JPH02228487A - Production of high purity tin - Google Patents

Production of high purity tin

Info

Publication number
JPH02228487A
JPH02228487A JP4855789A JP4855789A JPH02228487A JP H02228487 A JPH02228487 A JP H02228487A JP 4855789 A JP4855789 A JP 4855789A JP 4855789 A JP4855789 A JP 4855789A JP H02228487 A JPH02228487 A JP H02228487A
Authority
JP
Japan
Prior art keywords
tin
hydrochloric acid
sulfuric acid
electrolytic solution
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4855789A
Other languages
Japanese (ja)
Other versions
JP2754030B2 (en
Inventor
Kiyonobu Nakamura
中村 精伸
Hirohisa Senzaki
博久 千崎
Tomiko Yamaguchi
富子 山口
Mitsugi Yamamoto
貢 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4855789A priority Critical patent/JP2754030B2/en
Publication of JPH02228487A publication Critical patent/JPH02228487A/en
Application granted granted Critical
Publication of JP2754030B2 publication Critical patent/JP2754030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To simply produce high purity tin having a small alpha-ray count by electrolyzing high purity tin as the anode with an electrolytic soln. contg. highly purified sulfuric acid and hydrochloric acid in a certain ratio. CONSTITUTION:A tin electrolytic soln. contg. 90-240g/l sulfuric acid corresponding to sulfuric acid as a first-class reagent stipulated by JIS and 10-50g/l hydrochloric acid corresponding to hydrochloric acid as a first-class reagent is prepd. Tin of >=99.97wt.% purity as the anode and an SUS sheet, etc., as the cathode are immersed in the electrolytic soln. and tin is deposited on the cathode by electrolysis. The deposited tin is stripped, washed and dried. High purity tin having about <=0.005C/hr.cm<3> alpha-ray count and about <1ppm lead content is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主としてエレクトロニクス産業分野において
用いられるロー付は材や半田材料等として有用な高純度
、かつα線カウントの少ない錫の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing tin with high purity and low α-ray count, which is useful as brazing material and solder material used mainly in the electronics industry. .

[従来の技術および発明が解決しようとする課題〕近来
、エレクトロニクス分野における技術の進歩は著しく、
ICはより大容量化へと向い、半導体メモリにおいても
 1Mビットから4MビットDRAMへと開発は進んで
きた。それらを高性能、高信頼度とするためにIC組立
等に用いられるロー付は材や半田材料として用いられる
錫にも高純度化、低α線化が要求されるのは必至である
[Prior art and problems to be solved by the invention] In recent years, technology in the electronics field has made remarkable progress.
ICs are trending towards larger capacities, and semiconductor memory development has progressed from 1Mbit to 4Mbit DRAM. In order to improve the performance and reliability of these products, it is inevitable that tin used as brazing material and solder material used in IC assembly etc. should also be highly purified and have low alpha rays.

高純度の錫を得るには、電解を繰返すか、あるいは仕上
げに真空蒸留やゾーン精製といった乾式精製が行なわれ
ている。しかし、前者の方法では錫中に含まれるPb、
In等の不純物は数ppmオーダーにとどまり、錫の高
純度化は達成し得す、また電解を繰返すために、煩雑で
生産性に劣り、コスト的にも不利である。また後者の方
法は電力経費が嵩み、実操業を考えた場合に問題がある
To obtain high-purity tin, repeated electrolysis or final dry refining such as vacuum distillation or zone refining is performed. However, in the former method, Pb contained in tin,
Impurities such as In remain on the order of several ppm, and high purity of tin can be achieved, but since electrolysis is repeated, it is complicated, poor in productivity, and disadvantageous in terms of cost. In addition, the latter method increases electricity costs, which poses a problem when considering actual operation.

