JPH02228087A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH02228087A
JPH02228087A JP4650389A JP4650389A JPH02228087A JP H02228087 A JPH02228087 A JP H02228087A JP 4650389 A JP4650389 A JP 4650389A JP 4650389 A JP4650389 A JP 4650389A JP H02228087 A JPH02228087 A JP H02228087A
Authority
JP
Japan
Prior art keywords
layer
quantum well
semiconductor laser
laser device
well layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4650389A
Other languages
Japanese (ja)
Other versions
JP2912624B2 (en
Inventor
Toshiaki Tanaka
俊明 田中
Toshihiro Kono
河野 敏弘
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4650389A priority Critical patent/JP2912624B2/en
Priority to US07/339,125 priority patent/US4961197A/en
Priority to EP89106800A priority patent/EP0358842B1/en
Priority to DE68926986T priority patent/DE68926986T2/en
Publication of JPH02228087A publication Critical patent/JPH02228087A/en
Application granted granted Critical
Publication of JP2912624B2 publication Critical patent/JP2912624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0658Self-pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/2219Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties absorbing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the high output and low noise characteristic by constructing an active layer of a single quantum well layer and superlattice multiple quantum well layers provided on the upper and lower surfaces thereof and forming a ridged waveguide structure for obtaining a self-oscillating laser element. CONSTITUTION:An active layer is constructed of a single quantum well layer 5 and superlattice multiple quantum well layers 4, 6 provided on the upper and lower surfaces thereof, and composition, film thickness, and impurity concentration of respective layers 4, 5, 6 are caused by have predetermined values. A light waveguide layer, on the opposite side of a semiconductor substrate with respect to the active layer, has a mesa-stripe-like ridged part extending in the resonator length direction, and light absorption and current constriction parts are formed on the light waveguide layer with the ridge part at the both ends of the ridged part, and self-oscillation is effected. Therefore, the laser light distribution is controlled and the light absorption layer is provided at a predetermined position relative to the active layer, so that the effective refraction index difference in the lateral direction of the active layer can be caused to have a desired value. Thus, a high output characteristic required by a writing and erasing light source for an optical disk, and a low noise characteristic required by a reading light source can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は書き換え可能な光デイスク用光源として好適な
高出力低雑音特性を有する半導体レーザ素子に関する。
The present invention relates to a semiconductor laser device having high output and low noise characteristics suitable as a light source for a rewritable optical disk.

【従来の技術] 従来、半導体レーザの単一量子井戸層側は主に閾値電流
を低減するために用いられている。さらに量子井戸界面
の平坦性を改善し結晶性の向上を図るために単一量子井
戸活性層の上下に超格子光導波層が設けられている。こ
の種の半導体レーザについては1例えば第46回応用物
理学会学術講演会、講演予稿集IP−N−8、P196
に述べられている。 【発明が解決しようとする課題】 上記従来技術は、半導体レーザ素子層側において、レー
ザ光の横モード制御、および活性層横方向の屈折率差に
よる縦モード制御については配慮がされておらず、所望
の高出力特性や低雑音特性が得られないという問題があ
った。 本発明の目的は、高出力低雑音特性を満足する半導体レ
ーザ素子を実現することにある。
[Prior Art] Conventionally, the single quantum well layer side of a semiconductor laser is mainly used to reduce the threshold current. Furthermore, superlattice optical waveguide layers are provided above and below the single quantum well active layer in order to improve the flatness of the quantum well interface and improve crystallinity. Regarding this type of semiconductor laser, 1. For example, the 46th Japan Society of Applied Physics Academic Conference, Proceedings IP-N-8, P196.
It is stated in [Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into consideration the transverse mode control of the laser beam and the longitudinal mode control based on the refractive index difference in the lateral direction of the active layer on the semiconductor laser element layer side. There was a problem that desired high output characteristics and low noise characteristics could not be obtained. An object of the present invention is to realize a semiconductor laser device that satisfies high output and low noise characteristics.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、活性層を、単一量子井戸層
の上下に超格子多重量子井戸層を設けた層側とし、各層
において組成、膜厚及び不純物濃度を所定の値にするこ
とによりレーザ素子を作製したものである。 さらに、自励発振レーザ素子を得るために、リッジ導波
路層側を形成し、活性層横方向の実効的な屈折率差を所
定の値になるように制御したものである。
In order to achieve the above objective, the active layer is formed on the layer side where superlattice multiple quantum well layers are provided above and below the single quantum well layer, and the composition, film thickness and impurity concentration of each layer are set to predetermined values. This is a fabricated laser device. Furthermore, in order to obtain a self-oscillation laser device, a ridge waveguide layer side is formed, and the effective refractive index difference in the lateral direction of the active layer is controlled to a predetermined value.

