JPH0222599Y2 - - Google Patents

Info

Publication number
JPH0222599Y2
JPH0222599Y2 JP1986005000U JP500086U JPH0222599Y2 JP H0222599 Y2 JPH0222599 Y2 JP H0222599Y2 JP 1986005000 U JP1986005000 U JP 1986005000U JP 500086 U JP500086 U JP 500086U JP H0222599 Y2 JPH0222599 Y2 JP H0222599Y2
Authority
JP
Japan
Prior art keywords
valve
cooling
circuit
refrigeration
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986005000U
Other languages
Japanese (ja)
Other versions
JPS6250460U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986005000U priority Critical patent/JPH0222599Y2/ja
Publication of JPS6250460U publication Critical patent/JPS6250460U/ja
Application granted granted Critical
Publication of JPH0222599Y2 publication Critical patent/JPH0222599Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は車輌等に用いる冷房、冷凍装置に関す
る。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to air conditioning and refrigeration systems used in vehicles and the like.

(従来の技術及び考案が解決しようとする課題) 冷房、冷凍車輌等において冷房と冷凍とを行な
う場合、冷房装置と冷凍装置とでは夫々のエバポ
レータの蒸発圧力が互いに異なるため、両エバポ
レータを1台の圧縮機の吸入口に共通に接続した
のでは蒸発圧力の低い冷凍装置の冷媒は圧縮機に
吸入されず、蒸発圧力の高い冷房装置の冷媒のみ
が圧縮機に吸入されてしまう結果、冷凍装置が作
動しないという不具合を生じる。従つて、冷房装
置と冷凍装置に夫々別個の圧縮機を用いるか、あ
るいは1台の圧縮機で兼用する場合は多シリンダ
のプランジヤ型圧縮機を用い、冷房用と冷凍用の
吸入口を別個に夫々設けて、別々のシリンダに
夫々の冷媒を吸入させて圧縮し、あるいは、ベー
ン型圧縮機で兼用させる場合は、蒸発圧力の高い
冷房用エバポレータの出口に減圧弁を設けて、冷
房用の冷媒圧力を冷凍用の冷媒圧力と同圧に減圧
した上ベーン型圧縮機に吸入させて圧縮してい
る。ベーン型圧縮機は他の圧縮機に比べ構造簡単
で高速回転に適する利点があるが、上述のように
冷房、冷凍を兼用させる場合、冷房用の冷媒圧力
をわざわざ冷凍用の冷媒圧力まで減圧して吸入さ
せるため体積効率が低下し、従つて、圧縮機を大
型化しなければならない。
(Problems to be solved by conventional technology and inventions) When cooling and freezing are performed in an air-conditioning or refrigerating vehicle, etc., the evaporation pressures of the respective evaporators of the cooling system and the freezing system are different from each other, so it is necessary to install both evaporators in one unit. If the refrigerant from the refrigeration system with low evaporation pressure is connected to the suction port of the compressor in common, the refrigerant from the refrigeration system with low evaporation pressure will not be drawn into the compressor, and only the refrigerant from the cooling equipment with high evaporation pressure will be taken into the compressor. This causes problems such as not working. Therefore, separate compressors are used for the cooling system and refrigeration system, or if a single compressor is used for both purposes, a multi-cylinder plunger compressor is used, and the suction ports for cooling and refrigeration are separate. If the refrigerant is sucked into separate cylinders and compressed, or if a vane type compressor is used for both, a pressure reducing valve is installed at the outlet of the cooling evaporator, which has a high evaporation pressure, and the cooling refrigerant is compressed. The refrigerant is sucked into an upper vane compressor whose pressure is reduced to the same pressure as the refrigerant used for refrigeration, and then compressed. Vane type compressors have the advantage of having a simple structure and being suitable for high-speed rotation compared to other compressors, but when used for both cooling and freezing as mentioned above, it is necessary to reduce the refrigerant pressure for cooling to the refrigerant pressure for freezing. The volumetric efficiency decreases, and the compressor must therefore be larger.

本考案は上記事情に鑑みてなされたもので、1
台のベーン型圧縮機で冷房と冷凍とを兼用し得る
ものでありながら、体積効率の低下及びこれに伴
う圧縮機の大型化等の不都合を解消し得ると共
に、冷房と冷凍の同時運転或いは冷房及び冷凍の
いずれか一方のみの運転を必要に応じて選択し得
るようにした冷房、冷凍装置を提供することを目
的とするものである。
This invention was made in view of the above circumstances, and includes:
Although a single vane type compressor can be used for both cooling and freezing, it can eliminate the disadvantages such as a decrease in volumetric efficiency and the resulting increase in the size of the compressor. It is an object of the present invention to provide a cooling/refrigeration system in which operation of only one of the above and the refrigeration operations can be selected as necessary.