この課題を解決すべくため、本発明者等によって特願昭
63−110436号において、精製度の高い硫酸を一
定量含有する電解液を用いる方法が提案されている。し
かし、この方法においてもα線カウントの低減は充分で
なく、またpb等の不純物が残存し、高純度化といった
観点からも課題があった。
In order to solve this problem, the present inventors have proposed in Japanese Patent Application No. 110436/1983 a method using an electrolytic solution containing a certain amount of highly purified sulfuric acid. However, even in this method, the α-ray count is not sufficiently reduced, and impurities such as PB remain, which poses problems from the viewpoint of high purity.

本発明は、上記課題に鑑み、高純度でα線カウントが極
めて少なく、しかも簡便かつ安価な錫の製造方法を提供
することを目的とするものである。
In view of the above-mentioned problems, the present invention aims to provide a method for manufacturing tin that is highly pure, has an extremely low α-ray count, and is simple and inexpensive.

[課題を解決するための手段及び作用]本発明者等は、
上記目的を達成するために種々検討を重ねた結果、精製
度の高い硫酸と塩酸が一定割合で含有された電解液を用
い、かつ高純度の錫を陽極として配置して電解を6行な
うことにより、上記目的を達成し得ることを知見して本
発明に到達した。
[Means and effects for solving the problem] The present inventors,
As a result of various studies to achieve the above objective, we decided to conduct 6 electrolysis using an electrolytic solution containing a certain ratio of highly purified sulfuric acid and hydrochloric acid, and arranging highly purified tin as an anode. The present invention was achieved by discovering that the above object can be achieved.

すなわち、本発明の錫の製造方法は、JISK 895
1に規定される試薬一級硫酸の規格に少なくとも適合す
る硫酸90〜240g/JとJIS  K8180に規
定される試薬一級塩酸の規格に少なくとも適合する塩酸
10〜50g/Jを含有する電解液中で、純度が99.
97重量%以上である錫を陽極に用いて電解を行なうこ
とを特徴とする。
That is, the tin manufacturing method of the present invention conforms to JISK 895
In an electrolytic solution containing 90 to 240 g/J of sulfuric acid that at least meets the standards for the reagent primary sulfuric acid specified in 1 and 10 to 50 g/J of hydrochloric acid that at least meets the standards for the reagent primary hydrochloric acid specified in JIS K8180, Purity is 99.
It is characterized in that electrolysis is carried out using 97% by weight or more of tin as an anode.

本発明では、電解液中に硫酸と塩酸が含有される。ここ
で用いられる硫酸はJISK8951に規定される試薬
一級硫酸の規格に少なくとも適合する硫酸で、同規格の
硫酸あるいはそれ以上に精製された硫酸である。また、
ここに用いられる塩酸はJISK8180に規定される
試薬一級塩酸の規格に少なくとも適合する塩酸で、同規
格の塩酸あるいはそれ以上に精製された塩酸である。こ
れらの硫酸、塩酸は上記IIs規格を少なくとも満たす
ものであれば、市販品でも自家精製品のいずれであって
もよい。
In the present invention, sulfuric acid and hydrochloric acid are contained in the electrolytic solution. The sulfuric acid used here is sulfuric acid that at least meets the standards for reagent primary sulfuric acid specified in JIS K8951, and is sulfuric acid that meets the same standards or purified to a higher level. Also,
The hydrochloric acid used here is a hydrochloric acid that at least meets the standards for reagent primary hydrochloric acid specified in JIS K8180, and is a hydrochloric acid that meets the same standards or is purified to a higher level. These sulfuric acids and hydrochloric acids may be either commercially available products or self-purified products as long as they meet at least the above IIs standards.

本発明において、電解液中の硫酸、塩酸のいずれかが上
記規格を満たさない場合には、本願発明で目的とする錫
の高純度化やα線カウントの低減化は達成されない。
In the present invention, if either sulfuric acid or hydrochloric acid in the electrolytic solution does not meet the above specifications, the high purity of tin and the reduction in the α-ray count, which are the objectives of the present invention, cannot be achieved.