【作用1 本発明により、光ディスクの書き込み消去用光源及び読
み取り用光源に必要な低雑音高出力特性が得られること
を以下に説明する。 従来、単一量子井戸層側を活性層に導入することによっ
てレーザ発振の低閾値電流化が図ら九ていることが知ら
れている。さらにアプライド・フィツクス・レターズ、
 Appl、 Phys、 Lett。 45 (1984)p836において述べられているよ
うに、単一量子井戸活性層のレーザ素子の方が通常のダ
ブルへテロ活性層や多重量子井戸活性層のレーザ素子よ
りもキャリア注入による屈折率の減少が小さい。このこ
とにより、単一量子井戸活性層のレーザ素子は、活性層
横方向の作り付けの実効的な屈折率差を高いキャリア注
入レベルまで不安定にすることなく、キング発生光出力
の大きい高出力特性が得られることが示唆される。しか
し、単一量子井戸活性層は膜厚が薄いのでレーザ光がク
ラッド層へ大きく広がる。その為、光吸収層を設けて横
モード制御したレーザ素子では、活性層横方向の実効的
な屈折率差が大きくなってしまうという問題があった。 また、この屈折率差の制御による縦モードの制御が困難
という問題があった。一方戻り光が生じても相対雑音強
度が10−14〜IQ−”Hzと優れた低雑音特性が実
現される自励発振レーザは、活性層横方向の実効的な屈
折率差がlXl0−’〜5X10−”程度の範囲で生じ
る。このため、自励発振レーザを実現するためには活性
層横方向の実効的な屈折率差の制御が重要となってくる
。この活性層横方向の実効的な屈折率差は、素子の活性
層膜厚とクラッド層膜厚によって制御することができる
。 本発明では、単一量子井戸層の上下に超格子多重量子井
戸層を設けたので、キャリアとしての電子や正孔の波動
関数は、単一量子井戸層内に閉じ込められることなく、
単一量子井戸層の両側に大きくしみ出す。この結果、活
性層におけるレーザ光分布の広がりは、従来の単一量子
井戸活性層の場合に比べて小さくなる。単一量子井戸層
の幅は量子サイズ効果の生じる範囲内で比較的大きな値
をとることができ、10〜30nmの範囲が望ましい。 このように、レーザ光分布を制御し、かつ光吸収層を活
性層から所定の位置に設けることにより5活性層横方向
の実効的な屈折率差を、所望の値になるように実現でき
る。屈折率差を制御することにより、自励発振レーザ素
子が作製でき、かつ単一量子井戸層では、キャリア注入
に対する屈折率減少が小さいため、高い注入レベルまで
作り付けの屈折率差が失われず安定な基本横モードでキ
ング発生光出力の大きい高出力特性が得られる。 [実施例1 実施例1゜ 本発明の実施例1を第1図を用いて説明する。 まず、n型GaAs(001)基板1(厚さ100μm
)上に、n型GaAsバッファ層2(厚さ0.5μm)
、n型ARxGal−xAsクラッドM3(厚さ1.0
〜1.5μm、x=0.45〜0.55)、アンドープ
或はn型又はp型多量子井戸1!F4 (量子障壁層は
AnyGa、−yAs層、幅2〜5nm、y=0.20
〜0.45とし、量子井戸層はAlzoa、−zAs層
、幅3〜10nm、z=o〜0.20としてこれらを3
〜6回繰り返し形成することにより、或はそれぞれAl
、Ga、−アAs超格子障壁層幅0.5〜1 nm、A
 QzGal−zAs超格子井戸層幅0.5〜2nmを
10〜15回繰り返し形成することにより第2図に示す
ような活性層における伝導帯と価電子帯のエネルギーバ
ンド層側を形成する。)、アンドープ単一量子井戸層5
(A Q z’ Gag−z’ As層、10〜30n
m、z’ =O〜0.15)、アンドープ或はn型又は
P型多重量子井戸層6(量子障壁層はAlyGa□−y
As層、幅2〜5nm、y=0.20〜0.45とし、
量子井戸層はAlzGal−zAS層、Itlii3〜
lOnm、z=O〜0o20としてこれらを3〜6回繰
り返し形成する。或はそれぞれAlyGai−yAs超
格子障壁層、flQiio、5〜L nm、AlzGa
x−zAs超格子井戸層、幅0.5〜2 n ITIを
10〜15回繰り返し形成する。)、p型A Q x 
G aニーxAsクラッド層7 (厚さ1.0〜1.6
μm、X=0.45〜0.55)、p−GaAs/if
 (厚さ0.2〜0.3μm)をj@次次子子線エピタ
キシーMBE)性成は有機金属気相成長(MOCVD)
法によりエピタキシャル成長する。次に、Sio2膜を
形成してホトリソグラフィーによりストライプマスクパ
ターンを作製する。このストライプ状Sin、膜をマス
フとして、リン酸溶液によりM8と層7をエツチング加
工してリッジ状の光導波路を形成する。 この後、SiO□膜を残したままn−GaAs電流ブロ
ック層9(厚さ0.7〜1.0μm)を選択成長する。 次に、Sin、膜マスクを弗酸水溶液によりエツチング
除去した後、p−GaAsキャップ層10(厚さ1.0
〜2.0μm)を埋め込み成長する。この後、p型層側
電極11及びN型層側電極12を形成して、へき開、ス
クライブし素子の形に切り出す。 本実施例において、基本横モードかつ低閾値電流でレー
ザ発振するためには、リッジ底部のストライプ@Sが4
〜6μmであることが適切であった。さらに、リッジ導
波路を作製した後のクラッド層膜厚dを0.3〜0.6
μmにしたときに自励発振するレーザ素子が得られた。 本素子は、閾値電流10〜20mAでレーザ発振し、出
光力2〜30mWの範囲で自励発振した。キング発生光
出力は50〜60mWであった6さらに、活性層におけ
る多重量子井戸層に対してn型又はP型不純物をI X
 10”〜I X 10”am−”ドーピングすること
によって、閾値電流10〜20mAでレーザ発振し、か
つ自励発振周波数をドーパントの極性及びドーピング濃
度により制御することができた。 また、レーザ素子の共振器端面に非対称コーティングす
ることにより光出力2〜50mWの範囲で自励発振し、
かつキング発生光出力が80〜90mWの素子を得るこ
とができた。活性層全体の膜厚とクラッド層膜厚を所定
の値に制御することにより5 (活性層膜厚: 0.0
4〜0.08 μm、クラッド層膜厚:0.3〜0.6
μm)、光出力2〜10mWの範囲で自励発振し、かつ
キング発生光出力が110”120mWである素子も実
現できた。このことにより、光ディスクの書き込み消去
用光源及び読み取り用光源として必要な低雑音高出力特
性を一つの素子において満足させることができた。 実施例2゜ 本発明の実施例2を第3図を用いて説明する。 第3図は活性層における伝導帯のエネルギーバンド層側
の概略を示す、活性層における単一量子井戸層の上下に
設けた多重量子井戸層4及び6において、量子井戸層A
 Q zGa、−zAsllのAl組izが単一量子井
戸N5、A n z’ Ga□−z’ As層のAl組
成2′よりも大きい(z>z’)レーザ素子を作製した
。ここで、多重量子井戸層内に形成される量子準位が単
一量子井戸層内に形成される量子準位と同じレベルか或
はそれ以上になるように。 多重量子井戸層4及び6の層側を設計した。本実施例に
よると閾値電流をさらに低減でき5〜10mAでレーザ
発振が可能であった。その他実施例1と同様の特性が得
られる。 実施例3゜ 本発明の実施例3を第4図を用いて説明する。 第4図は活性層における伝導帯のエネルギーバンド層側
の概略を示す、活性層における単一量子井戸層の上下に
設けた多重量子井戸N4及び6において、量子井戸層A
lzGa、−zAs層4’ 、6’の幅及びAl組成を
、各々単一量子井戸N5からクラッド層3,7へ向けて
徐々に厚くなるように。 また大きくなるように変化させていく層側を有するレー
ザ素子を作製した。多重量子井戸層内に形成される量子
準位が単一量子井戸層内に形成される量子準位と同じレ
ベルか或はそれ以上になるように、多重量子井戸層4及