(課題を解決するための手段) 上記目的を達成するため本考案の冷房、冷凍装
置は、内面に楕円形のカム周面を有するカムリン
グとその両側に接合されたフロントサイドブロツ
クとリヤサイドブロツクとにより形成されるポン
プハウジング内に、回転軸により軸支された円形
のロータが嵌装され、該ロータの外周と前記カム
周面と前記フロントサイドブロツクと前記リヤサ
イドブロツクの内面とにより、前記ポンプハウジ
ング内に2つのポンプ作動室が画成され、前記ロ
ータは複数のスリツトが半径方向に形成され、こ
れら各スリツトに板状のベーンが進退可能に嵌装
され、前記ロータの回転に伴つて前記ベーンがそ
の一端を前記カム周面に摺接した状態で前記スリ
ツトを進退しながら前記ロータと一体に回転する
ことにより、冷媒をフロントヘツドに設けられた
2個の吸入口から該フロントヘツド内の2つの吸
入室及びこれら吸入室に1個宛それぞれ開口する
2個の流入口を通じて前記両ポンプ作動室内にそ
れぞれ吸入し、該吸入した冷媒をこれら両ポンプ
作動室内にてそれぞれ圧縮して各流出口から流出
せしめた後、単一の吐出口から吐出せしめるよう
にした複室式のベーン型圧縮機を備え、該ベーン
型圧縮機の前記2個の吸入口に互いに並列とされ
た冷房回路と冷凍回路の出口端をそれぞれ接続
し、前記単一の吐出口をコンデンサを介してレシ
ーバタンクの入口に接続し、該レシーバタンクの
出口を前記冷房回路と冷凍回路の入口端にそれぞ
れ接続し、前記冷房回路にその入口端側から出口
端側に向かつて順次膨張弁、エバポレータ及び第
1開閉弁をそれぞれ介装し、前記冷凍回路にその
入口端側から出口端側に向かつて順次膨張弁及び
エバポレータをそれぞれ介装し、前記冷房回路の
第1開閉弁出口側と前記冷凍回路のエバポレータ
出口側とをブリツジ回路にて接続し、該ブリツジ
回路に第2開閉弁を介装して成り、前記第1開閉
弁を開に且つ前記第2開閉弁を閉にすることによ
り冷房、冷凍運転状態となり、また、前記第1及
び第2開閉弁を共に開にすることにより冷房運転
状態となり、更に、前記第1開閉弁を閉に且つ前
記第2開閉弁を開にすることにより冷凍運転状態
となるようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the cooling/refrigeration system of the present invention includes a cam ring having an oval cam circumferential surface on the inner surface, and a front side block and a rear side block joined to both sides of the cam ring. A circular rotor supported by a rotating shaft is fitted into the formed pump housing, and the inner surface of the pump housing is formed by the outer circumference of the rotor, the circumferential surface of the cam, the inner surface of the front side block, and the inner surface of the rear side block. Two pump operating chambers are defined in the rotor, and a plurality of slits are formed in the radial direction of the rotor, and a plate-shaped vane is fitted into each of these slits so as to be able to move forward and backward, and as the rotor rotates, the vane moves. By rotating integrally with the rotor while moving back and forth through the slit with one end in sliding contact with the circumferential surface of the cam, the refrigerant is supplied from the two suction ports provided in the front head to the two inside the front head. The refrigerant is sucked into the two pump working chambers through a suction chamber and two inlets opened to each suction chamber, and the sucked refrigerant is compressed in each of the pump working chambers and flows out from each outlet. The vane compressor is equipped with a multi-chamber vane compressor that discharges water from a single discharge port, and an air conditioning circuit and a refrigeration circuit are connected to the two suction ports of the vane compressor in parallel with each other. the single discharge port is connected to the inlet of a receiver tank via a condenser; the outlet of the receiver tank is connected to the inlet ends of the cooling circuit and the refrigeration circuit, respectively; An expansion valve, an evaporator, and a first on-off valve are respectively interposed in order from the inlet end side to the outlet end side, and an expansion valve and an evaporator are respectively interposed in the refrigeration circuit in order from the inlet end side to the outlet end side. The first on-off valve outlet side of the cooling circuit and the evaporator outlet side of the refrigeration circuit are connected by a bridge circuit, and a second on-off valve is interposed in the bridge circuit, and the first on-off valve By opening the valve and closing the second opening/closing valve, a cooling or freezing operation state is entered; by opening both the first and second opening/closing valves, a cooling operating state is entered; By closing the valve and opening the second on-off valve, the refrigeration operation state is established.

(作用) 第1開閉弁が開で第2開閉弁が閉のとき冷房、
冷凍運転状態となる。また、第1及び第2開閉弁
が共に開のとき冷房運転状態となる。更に、第1
開閉弁が閉で第2開閉弁が開のとき冷凍運転状態
となる。
(Function) When the first on-off valve is open and the second on-off valve is closed, cooling is performed.
It enters freezing operation state. Further, when both the first and second on-off valves are open, the air conditioner is in a cooling operation state. Furthermore, the first
When the on-off valve is closed and the second on-off valve is open, the refrigeration operation state is entered.

