends are in a three-branch state of a light guide path t1G for passing light, a light guide path αη for receiving light, and a light guide path fil for transmitting light. Also, tL! Reference numeral 9 denotes a connecting end between the optical fiber na that can be additionally connected and the branch light guide section (B), and the relationship between this connectable optical fiber a'tr and the branch light guide section (Bl) is as shown in FIG. Now, this connection end a
! 9 is in a bifurcated state of a light guide path (I?) for receiving light and a light guide path α barrel for transmitting light.

この実施例の光分岐器は上記のように構成されており、
左右両隣に位置する各通信ノード局(図示せず)とは単
線からなる光ファイバーttnで接続されており、また
、左右両隣以外に位置する第3の通信ノード局(図示せ
ず)とも、単線からなる光ファイバー〇で接続されてい
る。
The optical splitter of this embodiment is configured as described above,
It is connected to each communication node station (not shown) located on both the left and right sides by an optical fiber ttn consisting of a single line, and is also connected to a third communication node station (not shown) located on both the left and right sides by a single line. It is connected by optical fiber 〇.

ここで、この実施例の光分岐器である通信ノード■の動
作について以下に説明する。
Here, the operation of the communication node (2), which is the optical branching device of this embodiment, will be explained below.

例えば、第1図の左隣りに位置する局より光信号が伝送
される場合について述べる。光ファイバーfill内を
伝送された嚢信号は、一部が通過光用導光路ae内を通
り2反対側の光ファイバーIを介して、そのまま右隣に
位置する局に伝送される。また、一部は受信光用導光路
(Iη内を通り、第1の受光口(17a)から受光素子
a9に伝達される。そして。
For example, a case will be described in which an optical signal is transmitted from a station located on the left side in FIG. A portion of the envelope signal transmitted within the optical fiber fill passes through the light guide path ae for passing light, and is transmitted as it is to the station located on the right side via the optical fiber I on the opposite side. Further, a part of the received light passes through the received light guide path (Iη) and is transmitted from the first light receiving port (17a) to the light receiving element a9.

この受光素子−で光電変換され電気信号となり。This light-receiving element performs photoelectric conversion and becomes an electrical signal.

増幅回路(社)で増幅され、l:E1カドライバー用の
トランジスタ(財)を介してコレクター田力として受信
信号入力端子RDに伝達する。
The signal is amplified by an amplifier circuit (Incorporated) and transmitted to the received signal input terminal RD as a collector signal via a transistor (Incorporated) for the l:E1 driver.

一方、送光発信の場合には、送信信号田力端子TDから
の電気信号によって発光素子QDが発光する。この発光
素子e9で電光変換された光信号は。
On the other hand, in the case of light transmission and transmission, the light emitting element QD emits light in response to an electric signal from the transmission signal terminal TD. The optical signal converted into electrical light by this light emitting element e9 is as follows.

送信光用導光路a咎の第1の送光口(18a )及び第
2の送光口(18’b)から両接続端部Ql、 114
を通り左右の光ファイバー+111に、また、第3の送
光口(18c)から第3の通信ノード局(図示せず)と
接続されている光ファイバーα2に各々送光される。そ
して。
Both connection ends Ql, 114 from the first light transmission port (18a) and the second light transmission port (18'b) of the light guide path a for transmission light.
The light is transmitted through the left and right optical fibers +111, and from the third light transmitting port (18c) to the optical fiber α2 connected to a third communication node station (not shown). and.

左右の両隣りに位置する局及び第3の局に各々送信され
る。
The signal is transmitted to the neighboring stations on the left and right and to the third station.

上記事例では、左隣シに位置する局より光信号が伝送さ
れる場合について述べたが2反対側に立置する局よシ光
信号が伝送される場合も同様の動作を行なう。
In the above case, the case where an optical signal is transmitted from a station located on the left side is described, but the same operation is performed when an optical signal is transmitted from a station located on two opposite sides.

次に、追加接続可能な光ファイバーσ2と接続されてい
る第3の局より光信号が伝送される場合について述べる
Next, a case will be described in which an optical signal is transmitted from a third station connected to an additionally connectable optical fiber σ2.

光ファイバーnz内を伝送された光信号は、受信光用導
光路αη内を通り、第3の受光口(17c)から受光素
子α優を経て受信信号入力端子RDに伝達する。
The optical signal transmitted through the optical fiber nz passes through the received light guide path αη, and is transmitted from the third light receiving port (17c) to the received signal input terminal RD via the light receiving element αY.

一方、送光発信の場合は、前述したように、左右の両隣
りに位置する局及び第3の局に各々送信される。
On the other hand, in the case of light transmission transmission, as described above, the light is transmitted to the left and right adjacent stations and the third station, respectively.