本発明における電解液中の硫酸濃度および塩酸濃度は不
純物をより低減させるために重要であり、特に塩酸濃度
は鍋中の不純物である鉛含有量に影響を与え、一般には
塩酸濃度が高い程、鍋中の鉛含有量が低下する。また、
塩酸濃度は電解液の電解電圧を左右する要素でもある。
The sulfuric acid concentration and hydrochloric acid concentration in the electrolytic solution in the present invention are important for further reducing impurities. In particular, the hydrochloric acid concentration affects the lead content, which is an impurity in the pot, and generally, the higher the hydrochloric acid concentration, the more The lead content in the pot is reduced. Also,
Hydrochloric acid concentration is also a factor that influences the electrolysis voltage of the electrolyte.

本発明において、電解液中の硫酸濃度は90−・240
g/J、好ましくは120〜240g/ノである。
In the present invention, the sulfuric acid concentration in the electrolyte is 90-240
g/J, preferably 120-240 g/J.

硫酸濃度が90 g / 1未満の場合は、陰極への析
出錫のα線カウントが高く、析出鍋中のsb含有量が高
くなり、240g/lを超える場合は、陽極である錫の
電解液への溶出が激しくなり、析出錫の純度が劣化する
ので好ましくない。
If the sulfuric acid concentration is less than 90 g/l, the alpha ray count of tin deposited on the cathode will be high and the sb content in the precipitation pot will be high, and if it exceeds 240 g/l, the tin electrolyte that is the anode will be This is not preferable because the elution of tin becomes intense and the purity of the precipitated tin deteriorates.

また、電解液中の塩酸濃度は10〜50g/J、好まし
くは20〜30g/Jである。塩酸濃度が10g/J未
満では、液中の鉛許容量が少ないた。め析出鍋中に鉛含
有量が高くなり、50g/iを超えると塩素ガスが発生
するため好ましくない。
Further, the concentration of hydrochloric acid in the electrolytic solution is 10 to 50 g/J, preferably 20 to 30 g/J. When the hydrochloric acid concentration is less than 10 g/J, the allowable amount of lead in the liquid is small. The lead content in the precipitation pot becomes high, and if it exceeds 50 g/i, chlorine gas is generated, which is not preferable.

この硫酸、塩酸を希釈して電解液を作成する際に用いら
れる水は、放射線物質を含有しない高純度水が好ましい
The water used when diluting the sulfuric acid and hydrochloric acid to create the electrolytic solution is preferably high-purity water that does not contain radioactive substances.

また、本発明に用いられる電解液中の錫イオン濃度は1
5〜50g/iであることが望ましい。15g/J未満
の場合は陰極への析出錫が稠密でなくなり、50g/l
を超える場合は経済性が悪くなる。
Furthermore, the tin ion concentration in the electrolyte used in the present invention is 1
It is desirable that it is 5 to 50 g/i. If the amount is less than 15 g/J, the tin deposited on the cathode will not be dense, and if the amount is less than 50 g/l
If it exceeds this, the economic efficiency will be poor.

さらに、この電解液にゼラチンを0,5〜1.0g/ノ
を添加すると、陰極に析出する錫の析出状態の改善に効
果がある。
Furthermore, adding 0.5 to 1.0 g/g of gelatin to this electrolytic solution is effective in improving the state of tin deposited on the cathode.

このような成分を含有する本発明で用いられる電解液は
、電解中は電解槽内での濃度不均一を防止するために循
環を行なうことが望ましい。
It is desirable that the electrolytic solution containing such components used in the present invention be circulated during electrolysis to prevent uneven concentration within the electrolytic cell.

本発明で陽極として用いられる錫は、純度が99.97
重量%以上であることが必要である。純度が99.97
重量%未満の錫の場合はα線カウントが高くなる。
The tin used as the anode in the present invention has a purity of 99.97.
It is necessary that the amount is at least % by weight. Purity is 99.97
If the amount of tin is less than % by weight, the α-ray count will be high.