び6の層側を設計した。 本実施例によっても実施例2と同様の効果があった。 実施例4、 本発明の実施例4に°づいて第5図を用いて説明する。 第5図は活性層における伝導帯のエネルギーバンド層側
の概略を示す、活性層における単一量子井戸層の上下に
設けた多重量子井戸M4及び6において量子障壁層AU
yGa−アAs層のAl組成yを単一量子井戸層からク
ラッド層へ向けて徐々に大きくなるように変化させたグ
レーデッド層としたレーザ素子を作製した。ここでは、
多重量子井戸層の量子井戸層内に形成される量子準位は
単一量子井戸層からクラッド層へ向けて徐々に高い準位
となっていくグレーデッド状にエネルギー準位が形成さ
れる。本実施例によっても実施例2゜3と同様の効果が
あった。 【発明の効果】 本発明によると、従来の技術では実現が難しかった、単
一量子井戸層側活性層横方向の実効的な屈折率差を制御
することが可能となるので、横モードおよび縦モードの
制御が容易になり所望のレーザ特性を得ることができる
効果がある。本発明のリッジ導波路層側において、リッ
ジ形成後のクラッド層膜厚が0.3〜0.6μmかつ、
活性層全体の膜厚が0.05〜0.08μmの範囲で、
光出力2〜30mWの範囲で自励発振し、キンク発生光
出力50〜60mWであるレーザ素子を得た。 閾値電流は、5〜10mAの素子が得られた。さらに、
非対称コーティングを施すことにより、光出力2〜50
mWの範囲で自励発振し、キング発生光出力80〜90
mWの素子を得ることができたつまた、活性層横方向の
実効的屈折率差を制御することによって、光出力2〜1
0mWの範囲で自励発振しかつキング発生光出力110
〜120mWである素子を得た。このため、光ディスク
の書き込み消去光源に必要な高出力特性と、読み取り光
源に必要な低雑音特性を満足することができた。 本発明では、AlGaAs系材料を用いて説明したが、
ADGaInP/GaAs系、InGaAsP/InP
系についても同様なことができることは言うまでもない
[Function 1] It will be explained below that the present invention provides low noise and high output characteristics necessary for a light source for writing and erasing an optical disk and a light source for reading. Conventionally, it is known that the threshold current of laser oscillation can be lowered by introducing the single quantum well layer side into the active layer. Additionally, Applied Fixtures Letters,
Appl, Phys, Lett. 45 (1984) p. 836, a single quantum well active layer laser device has a lower refractive index due to carrier injection than a normal double hetero active layer or multi-quantum well active layer laser device. is small. As a result, a laser device with a single quantum well active layer has high output characteristics with large king-generated light output without destabilizing the built-in effective refractive index difference in the lateral direction of the active layer to a high carrier injection level. It is suggested that this can be obtained. However, since the single quantum well active layer is thin, the laser light widely spreads to the cladding layer. Therefore, in a laser element in which a light absorption layer is provided to control the transverse mode, there is a problem in that the effective difference in refractive index in the transverse direction of the active layer becomes large. Further, there is a problem in that it is difficult to control the longitudinal mode by controlling this refractive index difference. On the other hand, self-sustained oscillation lasers, which achieve excellent low-noise characteristics with a relative noise intensity of 10-14 to IQ-''Hz even when reflected light occurs, have an effective refractive index difference in the lateral direction of the active layer of lXl0-' It occurs in a range of about 5×10−”. Therefore, in order to realize a self-oscillation laser, it is important to control the effective refractive index difference in the lateral direction of the active layer. This effective refractive index difference in the lateral direction of the active layer can be controlled by the active layer thickness and cladding layer thickness of the element. In the present invention, superlattice multiple quantum well layers are provided above and below the single quantum well layer, so the wave functions of electrons and holes as carriers are not confined within the single quantum well layer.