このように、この実施例の光分岐器では、左右双方向及
び第3の局からの光信号を受信することができ、しかも
、双方向及び第3の局に対して光信号を送信することが
できる。
As described above, the optical branching device of this embodiment can receive optical signals in both left and right directions and from the third station, and can also transmit optical signals in both directions and to the third station. I can do it.

このため、この実施例では、単線からなる光フアイバー
通信においても、光通信用のループを形成する必要性が
なく双方向光通信が可能であり。
Therefore, in this embodiment, even in optical fiber communication consisting of a single wire, there is no need to form a loop for optical communication, and bidirectional optical communication is possible.

マルチドロップバス通信が可能となる。Multi-drop bus communication becomes possible.

更に、追加接続可能な光ファイバーにより、第3の局と
も接続可能であるため、双方向通信よるトリー状のシス
テム通信も可能となる。
Furthermore, since it is possible to connect to a third station using an additionally connectable optical fiber, bidirectional communication in a tree-like system is also possible.

しかも2本発明の実施例の光分岐器によるマルチドロッ
プバス通信の場合には、光信号の一部はそのまま通過光
用導光路ae内を通過(パススルー)して9反対側に位
置する局に伝送することが相互にできるので、当該局が
故障したり、電源が落ちたりしても、隣りに位置する局
に光信号を伝送することができる。このため、いずれか
の局が故障した場合にも当該局を通過(パススルー)さ
せて。
Moreover, in the case of multi-drop bus communication using the optical branching device according to the second embodiment of the present invention, a part of the optical signal passes through the light guide path ae for passing light as it is (pass-through) to the station located on the opposite side. Since optical signals can be transmitted to each other, even if the station in question breaks down or loses power, optical signals can be transmitted to the neighboring station. Therefore, even if one of the stations is out of order, the station will be allowed to pass through.

隣間に光信号を確実に伝送することができる。Optical signals can be reliably transmitted between neighbors.

故に、沢山の通信ノード■で通信システムを構成する場
合で、しかも、この通過光が光損失等により一局分しか
通過(パススルー)させることができない場合であって
も、連続する三周が故障しない限り、当該通信システム
全体の制御を行なうことができる。
Therefore, even if a communication system is configured with a large number of communication nodes, and even if this passing light can only pass through one station due to optical loss, etc., three consecutive circuits will fail. Unless otherwise specified, the entire communication system can be controlled.

オた2通信ノード@局間の距離が長く通過光の光損失等
が大きい場合には、第4図に示すように。
If the distance between the two communication nodes is long and the optical loss of the passing light is large, as shown in FIG.

光ファイバーαDと分岐導光路部(B)との接続端部を
四系統に分岐し、このうちの二系統を通過光用導光路a
Sとし、あとの一系統を受信光用導光路αηと。
The connection end between the optical fiber αD and the branch light guide section (B) is branched into four systems, and two of these systems are connected to the light guide path a for passing light.
S, and the other system is called the receiving light guide path αη.

残りの一系統を送信光用導光路(1砂とすることにより
通過光の光パワーが増し、隣間に光信号を確実に伝送す
ることができる。
By using the remaining one line as a transmitting light guide path (one piece), the optical power of the passing light increases, and optical signals can be reliably transmitted between adjacent channels.

そして、特に、連続する二つの局が同時に故障する確率
は、−局のみが故障する確率に比べ、理論的に極めて少
な(なる。このため、この実施例の光分岐器を採用すれ
ば2通信システムの信頼度を飛躍的に向上させることが
できる。
In particular, the probability that two consecutive stations will fail at the same time is theoretically extremely small compared to the probability that only one station will fail. Therefore, if the optical branching device of this embodiment is adopted, two System reliability can be dramatically improved.

更に、この実施例の光分岐器は双方向通信が可能なため
に2例えば、電気式の同軸ケーブル等による従来の電気
信号マルチドロップバス通信と。
Furthermore, since the optical branching device of this embodiment is capable of two-way communication, it can communicate with conventional electrical signal multi-drop bus communication using, for example, electrical coaxial cables.

同一の通信プロトコルを利用することができる。The same communication protocol can be used.

即ち2通信ノード匈をこれ等の同軸ケーブル系等の電気
信号の通信システムの各局に取付けることにより、容易
に双方向の光通信を行なうことができる。
That is, by attaching two communication nodes to each station of an electrical signal communication system such as a coaxial cable system, bidirectional optical communication can be easily performed.