(実施例) 以下、本考案の一実施例を図面に基づき説明す
る。第1図乃至第3図は本考案の冷房、冷凍装置
に用いられるベーン型圧縮機を示し、該ベーン型
圧縮機Cはこれら各図に示すように、円筒形のケ
ース1を有し、該ケース1とこの前面に装着され
たフロントヘツド1aとにより圧縮機の筐体が形
成され、この内部に、カムリング2aとこの両側
に接合されたフロントサイドブロツク2b及びリ
ヤサイドブロツク2cとより成るポンプハウジン
グ2が設けられている。該ポンプハウジング2内
に円筒形のロータ3が嵌装され、このロータ3に
は複数のスリツト3aが半径方向に沿い且つ周方
向に等間隔を存して形成され、これらの各スリツ
ト3aには板状のベーン3bが進退自在に嵌装さ
れている。ロータ3はフロントサイドブロツク2
bに一体形成された軸受部4に支承された回転軸
5の内端に嵌着されている。該回転軸5は軸受部
4の端面に、ロータ3はリヤサイドブロツク2c
の内面に夫々スラストベアリング6及び7を介し
て支承され、ポンプハウジング2内において回転
できるようになつている。カムリング2aの内面
には楕円形のカム周面2dが形成され、ロータ3
の外周と、カム周面2dと、フロントサイドブロ
ツク2b及びリヤサイドブロツク2cの内面とに
より、ポンプハウジング2内に2つのポンプ作動
室81,82が対称的に形成されている。これら両
ポンプ作動室81,82の各吸入側及び吐出側に
は、カムリング2aに形成された流入口91,92
及び流出口101,102が夫々開口されている。
一方、フロントヘツド1aの内部には隔壁11a
により2室に分割された吸入室111,112が形
成され、その夫々にカムリング2aに形成された
両流入口91,92が前記フロントサイドブロツク
2bを貫通して1個宛開口されている。フロント
ヘツド1aには各吸入室111,112に通じる2
個の吸入口121,122が設けられている。流出
口101,102は吐出弁131,132を備え、ポ
ンプハウジング2とケース1との間には吐出圧室
14が形成され、該ケース1には単一の吐出口1
5及び潤滑油の給排口(図示省略)が設けられて
いる。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. 1 to 3 show a vane type compressor used in the cooling and refrigeration equipment of the present invention, and as shown in these figures, the vane type compressor C has a cylindrical case 1 and has a cylindrical case 1. The housing of the compressor is formed by the case 1 and the front head 1a attached to the front surface of the case 1, and inside the housing is a pump housing 2 consisting of a cam ring 2a, front side blocks 2b and rear side blocks 2c joined to both sides of the cam ring 2a. is provided. A cylindrical rotor 3 is fitted into the pump housing 2, and a plurality of slits 3a are formed along the radial direction and at equal intervals in the circumferential direction. A plate-shaped vane 3b is fitted so that it can move forward and backward. Rotor 3 is front side block 2
The rotary shaft 5 is fitted onto the inner end of a rotating shaft 5 supported by a bearing portion 4 integrally formed with the rotary shaft 5.b. The rotating shaft 5 is attached to the end face of the bearing portion 4, and the rotor 3 is attached to the rear side block 2c.
are supported on the inner surfaces of the pump housing 2 via thrust bearings 6 and 7, respectively, and are rotatable within the pump housing 2. An oval cam peripheral surface 2d is formed on the inner surface of the cam ring 2a, and the rotor 3
Two pump operating chambers 8 1 and 8 2 are symmetrically formed within the pump housing 2 by the outer periphery of the pump housing 2, the cam circumferential surface 2d, and the inner surfaces of the front side block 2b and rear side block 2c. Inflow ports 9 1 , 9 2 formed in the cam ring 2a are provided on the suction side and the discharge side of both pump working chambers 8 1 , 8 2 .
and outflow ports 10 1 and 10 2 are opened, respectively.
On the other hand, there is a partition wall 11a inside the front head 1a.
Thus, suction chambers 11 1 and 11 2 are formed which are divided into two chambers, and each inlet port 9 1 and 9 2 formed in the cam ring 2a penetrates the front side block 2b and opens to one inlet. ing. The front head 1a has two openings leading to each suction chamber 11 1 , 11 2 .
Inlet ports 12 1 and 12 2 are provided. The outlet ports 10 1 , 10 2 are provided with discharge valves 13 1 , 13 2 , a discharge pressure chamber 14 is formed between the pump housing 2 and the case 1 , and the case 1 has a single discharge port 1 .
5 and a lubricating oil supply/discharge port (not shown).