It seeps out significantly on both sides of the single quantum well layer. As a result, the spread of laser light distribution in the active layer is smaller than in the case of a conventional single quantum well active layer. The width of the single quantum well layer can take a relatively large value within the range where the quantum size effect occurs, and is preferably in the range of 10 to 30 nm. In this manner, by controlling the laser beam distribution and providing the light absorption layer at a predetermined position from the active layer, it is possible to realize the effective refractive index difference in the lateral direction of the five active layers to a desired value. By controlling the refractive index difference, self-oscillation laser devices can be fabricated, and since the refractive index decrease due to carrier injection is small in a single quantum well layer, the built-in refractive index difference is not lost even at high injection levels and is stable. High output characteristics with large king-generated light output can be obtained in the fundamental transverse mode. [Embodiment 1 Embodiment 1] Embodiment 1 of the present invention will be described with reference to FIG. First, an n-type GaAs (001) substrate 1 (thickness 100 μm
), an n-type GaAs buffer layer 2 (thickness 0.5 μm)
, n-type ARxGal-xAs clad M3 (thickness 1.0
~1.5 μm, x=0.45-0.55), undoped or n-type or p-type multi-quantum well 1! F4 (Quantum barrier layer is AnyGa, -yAs layer, width 2-5 nm, y = 0.20
~ 0.45, and the quantum well layer is an Alzoa, -zAs layer, width 3 ~ 10 nm, and z = o ~ 0.20.
~6 times, or by forming each Al
, Ga, -As superlattice barrier layer width 0.5-1 nm, A
By repeatedly forming a QzGal-zAs superlattice well layer with a width of 0.5 to 2 nm 10 to 15 times, the energy band layer side of the conduction band and valence band in the active layer as shown in FIG. 2 is formed. ), undoped single quantum well layer 5
(A Q z'Gag-z' As layer, 10-30n
m, z' = O ~ 0.15), undoped, n-type or P-type multiple quantum well layer 6 (quantum barrier layer is AlyGa□-y
As layer, width 2-5 nm, y=0.20-0.45,
The quantum well layer is an AlzGal-zAS layer, Itlii3~
These are repeatedly formed 3 to 6 times with lOnm and z=O to 0o20. or AlyGai-yAs superlattice barrier layer, flQiio, 5~L nm, AlzGa
An x-zAs superlattice well layer with a width of 0.5 to 2 n ITI is repeatedly formed 10 to 15 times. ), p-type A Q x
Ga knee x As cladding layer 7 (thickness 1.0 to 1.6
μm, X=0.45-0.55), p-GaAs/if
(thickness 0.2 to 0.3 μm) using secondary beam epitaxy (MBE) using metal organic chemical vapor deposition (MOCVD)
Epitaxial growth is performed by the method. Next, a Sio2 film is formed and a stripe mask pattern is produced by photolithography. Using this striped Sin film as a mask, M8 and layer 7 are etched using a phosphoric acid solution to form a ridge-shaped optical waveguide. Thereafter, an n-GaAs current blocking layer 9 (thickness: 0.7 to 1.0 μm) is selectively grown while leaving the SiO□ film. Next, after removing the Sin film mask by etching with a hydrofluoric acid aqueous solution, the p-GaAs cap layer 10 (thickness 1.0
~2.0 μm) is buried and grown. Thereafter, a p-type layer side electrode 11 and an N-type layer side electrode 12 are formed, and then cleaved and scribed to cut out into an element shape. In this example, in order to laser oscillate in the fundamental transverse mode and with a low threshold current, the stripe @S at the bottom of the ridge must be 4
~6 μm was appropriate. Furthermore, the thickness d of the cladding layer after fabricating the ridge waveguide is 0.3 to 0.6.