本発明にあっては、上述の電解液および陽極を用いて電
解を行なうが、その際に高純度の錫からなる陽極を耐酸
性の化学繊維を両面に貼付した隔離箱に装入して、陽極
泥を回収する。また、陰極としては、ステンレス等の金
属板が用いられるが、本発明の製造方法により一度陰極
に析出させた錫を加工して用いることも可能である。
In the present invention, electrolysis is carried out using the above-mentioned electrolytic solution and anode. At this time, the anode made of high-purity tin is placed in an isolation box with acid-resistant chemical fibers pasted on both sides. Collect the anode mud. Further, as the cathode, a metal plate such as stainless steel is used, but it is also possible to process and use tin that has been deposited on the cathode once by the manufacturing method of the present invention.

この際の電解条件は、電解液の温度は15〜95℃、電
流密度は0.3〜1.OA/da+2であることが好ま
しい。電解液の温度が15℃未満では電解液の電気的抵
抗が高いため電解効率が悪くなり、また添加剤の効果が
半減する。また95℃を超えると電解液が沸騰した状態
となってしまうため、それぞれ好ましくない。さらに、
電解液を特に加温しなくても15℃以上であれば電解が
良好に続くので経済的な面で電解液の温度はより低い方
が好適である。
The electrolytic conditions at this time are that the temperature of the electrolytic solution is 15 to 95°C, and the current density is 0.3 to 1. Preferably it is OA/da+2. If the temperature of the electrolytic solution is less than 15° C., the electrical resistance of the electrolytic solution is high, resulting in poor electrolytic efficiency and the effect of the additive is halved. Moreover, if the temperature exceeds 95° C., the electrolyte will be in a boiling state, which is not preferable. moreover,
Even if the electrolytic solution is not particularly heated, electrolysis continues well at temperatures of 15° C. or higher, so from an economic point of view, it is preferable that the temperature of the electrolytic solution be lower.

電解時の電流密度が0.3A/da2未満の場合は陰極
に析出させる錫に悪い影響はないものの、単位時間当り
の取得量が少なく非能率的であり、1、OA / da
d2を超える場合は陽極の不働態化を早く招くのでそれ
ぞれ好ましくない。
If the current density during electrolysis is less than 0.3 A/da2, it will not have a negative effect on the tin deposited on the cathode, but the amount obtained per unit time will be small and it will be inefficient.
If it exceeds d2, the anode becomes passivated quickly, which is not preferable.

この様な本発明の製造方法によると純度99.998重
量%以上、α線カウント数が0.005C/ hr−a
i以下、不純物であるpb含有量が1 ppm未満で、
しかもその他の不純物であるIn、Cu、Bl。
According to the manufacturing method of the present invention, the purity is 99.998% by weight or more and the α-ray count is 0.005C/hr-a.
i or less, the PB content as an impurity is less than 1 ppm,
Moreover, other impurities such as In, Cu, and Bl.

A s +  S b 、F eのいずれの含有量も 
1 ppm未満の錫が得られる。
The content of both A s + S b and Fe
Less than 1 ppm of tin is obtained.

[作用] 先に出願した特願昭63−110438号に記載されて
いる一定量の硫酸を用いた電解液より、一定量の硫酸と
塩酸を用いた電解液のほうがα線放射の主原因となるウ
ラン、トリウム等の放射性物質やラジウム、ラドン、ボ
ロニウム、ビスマス、アスクチン、鉛等の崩壊系列に属
する放射性の状態にある放射性物質の系外への除去が一
層なされるため、α線カウントが0.005C/ hr
−ci以下になり、また硫酸と塩酸との混合液であるた
め液中の鉛許容量が高くなり、従って、析出鍋中の不純
物であるpbの含1!¥量もl ppI11未満となっ
たものと考えられる。
[Function] The electrolytic solution using a certain amount of sulfuric acid and hydrochloric acid is more likely to be the main cause of α-ray emission than the electrolytic solution using a certain amount of sulfuric acid described in the previously filed Japanese Patent Application No. 110438/1982. Radioactive substances such as uranium and thorium, as well as radioactive substances belonging to the decay series such as radium, radon, boronium, bismuth, ascutin, and lead, are further removed from the system, so that the α-ray count becomes 0. .005C/hr
-ci or less, and since it is a mixed solution of sulfuric acid and hydrochloric acid, the permissible amount of lead in the solution is high. It is thought that the amount of ¥ was also less than 1 ppI.