以上のように構成されたベーン型圧縮機Cは、
その回転軸5に回転力が伝えられるとロータ3が
回転し、該回転に伴い発生する遠心力とスリツト
3aの底部に導入された潤滑油の油圧とによりベ
ーン3bは外方に押し出され、カム周面2dに摺
接した状態で、スリツト3a内を進退しながら回
転する。この回転に伴つて、互いに隣り合うベー
ン3b,3bとカム周面2dとで形成される各ポ
ンプ作動室81,82内の空間は、吸入行程で最小
から最大に変化し、冷媒をフロントヘツド1aの
吸入口121,122から各吸入室111,112
びここに開口する夫々の流入口91,92を通じて
各ポンプ作動室81,82へ吸入し、圧縮行程で最
大から最小に変化し冷媒を圧縮し、各流出口10
,102から夫々の吐出弁131,132を開いて
吐出圧室14へ吐出し合流する。この動作が連続
されて所定圧力となつた圧縮冷媒は、吐出口15
から冷房、冷凍回路で送出される。
The vane compressor C configured as above is
When the rotational force is transmitted to the rotating shaft 5, the rotor 3 rotates, and the vane 3b is pushed outward by the centrifugal force generated by the rotation and the oil pressure of the lubricating oil introduced into the bottom of the slit 3a, and the cam It rotates while moving back and forth within the slit 3a while in sliding contact with the circumferential surface 2d. Along with this rotation, the space within each pump working chamber 8 1 , 8 2 formed by the adjacent vanes 3 b , 3 b and the cam circumferential surface 2 d changes from the minimum to the maximum in the suction stroke, and the refrigerant is transferred to the front. Suction is drawn from the suction ports 12 1 , 12 2 of the head 1a into the pump working chambers 8 1 , 8 2 through the suction chambers 11 1 , 11 2 and the respective inflow ports 9 1 , 9 2 opened therein, and in the compression stroke. Compressing the refrigerant varies from maximum to minimum, each outlet 10
The respective discharge valves 13 1 and 13 2 are opened from 1 and 10 2 to discharge the fluid into the discharge pressure chamber 14 and join the discharge valves 13 1 and 13 2 . After this operation continues, the compressed refrigerant reaches a predetermined pressure, and the compressed refrigerant reaches the discharge port 15.
It is then sent through the cooling and refrigeration circuits.

このようなベーン型圧縮機Cを組み込んだ本考
案の冷房、冷凍装置の構成及び作動について第4
図を参照して説明する。
The fourth section describes the configuration and operation of the cooling and refrigeration system of the present invention incorporating such a vane type compressor C.
This will be explained with reference to the figures.

ベーン型圧縮機Cで約15〜20Kg/cm2・Gの圧力
に圧縮された圧縮冷媒は、吐出口15からコンデ
ンサ16に送られて冷却液化されレシーバタンク
17に受け入れられた後、冷房回路及び冷凍回
路に並列に分配されるようになつている。冷房
回路は、冷媒を約2Kg/cm2・Gの圧力に減圧膨
張させる膨張弁181、冷房用エバポレータ191
及び電磁弁等でなる第1開閉弁20を経てベーン
型圧縮機Cの一方の吸入口121に接続されてい
る。冷凍回路は、冷媒を約1〜2Kg/cm2・Gの
圧力に減圧膨張させる膨張弁182及び冷凍用エ
バポレータ192を経てベーン型圧縮機Cの他方
の吸入口122に接続されている。冷房回路と
冷凍回路とは、吸入口121,122の前方(上
流側)においてブリツジ回路21により接続さ
れ、このブリツジ回路21には電磁弁等よりなる
第2開閉弁22が設けられている。
The compressed refrigerant compressed to a pressure of approximately 15 to 20 Kg/cm 2 ·G by the vane compressor C is sent from the discharge port 15 to the condenser 16, cooled and liquefied, and received in the receiver tank 17. It is designed to be distributed in parallel to the refrigeration circuit. The cooling circuit includes an expansion valve 18 1 that depressurizes and expands the refrigerant to a pressure of approximately 2 kg/cm 2 ·G, and a cooling evaporator 19 1
It is connected to one suction port 12 1 of the vane compressor C via a first on-off valve 20 formed of a solenoid valve or the like. The refrigeration circuit is connected to the other suction port 12 2 of the vane compressor C via an expansion valve 18 2 that reduces and expands the refrigerant to a pressure of approximately 1 to 2 kg/cm 2 ·G and a refrigeration evaporator 19 2 . . The cooling circuit and the freezing circuit are connected by a bridge circuit 21 in front (upstream side) of the suction ports 12 1 and 12 2 , and this bridge circuit 21 is provided with a second on-off valve 22 made of a solenoid valve or the like. .