A laser device that self-oscillates when the diameter is μm was obtained. This device oscillated with a threshold current of 10 to 20 mA, and self-oscillated with an output power of 2 to 30 mW. The King generation optical output was 50 to 60 mW6.Furthermore, n-type or p-type impurities were added to the multiple quantum well layer in the active layer.
By doping 10" to I x 10"am-", it was possible to oscillate the laser with a threshold current of 10 to 20 mA, and to control the self-oscillation frequency by the dopant polarity and doping concentration. By applying an asymmetrical coating to the end face of the resonator, self-oscillation is achieved with an optical output of 2 to 50 mW.
Moreover, it was possible to obtain an element with a king-generated light output of 80 to 90 mW. By controlling the thickness of the entire active layer and the thickness of the cladding layer to predetermined values, 5 (active layer thickness: 0.0
4-0.08 μm, cladding layer thickness: 0.3-0.6
μm), self-sustained oscillation in the optical output range of 2 to 10 mW, and a device with a king generation optical output of 110" and 120 mW. This has made it possible to realize an element that is necessary as a light source for writing and erasing optical discs and a light source for reading. Low noise and high output characteristics could be satisfied in one device. Example 2 Example 2 of the present invention will be explained using FIG. 3. FIG. 3 shows the energy band layer of the conduction band in the active layer. In the multiple quantum well layers 4 and 6 provided above and below the single quantum well layer in the active layer, the quantum well layer A
A laser device was fabricated in which the Al set iz of Q zGa, -zAsll was larger than the Al composition 2' of the single quantum well N5, A n z'Ga□-z' As layer (z>z'). Here, the quantum level formed in the multiple quantum well layer is at the same level as or higher than the quantum level formed in the single quantum well layer. The layer sides of multi-quantum well layers 4 and 6 were designed. According to this example, the threshold current could be further reduced and laser oscillation was possible at 5 to 10 mA. Other characteristics similar to those of Example 1 are obtained. Embodiment 3 A third embodiment of the present invention will be explained using FIG. 4. FIG. 4 schematically shows the energy band layer side of the conduction band in the active layer. In the multiple quantum wells N4 and 6 provided above and below the single quantum well layer in the active layer,
The widths and Al compositions of the lzGa and -zAs layers 4' and 6' are made gradually thicker from the single quantum well N5 to the cladding layers 3 and 7, respectively. In addition, a laser element having a layer side whose size is changed to increase in size was fabricated. The layer sides of the multiple quantum well layers 4 and 6 are arranged so that the quantum level formed in the multiple quantum well layer is at the same level as or higher than the quantum level formed in the single quantum well layer. Designed. This example also had the same effect as Example 2. Embodiment 4 Embodiment 4 of the present invention will be explained using FIG. 5. FIG. 5 shows a schematic view of the energy band layer side of the conduction band in the active layer, showing quantum barrier layers AU in multiple quantum wells M4 and M6 provided above and below the single quantum well layer in the active layer.
A laser device was fabricated as a graded layer in which the Al composition y of the yGa-As layer was gradually changed from the single quantum well layer to the cladding layer. here,
The quantum levels formed in the quantum well layer of the multiple quantum well layer are graded energy levels that gradually become higher levels from the single quantum well layer toward the cladding layer. This example also had the same effects as Examples 2 and 3. [Effects of the Invention] According to the present invention, it is possible to control the effective refractive index difference in the lateral direction of the active layer on the single quantum well layer side, which was difficult to achieve with conventional techniques. This has the effect that mode control becomes easy and desired laser characteristics can be obtained. On the ridge waveguide layer side of the present invention, the cladding layer film thickness after ridge formation is 0.3 to 0.6 μm, and
The thickness of the entire active layer is in the range of 0.05 to 0.08 μm,
A laser element was obtained which self-oscillated in an optical output range of 2 to 30 mW and had a kink-generating optical output of 50 to 60 mW. A device with a threshold current of 5 to 10 mA was obtained. moreover,
By applying an asymmetrical coating, the light output is 2 to 50
Self-sustained oscillation in the mW range, King generation light output 80-90
By controlling the effective refractive index difference in the lateral direction of the active layer, we were able to obtain a device with a power output of 2 to 1 mW.