[実施例] 以下本発明を実施例および比較例に基づき、具体的に説
明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1〜6 第1表に示される規格の硫酸と塩酸並びに錫を含有し、
硫酸と塩酸の濃度が第1表に示す濃度で、錫濃度が20
g/、、fの電解液を用い、約55In110+inの
速度で約51の電解層中を循環させ電解を行なった。こ
の電解に際し、純度99.97重量%錫を10XloX
  L、5cmに鋳込んで陽極とし、l0XIOX  
O,20のステンレス板を陰極とした。電解条件は電流
密度を0.4A / dm2、室温で電解性なった。
Examples 1 to 6 Containing sulfuric acid and hydrochloric acid and tin of the specifications shown in Table 1,
The concentrations of sulfuric acid and hydrochloric acid are shown in Table 1, and the tin concentration is 20.
Electrolysis was carried out using an electrolytic solution of g/. During this electrolysis, 10XloX of tin with a purity of 99.97% by weight was
L, 5cm cast as an anode, l0XIOX
A stainless steel plate of O.20 was used as a cathode. The electrolytic conditions were a current density of 0.4 A/dm2 and an electrolytic temperature at room temperature.

上記した電解液は、実施例1にあって硫酸錫溶液に塩酸
を添加して調製し、実施例2〜6では塩化錫溶液に硫酸
添加した。また、上記電解液にはゼラチンを通電前に1
g/i添加し、通電中は常時0.5g/day 7m下
した。また、この陽極は、陽極泥回収のために耐酸性の
化学繊維を両面に貼付した隔離箱内に装入し、陰極は剥
離状態を良くするためにサンドベーパー2000番で仕
上げた。
The electrolytic solution described above was prepared in Example 1 by adding hydrochloric acid to a tin sulfate solution, and in Examples 2 to 6, sulfuric acid was added to a tin chloride solution. In addition, gelatin was added to the above electrolyte before applying electricity.
g/i was added, and the amount was constantly lowered by 0.5 g/day for 7 m while the current was being applied. The anode was placed in an isolation box with acid-resistant chemical fibers pasted on both sides to recover the anode mud, and the cathode was finished with Sand Vapor No. 2000 to improve peelability.

電解後、陰極上に析出した錫を剥離し、水洗、乾燥後、
α線測定器でα線カウントを測定すると同時に、鍋中の
鉛含有量の定量分析を行なった。
After electrolysis, the tin deposited on the cathode was peeled off, washed with water, and dried.
At the same time as measuring alpha ray counts using an alpha ray measuring device, a quantitative analysis of the lead content in the pot was conducted.

その結果を第1表に示す。The results are shown in Table 1.

比較例1〜2 実施例1〜6で用いた硫酸と塩酸を含有する電解液に代
えて、第1表に示す濃度の硫酸錫溶液を含有する電解液
を用い、その他の条件は実施例1〜6とすべて同様に電
解を行なった。
Comparative Examples 1 to 2 In place of the electrolytic solution containing sulfuric acid and hydrochloric acid used in Examples 1 to 6, an electrolytic solution containing a tin sulfate solution with the concentration shown in Table 1 was used, and the other conditions were as in Example 1. Electrolysis was carried out in the same manner as in steps 6 to 6.

電解後、陰極上に析出した錫を剥離し、水洗、乾燥後、
α線測定器でα線カウントを測定すると同時に、鍋中の
鉛含有量の定量分析を行なった。
After electrolysis, the tin deposited on the cathode was peeled off, washed with water, and dried.
At the same time as measuring alpha ray counts using an alpha ray measuring device, a quantitative analysis of the lead content in the pot was conducted.