このような構成において、冷房装置と冷凍装置
とを同時に作動させる場合、冷房回路の第1開
閉弁20を開弁し、ブリツジ回路21の第2開閉
弁22を閉弁すると、約15〜20Kg/cm2・Gの圧力
に圧縮された圧縮冷媒は冷房回路及び冷凍回路
に並列に導入され、冷房回路に導入された圧
縮冷媒は膨張弁181で約2Kg/cm2・Gの圧力に
減圧膨張されて冷房用エバポレータ191を約0
℃に冷却し、冷房用エバポレータ191を介して
車内空気と熱交換を行なつて昇温し、第1開閉弁
20を通りベーン型圧縮機Cの一方の吸入口12
へ導かれる。一方、冷凍回路に導入された圧
縮冷媒は膨張弁182で約1〜2Kg/cm2・Gの圧
力に減圧膨張されて冷凍用エバポレータ192
−10〜−15℃に冷却し、冷凍用エバポレータ19
を介して冷凍庫内空気と熱交換を行なつて上昇
しベーン型圧縮機Cの他方の吸入口122へ導か
れる。ここで冷房回路の2Kg/cm2・Gの圧力に
減圧された冷媒は吸入口121から吸入室111
入り、流入口91を通じて一方のポンプ作動室81
に吸入され、次いで圧縮されて約15〜20Kg/cm2
Gの圧力の吐出圧室14に吐出され、一方、冷凍
回路の1〜2Kg/cm2・Gの圧力に減圧された冷
媒は吸入口122から吸入室112に入り、流入口
2を通じて他方のポンプ作動室82に吸入され、
次いで圧縮されて前記圧力の吐出圧室14に吐出
されて両圧縮冷媒は合流し、吐出口15から再び
冷房回路及び冷凍回路内に送出される。即
ち、冷房、冷凍用の両冷媒は1台のベーン型圧縮
機Cに並列に形成された吸入、圧縮系統に別個に
導入されるから、圧力が異なつても共に1台のベ
ーン型圧縮機Cで吸入、圧縮され、冷房、冷凍両
装置が共に作動することになる。
In such a configuration, when the cooling device and the freezing device are operated simultaneously, when the first on-off valve 20 of the cooling circuit is opened and the second on-off valve 22 of the bridge circuit 21 is closed, about 15 to 20 kg/ The compressed refrigerant compressed to a pressure of cm 2 G is introduced in parallel to the cooling circuit and the refrigeration circuit, and the compressed refrigerant introduced to the cooling circuit is decompressed and expanded to a pressure of approximately 2 kg/cm 2 G by the expansion valve 181 . Cooling evaporator 19 1 to about 0
℃, heat exchanges with the air inside the car via the cooling evaporator 191 , and raises the temperature.
It will lead you to 1 . On the other hand, the compressed refrigerant introduced into the refrigeration circuit is decompressed and expanded by the expansion valve 18 2 to a pressure of approximately 1 to 2 Kg/cm 2 ·G to cool the refrigeration evaporator 19 2 to -10 to -15°C. Evaporator 19
2 , the air exchanges heat with the air inside the freezer, rises, and is guided to the other suction port 122 of the vane compressor C. Here, the refrigerant reduced to a pressure of 2 kg/cm 2 ·G in the cooling circuit enters the suction chamber 11 1 from the suction port 12 1 and passes through the inlet 9 1 to one of the pump operating chambers 8 1
is inhaled and then compressed to about 15-20Kg/ cm2 .
The refrigerant is discharged into the discharge pressure chamber 14 at a pressure of G, and on the other hand, the refrigerant in the refrigeration circuit whose pressure is reduced to a pressure of 1 to 2 Kg/cm 2 G enters the suction chamber 11 2 from the suction port 12 2 and flows through the inlet 9 2 . It is sucked into the other pump working chamber 8 2 ,
The refrigerant is then compressed and discharged into the discharge pressure chamber 14 at the above-mentioned pressure, where the two compressed refrigerants join together and are again discharged from the discharge port 15 into the cooling circuit and the refrigeration circuit. That is, since both refrigerants for cooling and freezing are separately introduced into the suction and compression systems formed in parallel with one vane type compressor C, even if the pressures are different, both refrigerants are used in one vane type compressor C. The air is sucked in and compressed, and both the cooling and refrigeration systems operate together.

また、冷房装置のみを作動させる場合は、冷房
回路の第1開閉弁20及びブリツジ回路21の
第2開閉弁22を共に開弁すると、冷房回路の
2Kg/cm2・Gの圧力の冷媒は第1開閉弁20を通
りベーン型圧縮機Cの一方の吸入口121に吸入
される一方、ブリツジ回路21の冷房回路側の
冷媒圧力は冷凍回路側の冷媒圧力より高いか
ら、冷房回路の冷媒は第2開閉弁22を通り冷
凍回路側に流れ、冷凍回路の冷媒の流れを抑
制してベーン型圧縮機Cの他方の吸入口122
吸入される。即ち、この場合、従来のベーン型圧
縮機を蒸発圧力の異なる冷房用及び冷凍用に兼用
し得ないタイプと同様の作用により、冷凍装置は
殆ど作動せず、冷房装置のみが作動する。
In addition, when only the cooling device is operated, when both the first on-off valve 20 of the cooling circuit and the second on-off valve 22 of the bridge circuit 21 are opened, the refrigerant at a pressure of 2 kg/cm 2 ·G in the cooling circuit is 1 through the on-off valve 20 and into one suction port 12 1 of the vane type compressor C. On the other hand, since the refrigerant pressure on the cooling circuit side of the bridge circuit 21 is higher than the refrigerant pressure on the refrigeration circuit side, the refrigerant in the cooling circuit is The refrigerant flows through the second on-off valve 22 to the refrigeration circuit side, suppresses the flow of refrigerant in the refrigeration circuit, and is sucked into the other suction port 12 2 of the vane compressor C. That is, in this case, the refrigeration system hardly operates, and only the cooling system operates, due to the same effect as the conventional vane type compressor that cannot be used for both cooling and freezing purposes, which have different evaporation pressures.

更に、冷凍装置のみを作動させる場合は、冷房
回路の第1開閉弁20を開弁すると共に、ブリ
ツジ回路21の第2開閉弁22を開弁すれば、冷
房装置には冷媒が流れず、冷凍回路の冷媒は直
接吸入口122に吸入される一方、ブリツジ回路
21の第2開閉弁22を通り冷房回路側に流れ
吸入口121に吸入され冷凍装置のみが作動する。
Furthermore, when only the refrigeration system is operated, if the first on-off valve 20 of the cooling circuit is opened and the second on-off valve 22 of the bridge circuit 21 is opened, the refrigerant will not flow through the cooling system and the refrigeration will start. The refrigerant in the circuit is directly sucked into the suction port 12 2 , while flowing to the cooling circuit side through the second on-off valve 22 of the bridge circuit 21 and sucked into the suction port 12 1 so that only the refrigeration system operates.