Self-sustained pulsation in the range of 0 mW and king generation optical output 110
A device with a power of ~120 mW was obtained. Therefore, it was possible to satisfy the high output characteristics required for an optical disk write/erase light source and the low noise characteristics required for a read light source. Although the present invention has been explained using AlGaAs-based materials,
ADGaInP/GaAs system, InGaAsP/InP
It goes without saying that the same thing can be done for systems as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1〜実施例4の半導体レーザの
断面図、第2図〜第5図は各々実施例1〜実施例4にお
ける活性層のエネルギーバンド層側の概略図である。 1−=n−GaAs基板、2−n−GaAsバッファ層
、 3− n −A Q xGa、−xAsクラッド層
。 4・・・アンドープ或はn型又はp型不純物ドープ多重
量子井戸層、5・・・アンドープ単一量子井戸層、6・
・・アンドープ成はn型又はp型不純物ドープ多重量子
井戸層、7・・・p−AlxGa、xAsクラッド層、
8=−p−GaAs層、9 ・=rr−GaAs電流ブ
ロック層、10・・・p−GaAsキャップ層、11・
・・n型層側電極、12・・・n型層側電極。
FIG. 1 is a cross-sectional view of a semiconductor laser according to Examples 1 to 4 of the present invention, and FIGS. 2 to 5 are schematic views of the energy band layer side of the active layer in Examples 1 to 4, respectively. . 1-=n-GaAs substrate, 2-n-GaAs buffer layer, 3-n-A Q xGa, -xAs cladding layer. 4... Undoped or n-type or p-type impurity-doped multiple quantum well layer, 5... Undoped single quantum well layer, 6...
...Undoped layer is n-type or p-type impurity-doped multiple quantum well layer, 7...p-AlxGa, xAs cladding layer,
8=-p-GaAs layer, 9.=rr-GaAs current blocking layer, 10... p-GaAs cap layer, 11.
. . . n-type layer side electrode, 12 . . . n-type layer side electrode.

Claims (1)

【特許請求の範囲】 1、半導体基板上にバンドギャップの小さい活性層とこ
れを挾むバンドギャップの大きな光導波層を形成した半
導体レーザ素子において、上記活性層は電子のド・ブロ
イ波長或はそれ以下の幅を有する単一量子井戸層との両
面に形成した多重量子井戸層より成り、該活性層に対し
、上記半導体基板とは反対側の光導波層は共振器長方向
に延びたメサストライプ状のリッジ部を有し、該リッジ
部材光導波層上には該リッジ部の両側部に光吸収兼電流
狭窄が形成されており、かつ自励発振することを特徴と
する半導体レーザ素子。 2、特許請求の範囲第1項記載の半導体レーザ素子にお
いて、上記多重量子井戸層は原子層で制御されたエピタ
キシャル成長により形成する半導体レーザ素子。 3、特許請求の範囲第1項記載の半導体レーザ素子にお
いて、上記活性層の膜厚は0.04〜0.08μmであ
る半導体レーザ素子。 4、特許請求の範囲第3項記載の半導体レーザ素子にお
いて、上記単一量子井戸層の幅は10〜30nmの範囲
である半導体レーザ素子。 5、特許請求の範囲第4項記載の半導体レーザ素子にお
いて、上記多重量子井戸層における超格子層の幅は0.
5〜2.0nmである半導体レーザ素子。 6、特許請求の範囲第1項記載の半導体レーザ素子にお
いて、上記光導波層はAl_xGa_1_−_xAs層
(0.45≦x≦0.55)から成り、上記多重量子井
戸層における量子障壁層は Al_yGa_1_−_yAs層(0.20≦y≦0.
45)、量子井戸層はAl_zGa_1_−_zAs層
(0≦z≦0.20)から成り、上記単一量子井戸層は
Al_z′Ga_1_−_z′As層(0≦z′≦0.