その結果を第1表に示す。The results are shown in Table 1.

第1表に示されるように、硫酸と塩酸を含有する電解液
で電解を行なった実施例1〜6は、析出した錫のα線カ
ウントは0.005C/ hr−cIi以下であり、鍋
中の鉛含有量も 1 ppa+未満となった。また、電
解液の調製方法に拘らず、電解電圧は降下し、鍋中のα
線カウントや鉛含有量が少ない錫が得られることが判る
As shown in Table 1, in Examples 1 to 6, in which electrolysis was performed using an electrolytic solution containing sulfuric acid and hydrochloric acid, the alpha ray count of precipitated tin was 0.005 C/hr-cIi or less, and the The lead content was also less than 1 ppa+. In addition, regardless of the method of preparing the electrolyte, the electrolytic voltage will drop, and the α
It can be seen that tin with low line count and lead content can be obtained.

これに対して、硫酸のみを含有する電解液で電解を行な
った比較例1〜2は、析出した錫のα線カウントは0.
006〜0.008C/ hr−crj、鍋中の鉛含有
量は20〜30 ppn+であり、実施例1〜6に比較
して鍋中のα線カウントや鉛含有量は高い値を示す。ま
た、電解電圧も実施例1〜6に比較して高いことが判る
On the other hand, in Comparative Examples 1 and 2 in which electrolysis was performed using an electrolytic solution containing only sulfuric acid, the alpha ray count of precipitated tin was 0.
006 to 0.008 C/hr-crj, the lead content in the pot is 20 to 30 ppn+, and the alpha ray count and lead content in the pot are higher than those in Examples 1 to 6. Further, it can be seen that the electrolytic voltage is also higher compared to Examples 1 to 6.

[発明の効果コ 以上説明した様に、精製度の高い硫酸および塩酸が一定
割合で含有された電解液を用い、かつ高純度の錫を陽極
として配置して電解する本発明の製造方法によって、析
出した鉛のα線カウントが0.005C/ hr−7以
下、鉛濃度が1 ppa+未満と従来の錫と比較してα
線カウントが低く、しかも高純度のものが効率よく得ら
れる。
[Effects of the Invention] As explained above, the production method of the present invention uses an electrolytic solution containing a certain proportion of highly purified sulfuric acid and hydrochloric acid, and uses highly purified tin as an anode for electrolysis. The alpha ray count of precipitated lead is less than 0.005C/hr-7, and the lead concentration is less than 1 ppa+, which is higher than that of conventional tin.
Low line count and high purity can be obtained efficiently.

このようにして得られた錫を大容量の半導体メモリー組
立時のロー付は材や半田材料等として用いることにより
、半導体メモリー等のソフトエラを低減させ、電子機器
の信頼度を向上させることが可能である。
By using the tin obtained in this way as a brazing material or solder material when assembling large-capacity semiconductor memories, it is possible to reduce soft errors in semiconductor memories and improve the reliability of electronic devices. It is.

特許出願人 三井金属鉱業株式会社Patent applicant: Mitsui Metal Mining Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、JISK8951に規定される試薬一級硫酸の規格
に少なくとも適合する硫酸90〜240g/JとJIS
K8180に規定される試薬一級塩酸の規格に少なくと
も適合する塩酸10〜50g/lを含有する電解液中で
、純度が99.97重量%以上である錫を陽極に用いて
電解を行なうことを特徴とする錫の製造方法。
1. Sulfuric acid 90-240g/J and JIS that at least meet the standards for reagent primary sulfuric acid specified in JISK8951
It is characterized by carrying out electrolysis using tin with a purity of 99.97% by weight or more as an anode in an electrolytic solution containing 10 to 50 g/l of hydrochloric acid that at least meets the standards for the reagent primary hydrochloric acid specified in K8180. A method for producing tin.
JP4855789A 1989-03-02 1989-03-02 Manufacturing method of high purity tin Expired - Lifetime JP2754030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4855789A JP2754030B2 (en) 1989-03-02 1989-03-02 Manufacturing method of high purity tin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4855789A JP2754030B2 (en) 1989-03-02 1989-03-02 Manufacturing method of high purity tin