(考案の効果) 以上説明したように本考案の冷房、冷凍装置
は、内面に楕円形のカム周面を有するカムリング
とその両側に接合されたフロントサイドブロツク
とリヤサイドブロツクとにより形成されるポンプ
ハウジング内に、回転軸により軸支された円形の
ロータが嵌装され、該ロータの外周と前記カム周
面と前記フロントサイドブロツクと前記リヤサイ
ドブロツクの内面とにより、前記ポンプハウジン
グ内に2つのポンプ作動室が画成され、前記ロー
タは複数のスリツトが半径方向に形成され、これ
ら各スリツトに板状のベーンが進退可能に嵌装さ
れ、前記ロータの回転に伴つて前記ベーンがその
一端を前記カム周面に摺接した状態で前記スリツ
トを進退しながら前記ロータと一体に回転するこ
とにより、冷媒をフロントヘツドに設けられた2
個の吸入口から該フロントヘツド内の2つの吸入
室及びこれら吸入室に1個宛それぞれ開口する2
個の流入口を通じて前記両ポンプ作動室内にそれ
ぞれ吸入し、該吸入した冷媒をこれら両ポンプ作
動室内にてそれぞれ圧縮して各流出口から流出せ
しめた後、単一の吐出口から吐出せしめるように
した複室式のベーン型圧縮機を備え、該ベーン型
圧縮機の前記2個の吸入口に互いに並列とされた
冷房回路と冷凍回路の出口端をそれぞれ接続し、
前記単一の吐出口をコンデンサを介してレシーバ
タンクの入口に接続し、該レシーバタンクの出口
を前記冷房回路と冷凍回路の入口端にそれぞれ接
続し、前記冷房回路にその入口端側から出口端側
に向かつて順次膨張弁、エバポレータ及び第1開
閉弁をそれぞれ介装し、前記冷凍回路にその入口
端側から出口端側に向かつて順次膨張弁及びエバ
ポレータをそれぞれ介装し、前記冷房回路の第1
開閉弁出口側と前記冷凍回路のエバポレータ出口
側とをブリツジ回路にて接続し、該ブリツジ回路
に第2開閉弁を介装して成り、前記第1開閉弁を
開に且つ前記第2開閉弁を閉にすることにより冷
房、冷凍運転状態となり、また、前記第1及び第
2開閉弁を共に開にすることにより冷房運転状態
となり、更に、前記第1開閉弁を閉に且つ前記第
2開閉弁を開にすることにより冷凍運転状態とな
るようにしたものである。
(Effects of the Invention) As explained above, the cooling and freezing device of the present invention includes a pump housing formed by a cam ring having an oval cam circumferential surface on the inner surface, and a front side block and a rear side block joined to both sides of the cam ring. A circular rotor supported by a rotating shaft is fitted inside the pump housing, and the outer circumference of the rotor, the circumferential surface of the cam, the inner surface of the front side block, and the inner surface of the rear side block allow two pumps to operate within the pump housing. A chamber is defined, a plurality of slits are formed in the radial direction of the rotor, and a plate-shaped vane is fitted into each of these slits so as to be movable back and forth, and as the rotor rotates, the vane connects one end of the vane to the cam. By rotating together with the rotor while moving back and forth through the slit while in sliding contact with the circumferential surface, the refrigerant is transferred to the
Two suction chambers in the front head and one opening into each of these suction chambers from the two suction ports.
The refrigerant is sucked into the two pump working chambers through two inlets, and the sucked refrigerant is compressed in the two pump working chambers and flows out from each outlet, and then discharged from a single discharge port. a multi-chamber vane type compressor, the outlet ends of a cooling circuit and a refrigeration circuit which are parallel to each other are respectively connected to the two suction ports of the vane type compressor;
The single discharge port is connected to the inlet of a receiver tank via a condenser, the outlet of the receiver tank is connected to the inlet ends of the cooling circuit and the refrigeration circuit, respectively, and the outlet end is connected to the cooling circuit from the inlet end to the outlet end. An expansion valve, an evaporator, and a first on-off valve are respectively interposed in order from the inlet end to the outlet end of the refrigeration circuit. 1st
The on-off valve outlet side and the evaporator outlet side of the refrigeration circuit are connected by a bridge circuit, and a second on-off valve is interposed in the bridge circuit, and the first on-off valve is opened and the second on-off valve is opened. By closing, the cooling or freezing operation state is entered, and by opening both the first and second on-off valves, the cooling operation state is entered, and further by closing the first on-off valve and the second on-off valve. By opening the valve, the refrigeration operation state is established.