更にまた。この実施例では、上記のような光信号の分岐
、信号の取出し、及び送光等の各動作を高価な透過プリ
ズム(2)を使用することなく2分岐導光路部(B)で
構成できる。この分岐導光路部(B)は光ファイバー等
で形成することができるので、非常に安価な装置となり
、小形化も促進できる。
Yet again. In this embodiment, each of the above-mentioned operations such as optical signal branching, signal extraction, and light transmission can be configured by the two-branch light guide section (B) without using the expensive transmission prism (2). Since this branching light guide path section (B) can be formed of an optical fiber or the like, the device becomes a very inexpensive device and can also be miniaturized.

次に、この実施例の光分岐器による通信システムの使用
例について説明する。第5図はこの発明の光分岐器の一
使用例である空調機の制御システムを示す回路図である
。これは、前記第1図で説明した通信ノード(至)を1
本、の光ファイバーIで複数個接続して構成した通信シ
ステム(X)に、1本の光ファイバー(12a)で第3
の局を接続してトリー状に構成した通信システムである
Next, an example of use of the communication system using the optical branching device of this embodiment will be described. FIG. 5 is a circuit diagram showing a control system for an air conditioner which is an example of the use of the optical splitter of the present invention. This means that the communication node (to) explained in FIG.
A third optical fiber (12a) is connected to a communication system (X) configured by connecting multiple optical fibers I of this book.
It is a communication system configured in a tree shape by connecting several stations.

図において、(至)は通信ノードA(以下A局という)
に接続された空調(空気調和機)用室内機である。この
A局の左隣りをB局、A局の右隣りを順[0局、D局、
E局とし2通信システム(X)を構成している。また、
同様に、F局、G局により通信システム(Y)を構成し
ている。そして2通信システム(X)、 (Y)はF局
がA局−1九F局が0局に追加接続され、全体としてト
リー状に構成した通信システムとしたものである。c3
BはD局に各々接続した。
In the figure, (to) is communication node A (hereinafter referred to as A station)
This is an indoor unit for air conditioning (air conditioner) connected to the The left neighbor of this A station is B station, the right neighbor of A station is [0 station, D station,
Station E constitutes two communication systems (X). Also,
Similarly, the F station and G station constitute a communication system (Y). In the 2 communication systems (X) and (Y), the F station is additionally connected to the A station and the 19 F stations are additionally connected to the 0 station, resulting in a communication system configured in a tree shape as a whole. c3
B and D connected respectively.

例えば、空調用温度調節器のリモートコントロール(以
下リモコンという)である。03は各空調用室内機(至
)の駆動用の電源である商用電源、@は各空調用室内機
(至)と対となって差動する空調用室外機である。[有
]はリモコンC11l内に内蔵するマイクロコンピュー
タ、@は空調用室内機(至)に内蔵するマイクロコンピ
ュータである。
For example, it is a remote control (hereinafter referred to as a remote control) of an air conditioning temperature controller. 03 is a commercial power source that is a power source for driving each air conditioning indoor unit (to), and @ is an air conditioning outdoor unit that is differentially paired with each air conditioning indoor unit (to). [Yes] is a microcomputer built into the remote control C11l, and @ is a microcomputer built into the air conditioning indoor unit (to).

この空調機の制御システムは9例えば、大きな部屋にA
、  B、  C!、  D、  E局に接続された空
調用室内機(至)を4台分れて配置し、1台のリモコン
I3nで温度等に応じて運転を制御するシステム(X)
にF局、G局に接続された空調用室内機(至)によるシ
ステム(力を追加接続し、1台のリモコンC1l+で運
転を制御するものである。リモコンC(itでの制御信
号はD局で光信号に変換され、左右双方向のA、 B。
The control system for this air conditioner is 9. For example, in a large room
, B, C! A system (X) in which air conditioning indoor units (to) connected to stations , D, and E are arranged in four units and their operation is controlled according to temperature, etc. with one remote control I3n.
A system consisting of air conditioning indoor units (to) connected to station F and station G (power is additionally connected and operation is controlled by one remote control C1l+.The control signal in remote control C is D). A and B are converted into optical signals at the station and sent in both left and right directions.

0、E局及び追加接続されたF、G局に送信される。It is transmitted to stations 0 and E and additionally connected stations F and G.

上記のように構成された制御システムにおける通信動作
について、以下に説明する。
Communication operations in the control system configured as described above will be described below.

まず、リモコンでclIIで設定した温度信号によシマ
イクロコンピュータ(財)から送信信号出力端子TDに
電気信号として出力される。
First, a temperature signal set by the clII using the remote controller is outputted as an electrical signal from the microcomputer (Incorporated) to the transmission signal output terminal TD.