Publications (2)

Publication Number Publication Date
JPH02228487A true JPH02228487A (en) 1990-09-11
JP2754030B2 JP2754030B2 (en) 1998-05-20

Family

ID=12806684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4855789A Expired - Lifetime JP2754030B2 (en) 1989-03-02 1989-03-02 Manufacturing method of high purity tin

Country Status (1)

Country Link
JP (1) JP2754030B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302496A (en) * 2006-05-10 2007-11-22 Nikko Kinzoku Kk High purity stannous oxide, powder of the same, and method for producing the stannous oxide
JP5456881B2 (en) * 2010-03-16 2014-04-02 Jx日鉱日石金属株式会社 Method for producing tin or tin alloy with low alpha dose
US8992759B1 (en) 2014-02-20 2015-03-31 Honeywell International Inc. Metal refining process using mixed electrolyte
WO2015133426A1 (en) * 2014-03-06 2015-09-11 三菱マテリアル株式会社 METHOD FOR PRODUCING STANNOUS OXIDE, STANNOUS OXIDE, METHOD FOR PRODUCING Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITIES FROM SN PLATING SOLUTION
US9340850B2 (en) 2005-07-01 2016-05-17 Jx Nippon Mining & Metals Corporation Process for producing high-purity tin
US9597754B2 (en) 2011-03-07 2017-03-21 Jx Nippon Mining & Metals Corporation Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
US10030315B2 (en) * 2015-11-24 2018-07-24 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10287698B2 (en) 2015-11-24 2019-05-14 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10400342B2 (en) 2015-10-19 2019-09-03 Jx Nippon Mining & Metals Corporation High purity tin and method for manufacturing same
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
CN111472021A (en) * 2019-01-24 2020-07-31 升贸科技股份有限公司 Electrolyte solution
US11572632B2 (en) 2014-10-02 2023-02-07 Jx Nippon Mining & Metals Corporation Method for manufacturing high purity tin, electrowinning apparatus for high purity tin and high purity tin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2848897A1 (en) 2011-09-28 2013-04-04 Jx Nippon Mining & Metals Corporation High-purity lanthanum, method for producing same, sputtering target comprising high-purity lanthanum, and metal gate film comprising high-purity lanthanum as main component
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
WO2014069357A1 (en) * 2012-11-02 2014-05-08 Jx日鉱日石金属株式会社 Method for producing low α-emitting bismuth, low α-emitting bismuth, and bismuth alloy
JP6457093B2 (en) 2016-03-09 2019-01-23 Jx金属株式会社 High purity tin and method for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials
US9340850B2 (en) 2005-07-01 2016-05-17 Jx Nippon Mining & Metals Corporation Process for producing high-purity tin
JP2007302496A (en) * 2006-05-10 2007-11-22 Nikko Kinzoku Kk High purity stannous oxide, powder of the same, and method for producing the stannous oxide
JP5456881B2 (en) * 2010-03-16 2014-04-02 Jx日鉱日石金属株式会社 Method for producing tin or tin alloy with low alpha dose
JP2014088621A (en) * 2010-03-16 2014-05-15 Jx Nippon Mining & Metals Corp LOW α-DOSE TIN OR TIN ALLOY AND METHOD FOR PRODUCING THE SAME
US9394590B2 (en) 2010-03-16 2016-07-19 Jx Nippon Mining & Metals Corporation Low α-dose tin or tin alloy, and method for producing same
US9597754B2 (en) 2011-03-07 2017-03-21 Jx Nippon Mining & Metals Corporation Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
KR20160123352A (en) * 2014-02-20 2016-10-25 허니웰 인터내셔날 인코포레이티드 Improved metal refining process using mixed electrolyte
EP3108024A4 (en) * 2014-02-20 2017-11-15 Honeywell International Inc. Improved metal refining process using mixed electrolyte
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
US8992759B1 (en) 2014-02-20 2015-03-31 Honeywell International Inc. Metal refining process using mixed electrolyte
JP2015180586A (en) * 2014-03-06 2015-10-15 三菱マテリアル株式会社 PRODUCTION METHOD OF STANNOUS OXIDE, STANNOUS OXIDE, PRODUCTION METHOD OF Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITY FROM Sn PLATING SOLUTION
US10184046B2 (en) 2014-03-06 2019-01-22 Mitsubishi Materials Corporation Method of producing stannous oxide, stannous oxide, method of Sn plating solution, and method of removing impurities from Sn plating solution
WO2015133426A1 (en) * 2014-03-06 2015-09-11 三菱マテリアル株式会社 METHOD FOR PRODUCING STANNOUS OXIDE, STANNOUS OXIDE, METHOD FOR PRODUCING Sn PLATING SOLUTION, AND METHOD FOR REMOVING IMPURITIES FROM SN PLATING SOLUTION
US11572632B2 (en) 2014-10-02 2023-02-07 Jx Nippon Mining & Metals Corporation Method for manufacturing high purity tin, electrowinning apparatus for high purity tin and high purity tin
US10400342B2 (en) 2015-10-19 2019-09-03 Jx Nippon Mining & Metals Corporation High purity tin and method for manufacturing same
US10287702B2 (en) 2015-11-24 2019-05-14 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10287698B2 (en) 2015-11-24 2019-05-14 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10167568B2 (en) 2015-11-24 2019-01-01 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10458033B2 (en) 2015-11-24 2019-10-29 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10577703B2 (en) 2015-11-24 2020-03-03 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10138568B2 (en) 2015-11-24 2018-11-27 International Business Machines Corporation Separation of alpha emitting species from plating baths
US10030315B2 (en) * 2015-11-24 2018-07-24 International Business Machines Corporation Separation of alpha emitting species from plating baths
CN111472021A (en) * 2019-01-24 2020-07-31 升贸科技股份有限公司 Electrolyte solution