15)から成る半導体レーザ素子。 7、特許請求の範囲第6項記載の半導体レーザ素子にお
いて、上記Al_zGa_1_−_zAs量子井戸層の
Al組成zは上記Al_z′Ga_1_−_z′As単
一量子井戸層のAl組成z′より大きい半導体レーザ素
子。 8、特許請求の範囲第6項記載の半導体レーザ素子にお
いて、上記Al_zGa_1_−_zAs量子井戸層或
は上記Al_yGa_1_−_yAs量子障壁層のAl
組成は、上記単一量子井戸層側から上記光導波層側へ徐
々に増加したいわゆるグレーデッド層である半導体レー
ザ素子。 9、特許請求の範囲第7項または第8項記載の半導体レ
ーザ素子において、上記多重量子井戸層の各層を所定の
膜厚、組成により形成することにより、該多重量子井戸
層内にできる量子準位を上記単一量子井戸層内にできる
量子準位よりも同じレベルか或は大きくした半導体レー
ザ素子。 10、特許請求の範囲第1項、第3項、第4項、第5項
、第6項、第7項、第8項または第9項記載の半導体レ
ーザ素子において、上記多重量子井戸層全体にn型或は
p型不純物のどちらか一方をドーピングするか、または
n型とp型不純物を同時にドーピングした半導体レーザ
素子。 11、特許請求の範囲第1項、第3項、第4項、第5項
、第6項、第7項、第8項または第9項記載の半導体レ
ーザ素子において、上記多重量子井戸層内の上記量子障
壁層にのみ、n型或はp型不純物のどちらか一方をドー
ピングするか、またはn型とp型不純物を同時にドーピ
ングした半導体レーザ素子。 12、特許請求の範囲第10項または第11項記載の半
導体レーザ素子において、上記n型或はp型不純物のド
ーピング濃度は1×10^1^8〜1×10^1^9c
m^−^3の範囲である半導体レーザ素子。 13、特許請求の範囲第10項、第11項または第12
項記載の半導体レーザ素子において、上記n型不純物に
は単体或は無機及び有機化合物形態をとったSi、Se
をドーピングイオンとし、p型不純物には単体或は無機
及び有機化合物形態をとったBe、Mg、Znをドーピ
ングイオンとすることを特徴とする半導体レーザ素子。
[Claims] 1. In a semiconductor laser device in which an active layer with a small bandgap and an optical waveguide layer with a large bandgap sandwiching the active layer are formed on a semiconductor substrate, the active layer has an electron wavelength of The optical waveguide layer on the side opposite to the semiconductor substrate with respect to the active layer is a mesa extending in the cavity length direction. 1. A semiconductor laser device having a striped ridge portion, having light absorption and current confinement formed on both sides of the ridge portion on the ridge member optical waveguide layer, and self-oscillating. 2. A semiconductor laser device according to claim 1, wherein the multiple quantum well layer is formed by controlled epitaxial growth using atomic layers. 3. A semiconductor laser device according to claim 1, wherein the active layer has a thickness of 0.04 to 0.08 μm. 4. A semiconductor laser device according to claim 3, wherein the width of the single quantum well layer is in a range of 10 to 30 nm. 5. In the semiconductor laser device according to claim 4, the width of the superlattice layer in the multiple quantum well layer is 0.
A semiconductor laser element having a wavelength of 5 to 2.0 nm. 6. In the semiconductor laser device according to claim 1, the optical waveguide layer is made of an Al_xGa_1_-_xAs layer (0.45≦x≦0.55), and the quantum barrier layer in the multiple quantum well layer is made of an Al_yGa_1_ −_yAs layer (0.20≦y≦0.
45), the quantum well layer consists of an Al_zGa_1_−_zAs layer (0≦z≦0.20), and the single quantum well layer consists of an Al_z′Ga_1_−_z′As layer (0≦z′≦0.
15) A semiconductor laser device consisting of: 7. In the semiconductor laser device according to claim 6, the Al composition z of the Al_zGa_1_-_zAs quantum well layer is larger than the Al composition z' of the Al_z'Ga_1_-_z'As single quantum well layer. element. 8. In the semiconductor laser device according to claim 6, the Al of the Al_zGa_1_-_zAs quantum well layer or the Al_yGa_1_-_yAs quantum barrier layer
The semiconductor laser device is a so-called graded layer whose composition gradually increases from the single quantum well layer side to the optical waveguide layer side. 9. In the semiconductor laser device according to claim 7 or 8, each layer of the multi-quantum well layer is formed with a predetermined thickness and composition, so that a quantum standard formed in the multi-quantum well layer is formed. A semiconductor laser device in which the quantum level is at the same level or larger than the quantum level formed in the single quantum well layer. 10. The semiconductor laser device according to claim 1, 3, 4, 5, 6, 7, 8 or 9, wherein the entire multi-quantum well layer A semiconductor laser device doped with either n-type or p-type impurities, or doped with n-type and p-type impurities simultaneously. 11. In the semiconductor laser device according to claim 1, 3, 4, 5, 6, 7, 8 or 9, in the multi-quantum well layer. A semiconductor laser device in which only the quantum barrier layer is doped with either an n-type or p-type impurity, or with n-type and p-type impurities simultaneously. 12. In the semiconductor laser device according to claim 10 or 11, the doping concentration of the n-type or p-type impurity is 1×10^1^8 to 1×10^1^9c.
A semiconductor laser device in the range of m^-^3. 13.Claim 10, 11 or 12
In the semiconductor laser device described in Section 1, the n-type impurity may include Si, Se in the form of a simple substance or an inorganic or organic compound.