この信号は、上記第1図の説明で述べたように通信ノー
ド器内の発光素子Q11で電光変換される。
This signal is subjected to electro-optical conversion by the light emitting element Q11 in the communication node, as described in the explanation of FIG. 1 above.

そして、光信号として第1の送光口(18a)、第2の
送光口(18b)及、び第3図の送光口(18c) (
使用せず)から、D局の左右の両隣りに位置する0局及
びE局に光ファイバーa9を介して光送信される。
Then, as an optical signal, the first light transmitting port (18a), the second light transmitting port (18b), and the light transmitting port (18c) in FIG.
(not used) is optically transmitted to stations 0 and E, which are located on both the left and right sides of station D, via optical fiber a9.

この光信号を受け、0局の通信ノードりでは。The communication node of station 0 receives this optical signal.

一部の光信号が通運光用導光路(1e内を通過(パスス
ルー)シ、そのまま隣シに位置するA局に送信される。
A part of the optical signal passes through the transport light guide path (1e) and is directly transmitted to the adjacent station A.

また、一部は受信光用導光路(Iηを通り受光口から受
光素子ヒ9に伝達される。そして、この受光素子員で電
気信号に変換され、更に、増幅回路(イ)で増幅されて
、受信信号入力端子RDに入力される。この入力信号は
、空調用室内機(イ)内のマイクロコンピュータ(至)
が受信する。マイクロコンピュータ(至)はこの受信信
号と同期して、予め定められた所定の通信速度で、且つ
、定められた一定のパルス幅の信号を発生する。そして
、各通信ノード(至)の送信信号出力端子TDに送信信
号を出力する。この後、送信信号は電光変換されて、光
信号が光ファイバー09を通して0局の左右両隣りに位
置するA局及びD局に光送信されると七もに。
A part of the received light passes through the light guide path (Iη) and is transmitted from the light receiving port to the light receiving element H9.Then, it is converted into an electrical signal by the light receiving element member, and further amplified by the amplifier circuit (A). , is input to the reception signal input terminal RD.This input signal is input to the microcomputer (to) in the air conditioning indoor unit (a).
is received. The microcomputer (to) generates a signal with a predetermined communication speed and a predetermined constant pulse width in synchronization with this received signal. Then, the transmission signal is output to the transmission signal output terminal TD of each communication node (to). After that, the transmitted signal is converted into electrical light, and the optical signal is optically transmitted through optical fiber 09 to stations A and D, which are located on both the left and right sides of station 0.

追加接続用の光ファイバー(12b)を通してF局に光
送信される。
The signal is optically transmitted to station F through an optical fiber (12b) for additional connection.

したがって、A局にも0局と同様にリモコン01からの
温度設定信号が伝送される。しかも、0局で附勢されて
伝送される。このため、A局の左隣りにい(つかの局を
連接させても、同様にして順次同じ通信情報を伝送する
ことができる。また。
Therefore, the temperature setting signal from the remote controller 01 is transmitted to the A station as well as to the 0 station. Furthermore, the signal is energized and transmitted at station 0. Therefore, even if several stations are connected to the left side of station A, the same communication information can be sequentially transmitted in the same way.Also.

リモコン(D局)の右隣りにしても同様である。The same applies to the remote control (station D) on the right side.

しかも、これ等の各局は9通過光用導光路αGを有する
ので2例えば、0局が故障したシ或いは商用電源(ハ)
が供給されていなくても、D局からの通信信号は隣りの
局に伝送される。
Moreover, since each of these stations has 9 light guide paths αG for passing light, for example, if 0 stations are out of order or the commercial power supply (c)
Even if station D is not supplied, the communication signal from station D is transmitted to the neighboring station.

一方、C局から追加接続用の光ファイバー(12b)に
より光送信されたF局も、前記同様に0局以下右隣りに
順次同じ通信情報を伝送することができる。
On the other hand, the F station, which is optically transmitted from the C station through the optical fiber (12b) for additional connection, can also sequentially transmit the same communication information to the 0th station and its right neighbors in the same manner as described above.

ここで、0局からF局への伝送には追加接続端部(I5
+よシ信号伝送されるが、D局(或いはA局)からの信
号に対して通過光用導光路Oeを持っていないため0局
が故障等により送光不可になると。
Here, for transmission from station 0 to station F, an additional connection end (I5
However, if station 0 becomes unable to transmit light due to a failure or the like because it does not have a light guide path Oe for passing light for the signal from station D (or station A).