従つて、1台のベーン型圧縮機で冷房と冷凍と
を兼用し得るものでありながら、体積効率の低下
及びこれに伴う圧縮機の大型化等の不都合を解消
し得ると共に、冷房と冷凍の同時運転或は冷房及
び冷凍のいずれか一方のみの運転を必要に応じて
選択することができ、更に、ベーン型圧縮機は従
来構造に対して吸入室を隔壁により2分割し、そ
れぞれに吸入口を設けるのみで構成されるから、
価格も従来のものと殆ど変わることがない等の効
果を奏する。
Therefore, although a single vane compressor can be used for both cooling and refrigeration, it is possible to eliminate the disadvantages such as a decrease in volumetric efficiency and the accompanying increase in the size of the compressor, and it is possible to combine both cooling and refrigeration. Simultaneous operation or operation of only one of cooling and freezing can be selected as needed.Furthermore, vane type compressors have a conventional structure where the suction chamber is divided into two by a partition wall, and each has its own suction port. Since it consists only of providing
It has the advantage that the price is almost the same as the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示し、第1図は本考
案装置に用いるベーン型圧縮機の一部を断面した
側面図、第2図は第1図の−線に沿う断面
図、第3図は同−線に沿う断面図、第4図は
ベーン型圧縮機を組み込んだ本考案の冷房、冷凍
装置の構成図である。 1a……フロントヘツド、2……ポンプハウジ
ング、2a……カムリング、2b……フロントサ
イドブロツク、2c……リヤサイドブロツク、2
d……カム周面、3……ロータ、3a……スリツ
ト、3b……ベーン、5……回転軸、81,82
…ポンプ作動室、91,92……流入口、101
102……流出口、111,112……吸入室、1
1,122……吸入口、15……吐出口、16…
…コンデンサ、17……レシーバタンク、181
182……膨張弁、191,192……エバポレー
タ、20……第1開閉弁、22……第2開閉弁、
21……ブリツジ回路、……冷房回路、……
冷凍回路、C……ベーン型圧縮機。
The drawings show one embodiment of the present invention, in which Fig. 1 is a partially sectional side view of a vane type compressor used in the device of the present invention, Fig. 2 is a sectional view taken along the - line in Fig. 1, and Fig. 3 is a sectional view taken along the - line in Fig. 1. The figure is a sectional view taken along the same line, and FIG. 4 is a configuration diagram of the cooling and freezing apparatus of the present invention incorporating a vane type compressor. 1a...Front head, 2...Pump housing, 2a...Cam ring, 2b...Front side block, 2c...Rear side block, 2
d... Cam circumferential surface, 3... Rotor, 3a... Slit, 3b... Vane, 5... Rotating shaft, 8 1 , 8 2 ...
...Pump working chamber, 9 1 , 9 2 ...Inflow port, 10 1 ,
10 2 ... Outlet, 11 1 , 11 2 ... Suction chamber, 1
2 1 , 12 2 ... Suction port, 15 ... Discharge port, 16...
...Capacitor, 17...Receiver tank, 18 1 ,
18 2 ... expansion valve, 19 1 , 19 2 ... evaporator, 20 ... first on-off valve, 22 ... second on-off valve,
21... Bridge circuit,... Cooling circuit,...
Refrigeration circuit, C... Vane type compressor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内面に楕円形のカム周面を有するカムリングと
その両側に接合されたフロントサイドブロツクと
リヤサイドブロツクとにより形成されるポンプハ
ウジング内に、回転軸により軸支された円形のロ
ータが嵌装され、該ロータの外周と前記カム周面
と前記フロントサイドブロツクと前記リヤサイド
ブロツクの内面とにより、前記ポンプハウジング
内に2つのポンプ作動室が画成され、前記ロータ
は複数のスリツトが半径方向に形成され、これら
各スリツトに板状のベーンが進退可能に嵌装さ
れ、前記ロータの回転に伴つて前記ベーンがその
一端を前記カム周面に摺接した状態で前記スリツ
トを進退しながら前記ロータと一体に回転するこ
とにより、冷媒をフロントヘツドに設けられた2
個の吸入口から該フロントヘツド内の2つの吸入
室及びこれら吸入室に1個宛それぞれ開口する2
個の流入口を通じて前記両ポンプ作動室内にそれ
ぞれ吸入し、該吸入した冷媒をこれら両ポンプ作
動室内にてそれぞれ圧縮して各流出口から流出せ
しめた後、単一の吐出口から吐出せしめるように
した複室式のベーン型圧縮機を備え、該ベーン型
圧縮機の前記2個の吸入口に互いに並列とされた
冷房回路と冷凍回路の出口端をそれぞれ接続し、
前記単一の吐出口をコンデンサを介してレシーバ
タンクの入口に接続し、該レシーバタンクの出口
を前記冷房回路と冷凍回路の入口端にそれぞれ接
続し、前記冷房回路にその入口端側から出口端側
に向かつて順次膨張弁、エバポレータ及び第1開
閉弁をそれぞれ介装し、前記冷凍回路にその入口
端側から出口端側に向かつて順次膨張弁及びエバ
ポレータをそれぞれ介装し、前記冷房回路の第1
開閉弁出口側と前記冷凍回路のエバポレータ出口
側とをブリツジ回路にて接続し、該ブリツジ回路
に第2開閉弁を介装して成り、前記第1開閉弁を
開に且つ前記第2開閉弁を閉にすることにより冷
房、冷凍運転状態となり、また、前記第1及び第
2開閉弁を共に開にすることにより冷房運転状態
となり、更に、前記第1開閉弁を閉に且つ前記第
2開閉弁を開にすることにより冷凍運転状態とな
るようにした冷房、冷凍装置。
A circular rotor supported by a rotating shaft is fitted into a pump housing formed by a cam ring having an oval cam circumferential surface on its inner surface, and a front side block and a rear side block joined to both sides of the cam ring. Two pump working chambers are defined within the pump housing by the outer circumference of the rotor, the cam circumferential surface, the front side block, and the inner surface of the rear side block, and the rotor has a plurality of slits formed in the radial direction; A plate-shaped vane is fitted into each of these slits so as to be movable back and forth, and as the rotor rotates, the vane moves back and forth through the slit with one end of the vane in sliding contact with the circumferential surface of the cam, and becomes integral with the rotor. By rotating, the refrigerant is transferred to the two installed in the front head.
Two suction chambers in the front head and one opening into each of these suction chambers from the two suction ports.
The refrigerant is sucked into the two pump working chambers through two inlets, and the sucked refrigerant is compressed in the two pump working chambers and flows out from each outlet, and then discharged from a single discharge port. a multi-chamber vane type compressor, the outlet ends of a cooling circuit and a refrigeration circuit which are parallel to each other are respectively connected to the two suction ports of the vane type compressor;
The single discharge port is connected to the inlet of a receiver tank via a condenser, the outlet of the receiver tank is connected to the inlet ends of the cooling circuit and the refrigeration circuit, respectively, and the outlet end is connected to the cooling circuit from the inlet end to the outlet end. An expansion valve, an evaporator, and a first on-off valve are respectively interposed in order from the inlet end to the outlet end of the refrigeration circuit; 1st
The on-off valve outlet side and the evaporator outlet side of the refrigeration circuit are connected by a bridge circuit, and a second on-off valve is interposed in the bridge circuit, and the first on-off valve is opened and the second on-off valve is opened. By closing, the cooling or freezing operation state is entered, and by opening both the first and second on-off valves, the cooling operation state is entered, and further by closing the first on-off valve and the second on-off valve. Air conditioner and refrigeration equipment that can be put into refrigeration operation by opening the valve.
JP1986005000U 1986-01-17 1986-01-17 Expired JPH0222599Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986005000U JPH0222599Y2 (en) 1986-01-17 1986-01-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986005000U JPH0222599Y2 (en) 1986-01-17 1986-01-17