A semiconductor laser device characterized in that p-type impurities include Be, Mg, and Zn in the form of simple substances or inorganic and organic compounds as doping ions.
JP4650389A 1988-09-07 1989-03-01 Semiconductor laser device Expired - Lifetime JP2912624B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4650389A JP2912624B2 (en) 1989-03-01 1989-03-01 Semiconductor laser device
US07/339,125 US4961197A (en) 1988-09-07 1989-04-14 Semiconductor laser device
EP89106800A EP0358842B1 (en) 1988-09-07 1989-04-17 Semiconductor laser device and method of manufacturing same
DE68926986T DE68926986T2 (en) 1988-09-07 1989-04-17 Semiconductor laser and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4650389A JP2912624B2 (en) 1989-03-01 1989-03-01 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH02228087A true JPH02228087A (en) 1990-09-11
JP2912624B2 JP2912624B2 (en) 1999-06-28

Family

ID=12749049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4650389A Expired - Lifetime JP2912624B2 (en) 1988-09-07 1989-03-01 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2912624B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268314A (en) * 1993-03-11 1994-09-22 Nec Corp Semiconductor laser
JPH11330614A (en) * 1998-05-13 1999-11-30 Nichia Chem Ind Ltd Nitride semiconductor element
US6072817A (en) * 1995-03-31 2000-06-06 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical disk apparatus using the same
US7119378B2 (en) 2000-07-07 2006-10-10 Nichia Corporation Nitride semiconductor device
JP2008034848A (en) * 2006-07-26 2008-02-14 Lg Electronics Inc Nitride-based light-emitting device
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
JP2021034708A (en) * 2019-08-19 2021-03-01 日本ルメンタム株式会社 Modulation dope semiconductor laser, and method for manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268314A (en) * 1993-03-11 1994-09-22 Nec Corp Semiconductor laser
US6072817A (en) * 1995-03-31 2000-06-06 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical disk apparatus using the same
US6081541A (en) * 1995-03-31 2000-06-27 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and optical disk apparatus using the same
US6141364A (en) * 1995-03-31 2000-10-31 Matsushita Electric Industrial Co., Ltd Semiconductor laser device and optical disk apparatus using the same
JPH11330614A (en) * 1998-05-13 1999-11-30 Nichia Chem Ind Ltd Nitride semiconductor element
US7646009B2 (en) 2000-07-07 2010-01-12 Nichia Corporation Nitride semiconductor device
US7119378B2 (en) 2000-07-07 2006-10-10 Nichia Corporation Nitride semiconductor device
US7750337B2 (en) 2000-07-07 2010-07-06 Nichia Corporation Nitride semiconductor device
US8309948B2 (en) 2000-07-07 2012-11-13 Nichia Corporation Nitride semiconductor device
US8698126B2 (en) 2000-07-07 2014-04-15 Nichia Corporation Nitride semiconductor device
US9130121B2 (en) 2000-07-07 2015-09-08 Nichia Corporation Nitride semiconductor device
US9444011B2 (en) 2000-07-07 2016-09-13 Nichia Corporation Nitride semiconductor device
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
US7667226B2 (en) 2001-11-05 2010-02-23 Nichia Corporation Semiconductor device
JP2008034848A (en) * 2006-07-26 2008-02-14 Lg Electronics Inc Nitride-based light-emitting device
US8350250B2 (en) 2006-07-26 2013-01-08 Lg Electronics Inc. Nitride-based light emitting device
JP2021034708A (en) * 2019-08-19 2021-03-01 日本ルメンタム株式会社 Modulation dope semiconductor laser, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2912624B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US5143863A (en) Method of manufacturing semiconductor laser
US5556804A (en) Method of manufacturing semiconductor laser
JPH0656906B2 (en) Semiconductor laser device
KR19990072352A (en) Self-pulsation type semiconductor laser
JP2622143B2 (en) Distributed feedback semiconductor laser and method of manufacturing distributed feedback semiconductor laser
JPH02228087A (en) Semiconductor laser element
KR100278546B1 (en) Semiconductor laser device
JPS61168981A (en) Semiconductor laser device
JPH0416032B2 (en)
JPH0728102B2 (en) Semiconductor laser and manufacturing method thereof
JP2679974B2 (en) Semiconductor laser device
JPS59145590A (en) Semiconductor laser device
JP3115006B2 (en) Semiconductor laser device
JPH0745902A (en) Semiconductor laser and manufacture thereof
JPH0278290A (en) Semiconductor laser device
JP2973215B2 (en) Semiconductor laser device
JPH06283801A (en) Semiconductor laser
JPH0437598B2 (en)
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPH0394490A (en) Semiconductor laser element
JPS60132381A (en) Semiconductor laser device
JPH0728093B2 (en) Semiconductor laser device
JPS6234473Y2 (en)
JPH0558594B2 (en)
JPH03174793A (en) Semiconductor laser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

EXPY Cancellation because of completion of term