F局に情報が伝送されなくなる。このため、0局以外の
局2例えば、A局とF局とを接続することにより、0局
が故障等を起してもF局には通信情報を伝送することが
できる。このことは、前記通過光用導光路σ0によシ連
続した2つの局が故障等を起してない限り通信可能であ
るのと同様に、F局と接続されている0局(!:C局以
外の局2例えば。
Information will no longer be transmitted to station F. Therefore, by connecting stations 2 other than station 0, for example, station A and station F, communication information can be transmitted to station F even if station 0 has a failure or the like. This means that, in the same way that two consecutive stations can communicate via the light guide path σ0 for passing light as long as there is no failure, station 0 (!:C For example, station 2 other than the station.

A局の両局が同時に故障等により送光できない場合を除
いてF局には通信情報を伝送することができる。
Communication information can be transmitted to station F except when both stations of A station cannot transmit light at the same time due to a failure or the like.

上記のように、この実施例の通信ノード(イ)は。As mentioned above, the communication node (a) of this embodiment is.

ある−局の故障等により送光できない局が発生しても三
周連続して故障が起らない限り、故障局以外のトリー状
の通信システム全体の制御を行なうことができる。また
、D局以外にリモコン(図示せず)を追加したい場合で
も2例えば、E局の追加接続端部aSに光フアイバー接
続することによシ簡単に追加することができる。
Even if a station is unable to transmit light due to a failure of a certain station, the entire tree-like communication system other than the failed station can be controlled as long as the failure does not occur three consecutive times. Furthermore, even if it is desired to add a remote control (not shown) to stations other than the D station, it can be easily added by, for example, connecting an optical fiber to the additional connection end aS of the E station.

ところで、上記の各実施例では、光分岐器の使用例とし
て空調機の制御システムに使用する場合について言幽し
たが2本発明を実施する場合には。
By the way, in each of the above embodiments, the use of the optical splitter in an air conditioner control system was omitted, but there are two cases in which the present invention is implemented.

このシステムに限定されるものではない。例えば。It is not limited to this system. for example.

電磁ノイズの影響を受けない光通信の特徴からして、パ
ーソナルコンピュータ等の情報機器、NOマシン等の工
場通信システム、或いは、家庭用ホームオートメーショ
ン通信システム等に広(使用でき、広(各種の通信産業
に利用し得るものである。
Due to the characteristics of optical communication, which is not affected by electromagnetic noise, it can be widely used in information equipment such as personal computers, factory communication systems such as NO machines, home automation communication systems, etc. It can be used in industry.

第6図は本発明の他の使用例であるパーソナルコンピュ
ータ等の情報機器に関する制御システムの実施例のブロ
ック構成図である。なお2図中。
FIG. 6 is a block diagram of an embodiment of a control system for information equipment such as a personal computer, which is another example of the use of the present invention. In addition, in Figure 2.

第1図から第5図と同−符号及び記号は前記実施例の構
成部分と同一または相当する構成部分を示すものであり
、ここでは9重複した説明を省略し。
The same reference numerals and symbols as in FIGS. 1 to 5 indicate constituent parts that are the same as or correspond to the constituent parts of the previous embodiment, and repeated explanation will be omitted here.

特に、第5図の実施例との相違点のみ説明する。In particular, only the differences from the embodiment shown in FIG. 5 will be explained.

この制御システムは2例えば、パーソナルコンピュータ
等の情報機器によるネットワークが組まれているビルB
とビルTとを光通信により接続し。
This control system can be used for example in Building B, where a network of information devices such as personal computers is set up.
and Building T are connected by optical communication.

1つのシステムを構成している。それぞれのビルSとビ
ルTFl′3には、この実施例の通信ノード(イ)にパ
ーソナルコンピュータ等の情報機器14Gが接続されて
おり2通信システム系を構成している。上記2つのシス
テム系を前述した追加接続端部a!9に接続することに
より、ビルSとビルTの末端から接続する必要はな(、
ビル日とビルTの最短距離で一番接続の行ない易い任意
の通信ノード(イ)を接続することによシワピルSとビ
ルTを1つの通信システムとして構成できる。
It constitutes one system. In each building S and building TF1'3, an information device 14G such as a personal computer is connected to the communication node (a) of this embodiment, forming two communication systems. Additional connection end a! 9, there is no need to connect from the ends of Building S and Building T (,
By connecting an arbitrary communication node (a) that is the shortest distance and easiest to connect between Building Day and Building T, Shiwapiru S and Building T can be configured as one communication system.