Publications (2)

Publication Number Publication Date
JPS6250460U JPS6250460U (en) 1987-03-28
JPH0222599Y2 true JPH0222599Y2 (en) 1990-06-19

Family

ID=30786175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986005000U Expired JPH0222599Y2 (en) 1986-01-17 1986-01-17

Country Status (1)

Country Link
JP (1) JPH0222599Y2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123908A (en) * 1975-04-22 1976-10-29 Daikin Ind Ltd Dual compression type rotary compressor
JPS5312291A (en) * 1976-07-19 1978-02-03 Optische Ind De Oude Delft Nv Method and device for taking sectional photograph
JPS5431211B2 (en) * 1974-09-11 1979-10-05
JPS5515578B2 (en) * 1975-02-14 1980-04-24

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650362Y2 (en) * 1976-12-28 1981-11-25
JPS5431211U (en) * 1977-08-04 1979-03-01
JPS5920605Y2 (en) * 1978-07-19 1984-06-15 株式会社東芝 Air conditioner with refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431211B2 (en) * 1974-09-11 1979-10-05
JPS5515578B2 (en) * 1975-02-14 1980-04-24
JPS51123908A (en) * 1975-04-22 1976-10-29 Daikin Ind Ltd Dual compression type rotary compressor
JPS5312291A (en) * 1976-07-19 1978-02-03 Optische Ind De Oude Delft Nv Method and device for taking sectional photograph

Also Published As

Publication number Publication date
JPS6250460U (en) 1987-03-28

Similar Documents

Publication Publication Date Title
CN108397387B (en) Co-rotating compressor with multiple compression mechanisms and system with same
US3723024A (en) Reversible rotary compressor for refrigerators
JP6446542B2 (en) Variable capacity compressor and refrigeration apparatus including the same
CN111022322A (en) Two-stage air supply compressor, freezing and refrigerating system and control method
US4696627A (en) Scroll compressor
JPH0222599Y2 (en)
JPH0424558B2 (en)
JP2002062020A (en) Refrigerator
JPH06185482A (en) Vane type compressor
CN115126696A (en) Compressor rotor, compressor pump body, compressor and temperature regulation system
JPS6337279B2 (en)
JPH03267592A (en) Hermetic rotary compressor
JP4427675B2 (en) Refrigeration cycle
CN111005870A (en) Double-pump-body assembly, compressor and air conditioning system
JP2001207983A (en) Gas compressor
JP2020094762A (en) Multi-stage compression system
JPS61184364A (en) Rotary vane type compressor
CN112412785B (en) Compressor and refrigeration cycle device
JP2002250292A (en) Closed type rotary compressor and refrigeration/air- conditioning device
CN211343353U (en) Double-pump-body assembly, compressor and air conditioning system
US20230019752A1 (en) Rotary compressor and home appliance including the same
KR20230013200A (en) Rotary compressor and home appliance including the same
JP2003113790A (en) Gas compressor
JP2003206877A (en) Closed rotary compressor
JPS6170191A (en) Vane compressor