Also Published As

Publication number Publication date
JP2754030B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
JPH02228487A (en) Production of high purity tin
EP2548981B1 (en) Low -dose tin or tin alloy and method for producing same
US8317896B2 (en) Method of recycling useful metal
JP2641533B2 (en) Method for purifying spent nuclear fuel containing uranium and plutonium
US3891741A (en) Recovery of fission products from acidic waste solutions thereof
US3890244A (en) Recovery of technetium from nuclear fuel wastes
CN102839391B (en) High purity indium preparation method
JP3528532B2 (en) Low alpha dose tin production method
US2951793A (en) Electrolysis of thorium and uranium
JPS621478B2 (en)
Nichols Electrolytic manganese dioxide
US4083761A (en) Arsenic removal from electrolytes with application of periodic reverse current
JPS6247955B2 (en)
US2903402A (en) Recovery of valuable material from graphite bodies
US3857763A (en) Recovery of electrolytic deposits of rhodium
US5633423A (en) Consumable anode, electrodissolution process applied to the decontamination of slightly radioactive liquid effluents and apparatus for performing the process
EP0268102A1 (en) Anode and electrochemical cell for the recovery of metals from aqueous solutions
US3294529A (en) Superconductive alloys
CN112159990A (en) Method for preparing 7N high-purity copper by electrolysis
JPH0762463A (en) Continuous electrochemical refining of lead
US3880733A (en) Preconditioning of anodes for the electrowinning of copper from electrolytes having a high free acid content
JP3206432B2 (en) Low alpha low oxygen metal scandium and method for producing the same
US3491003A (en) Method of separating polonium from irradiated bismuth
TWI670233B (en) Low alpha ray 制造 manufacturing method and low alpha ray
US2225904A (en) Lead oxide and electrolytic process of forming the same