例えば、L字形のピルS内の通信システムとビルSのL
字形に折曲した箇所に隣接するビルT内の通信システム
きを接続する場合、ビルT内の任意の通信ノード■とビ
ルS内のL字形に折曲した箇所に近い通信ノード局器と
を接続し、また、追加接続可能な光ファイバー(12a
)で、ビルS、ビルT内のそれぞれの任意の2局をバイ
パス接続することにより、ビルSとビルTとを直接接続
した通信ノード局(ハ)が故障等により情報伝達不能の
場合でも9通過(バススルー)可能な光導光路0e及び
バイパスされた追加接続光ファイバー(12b)により
ビルSとビルT、!:を一体化した通信システム系は故
障局を除いて情報通信可能である。
For example, the communication system inside the L-shaped pill S and the L-shaped building S
When connecting the communication system in building T adjacent to the L-shaped bend, connect any communication node in building T to the communication node station near the L-shaped bend in building S. Optical fiber (12a) that can be connected and additionally connected
), by bypass-connecting any two stations in buildings S and T, even if the communication node station (c) that directly connects buildings S and T is unable to transmit information due to a failure etc. Building S and building T, ! by the optical light guide path 0e that can pass through (bus-through) and the bypassed additional connecting optical fiber (12b)! A communication system that integrates : can communicate information except for the failed station.

また、この実施例による光分岐器の組合せにより、無限
にトリー状のマルチドロップバス方式の光接続通信が可
能となる。
Further, by combining the optical branching devices according to this embodiment, optical connection communication using an infinite tree-like multi-drop bus system is possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明の光分岐器は。 As explained above, the optical splitter of the present invention is as follows.

光通信用の光ファイバーと接続する分岐導光路部を、光
信号が通過可能な通過光用導光路と、第1の受光口及び
第2の受光口を有する受信光用導光路と、第1の送光口
及び第2の送光口を有する送信光用導光路との三系統に
分岐し、また、追加接続端部を第3の受光口を有する受
信光用導光路と第3の送光口を有する送信光用導光路と
の二系統に分岐し、エネルギー変換部で第1の受光口、
第2の受光口、第3の受光口からの光信号を受光素子に
より光電変換し、その電気信号を増幅回路で増幅すると
ともに2発光素子で電気信号を電光変換して第1の送光
口、第2の送光口、第3の送光口に発光することにより
、単線からなる光フアイバー内を伝送する光信号を双方
向で受信でき、また、追加接続可能な単線からなる光フ
アイバー内を伝送する光信号をともに受信でき、その光
信号を光電変換できるとともに、各種の電気信号を光信
号に電光変換して双方向及び追加接続端部に送信するこ
とができるので、光通信用のループを形成するとと々<
、トリー状の通信形態においても単線双方向光通信がで
きる。しかも、マルチドロップバス形態では光信号の一
部はそのまま通過光用導光路内を通過(パススルー)し
て隣居等に伝送されるとともに、トリー状通信形態にお
いても追加接続する光ファイバーを2本接続することに
より、当該局が故障した場合でも、隣居に光信号を伝送
でき2通信システムの信頼性を向上させるこ吉ができる
The branching light guide section that connects to the optical fiber for optical communication includes a light guide path for passing light through which an optical signal can pass, a light guide path for receiving light having a first light receiving port and a second light receiving port, and a first light guide path for receiving light having a first light receiving port and a second light receiving port. It is branched into three systems: a light guide path for transmitting light having a light transmitting port and a second light transmitting port, and an additional connection end is connected to a light guide path for receiving light having a third light receiving port and a light guide path for transmitting light having a third light receiving port. The light guide path for transmitting light has a first light receiving port, and the first light receiving port has a first light receiving port.
The optical signal from the second light receiving port and the third light receiving port is photoelectrically converted by the light receiving element, and the electrical signal is amplified by the amplifier circuit, and the electrical signal is converted into electrical light by the two light emitting elements, and the light signal is converted to the first light receiving port. By emitting light to the second light transmitting port and the third light transmitting port, it is possible to receive the optical signal transmitted within the optical fiber consisting of a single wire in both directions. It is possible to receive optical signals that transmit both signals, convert the optical signals into electrical signals, and convert various electrical signals into optical signals and send them in both directions and to additional connection terminals. When forming a loop, <
, single-wire bidirectional optical communication is possible even in a tree-like communication format. Moreover, in the multi-drop bus configuration, a part of the optical signal passes through the light guide path for passing light and is transmitted to the neighboring residence, etc., and in the tree-like communication configuration, two additional optical fibers are connected. By doing so, even if the station in question is out of order, it is possible to transmit optical signals to the neighboring house, thereby improving the reliability of the two communication systems.

更に、光信号の分岐、信号のを出し、送光等の各動作を
透過プリズムを使用することな(できるので、非常に安
価となり、小形化できる。
Furthermore, each operation such as branching of optical signals, outputting signals, and transmitting light can be performed without using a transmission prism, making it extremely inexpensive and compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である光分岐器の通信ノー
ドを示す回路図、第2図は第1図の通信ノードの分岐導
光路部の接続端部近傍を示す断面図、第3図は同じく第
1図の通信ノードの追加接続端部の近傍を示す断面図、
第4図は同じ(第1図の通信ノードの通過光用導光路を
2本にした場合の分岐導光路の接続端部の近傍を示す断
面図。 第5図はこの発明の実施例の光分配器の使用例である空
調機の制御システムを示すブロック回路構成図、第6図
は本発明の実施例の他の使用例であるパーソナルコンピ
ュータ等の情報機器の制御システムのブロック回路構成
図、第7図は従来の光通信装置に用いられている光スィ
ッチの透過プリズムを光路に入れた状態及び透過プリズ
ムを光路から外した状態を示す平面図、第8図は従来の
光伝送システムを示す構成図である。 図において、α]は光ファイバー、 f12は追、加接
続可能な光ファイバー、α3.住めは三系統の接続端部
。 αeは二系統の接続端部、σeは通過光用導光路、aη
は受信光用導光路、  (17a)は第1の受光口、 
 (17b)は第2の受光口、  (17c)は第3の
受光口、α樽は送信光用導光路、  (18a)は第1
の送光口、  (18b)は第2の送光口、  (18
c)は第3の送光口、Aはエネルギー変換部、Bは分岐
導光路部、である。 なお9図中、同−符号及び同一記号は、同一または相当
部分を示す。
FIG. 1 is a circuit diagram showing a communication node of an optical branching device according to an embodiment of the present invention, FIG. The figure is also a sectional view showing the vicinity of the additional connection end of the communication node in Figure 1;
FIG. 4 is the same (a sectional view showing the vicinity of the connecting end of the branched light guide when the communication node in FIG. 1 has two light guides for passing light. FIG. FIG. 6 is a block circuit diagram showing a control system for an air conditioner, which is an example of how the distributor is used; FIG. Fig. 7 is a plan view showing a state in which a transmission prism of an optical switch used in a conventional optical communication device is inserted into the optical path and a state in which the transmission prism is removed from the optical path, and Fig. 8 shows a conventional optical transmission system. This is a configuration diagram. In the figure, α] is an optical fiber, f12 is an additional optical fiber that can be connected, α3 is a connection end for three systems, αe is a connection end for two systems, and σe is a light guide path for passing light. ,aη
(17a) is the light guide path for receiving light, (17a) is the first light receiving port,
(17b) is the second light receiving port, (17c) is the third light receiving port, α barrel is the light guide path for transmitting light, (18a) is the first light receiving port.
(18b) is the second light transmission port, (18
c) is the third light transmission port, A is the energy conversion section, and B is the branch light guide path section. In addition, in FIG. 9, the same reference numerals and the same symbols indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 分岐導光路部を三系統に分岐した2接続端部及び二系統
に分岐した1接続端部を有する光通信用の光ファイバー
と接続される3接続端部を具備する光分岐器において、 前記三系統に分岐した2接続端部間の双方向からの光信
号を通過可能とした通信光用導光路と、前記三系統に分
岐した2接続端部の両方向からの光信号を各々受光する
第1の受光口及び第2の受光口並びに前記二系統に分岐
した1接続端部方向からの光信号を受光する第3の受光
口を有する受信光用導光路と、 前記三系統に分岐した2接続端部の両方向へ光信号を各
々送出する第1の送光口及び第2の送光口並びに前記二
系統に分岐した1接続端部方向へ光信号を送出する第3
の送光口を有する送信光用導光路と、 前記受信光用導光路の第1の受光口及び第2の受光口及
び第3の受光口からの光信号を受け電気信号に変換する
受光素子と、前記受光素子からの電気信号を増幅する増
幅回路と、前記電気信号を光信号に変換して前記送信光
用導光路の第1の送光口及び第2の送光口及び第3の送
光口に送る発光素子を有するエネルギー変換部と、 を具備して同一基板上に一体化し超小型にしたことを特
徴とする光分岐器。
[Scope of Claims] An optical branch comprising three connection ends connected to optical fibers for optical communication, which have two connection ends where a branch light guide path is branched into three systems and one connection end where the branch light guide path is branched into two systems. In the device, there is provided a communication light guide path that allows optical signals to pass from both directions between the two connection ends branched into the three systems, and an optical signal guide path that allows optical signals from both directions to pass between the two connection ends that are branched into the three systems. a received light light guide path having a first light receiving port and a second light receiving port that each receive light, and a third light receiving port that receives an optical signal from the one connection end direction branched into the two systems; a first light transmitting port and a second light transmitting port that respectively transmit optical signals in both directions of the two connection ends that are branched into the two systems; and a third light transmission port that transmits optical signals in the direction of the one connection end that has branched into the two systems.
a light guide for transmitting light having a light transmitting port, and a light receiving element that receives optical signals from the first light receiving port, second light receiving port, and third light receiving port of the light guide for receiving light and converts them into electrical signals. an amplifier circuit that amplifies the electrical signal from the light receiving element; and an amplifier circuit that converts the electrical signal into an optical signal and connects the first light transmitting port, the second light transmitting port, and the third light transmitting port of the light guide path for transmitting light. What is claimed is: 1. An optical splitter comprising: an energy converter having a light emitting element for sending light to a light transmitting port;
JP63174164A 1988-07-13 1988-07-13 Light-branching unit Pending JPH0223730A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP63174164A JPH0223730A (en) 1988-07-13 1988-07-13 Light-branching unit
EP89908254A EP0378704B1 (en) 1988-07-13 1989-07-12 Optical shunt device
DE68928935T DE68928935T2 (en) 1988-07-13 1989-07-12 Optical shunt device
DE68925811T DE68925811T2 (en) 1988-07-13 1989-07-12 OPTICAL SHUTTER DEVICE
KR1019900700523A KR920009386B1 (en) 1988-07-13 1989-07-12 Optical shunting device
AU38761/89A AU614861B2 (en) 1988-07-13 1989-07-12 Optical shunt device
CA000605465A CA1312119C (en) 1988-07-13 1989-07-12 Optical shunt device
PCT/JP1989/000702 WO1990000838A1 (en) 1988-07-13 1989-07-12 Optical shunt device
ES8902465A ES2014778A6 (en) 1988-07-13 1989-07-12 Optical shunt device.
AT89908254T ATE134807T1 (en) 1988-07-13 1989-07-12 OPTICAL SUB-CLOSURE DEVICE
AT93200764T ATE176969T1 (en) 1988-07-13 1989-07-12 OPTICAL SUB-CLOSURE DEVICE
US07/465,230 US5133031A (en) 1988-07-13 1989-07-12 Optical shunt device
EP93200764A EP0550421B1 (en) 1988-07-13 1989-07-12 Optical shunt device
NO901140A NO901140D0 (en) 1988-07-13 1990-03-12 OPTICAL SHUNT DEVICE.
NO952139A NO952139D0 (en) 1988-07-13 1995-05-30 Optical shunt device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174164A JPH0223730A (en) 1988-07-13 1988-07-13 Light-branching unit

Publications (1)

Publication Number Publication Date
JPH0223730A true JPH0223730A (en) 1990-01-25

Family

ID=15973819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174164A Pending JPH0223730A (en) 1988-07-13 1988-07-13 Light-branching unit

Country Status (1)

Country Link
JP (1) JPH0223730A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117832A (en) * 1983-11-29 1985-06-25 Toshiba Corp Transmission/reception interface for two-way optical transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117832A (en) * 1983-11-29 1985-06-25 Toshiba Corp Transmission/reception interface for two-way optical transmission

Similar Documents

Publication Publication Date Title
KR920005908B1 (en) Optoelectronic device for an optical communication system
KR920009386B1 (en) Optical shunting device
US6377373B1 (en) Optical transmission system
JPH01115230A (en) Optical fiber communication lan
US6396602B1 (en) Optical switching unit, particularly for switching to standby components in optical transmission systems
US4234970A (en) Fiber optic communication system
KR100594095B1 (en) Bidirectional wavelength division multiplexed add/drop self-healing hubbed ring network
EP0314508B1 (en) Optical communications apparatus
JPH0223730A (en) Light-branching unit
EP0166915B1 (en) Communication system
US6549314B1 (en) Optical control apparatus, optical junction apparatus, optical ADM apparatus and optical transmission apparatus having thereof
US6993260B2 (en) Interconnecting processing units of a stored program controlled system using free space optics
JP2765859B2 (en) Optical communication device
RU2259635C2 (en) Local fiber-optic network and internetwork
JPH03127524A (en) Two-way optical data transmission system
JPH0246029A (en) Optical communication system
JPH088529B2 (en) Optical communication device
GB2102232A (en) Optical fibre system
JPH09179151A (en) Direction switching type optical amplifier and bus type single fiber optical communication system using the same
JPH01222533A (en) Bus system optical network system
JPH0322722A (en) Optical communication network
JPH0287740A (en) Signal transmission system
JPS5880943A (en) Optical communication system
JPS639335A (en) Optical local area network
JPH021635A (en) Optical communication equipment