JPH0222474A - Production of ceramic material and reaction furnace for said production - Google Patents

Production of ceramic material and reaction furnace for said production

Info

Publication number
JPH0222474A
JPH0222474A JP17019388A JP17019388A JPH0222474A JP H0222474 A JPH0222474 A JP H0222474A JP 17019388 A JP17019388 A JP 17019388A JP 17019388 A JP17019388 A JP 17019388A JP H0222474 A JPH0222474 A JP H0222474A
Authority
JP
Japan
Prior art keywords
reaction
chamber
mold material
section
reactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17019388A
Other languages
Japanese (ja)
Inventor
Takashi Ogawa
貴史 小川
Eizaburo Kanda
栄三郎 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17019388A priority Critical patent/JPH0222474A/en
Publication of JPH0222474A publication Critical patent/JPH0222474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a ceramic material as a film of an extremely uniform thickness by rotating a section in a reaction furnace, introducing a reactive gas into the furnace from a direction orthogonal to the central axis of the section and exhausting the gas from the opposite side after a reaction. CONSTITUTION:A section 9 is detachably attached to the end of the rotating shaft 11 of a section rotating mechanism 10 in a reaction chamber 5 in a water- cooled chamber 1 so that the central axis of the section 9 meets at right angles to a reactive gas introducing pipe 6. A reactive gas is introduced into the chamber 5 from a direction orthogonal to the central axis of the section 9 and is exhausted from exhaust holes 8 on the opposite side. At the same time, the section 9 is rotated by the mechanism 10 and the reactive gas is allowed to react by heating with a heating element 14 in a heating chamber 12. The reactive gas is uniformly distributed on the surface of the section 9 and a ceramic material is formed on the section 9 as a film of a uniform thickness.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、SIC、S!J4、BN等のようなセラミッ
クスの被覆体や成形体く以下、セラミ・〉クス材という
。)を、化学気相反応法(以下、CVD法という。)に
よって、製品の品質が安定し、とくにセラミックス膜厚
が均一な製品をコストを減少して得ることができるセラ
ミックス材の製造方法及びその製造用反応炉に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to SIC, S! Ceramic coatings and molded bodies such as J4, BN, etc. are hereinafter referred to as ceramic materials. ), and a method for manufacturing ceramic materials that can obtain products with stable product quality and particularly uniform ceramic film thickness at reduced costs by chemical vapor phase reaction method (hereinafter referred to as CVD method). This relates to a manufacturing reactor.

[従来の技術] SIC、S!3N4、BN等のようなセラミックスは、
高融点、不活性、熱的高安定度、高熱伝導度等に優れた
工業材料であって、各種の分野で幅広く用いられている
。このようなセラミックスは、反応ガスを原料とするC
VD法によって製造できることが広く知られている。す
なわち、たとえば、BNは、ハロゲン化ホウ素ガスとア
ンモニアガスとを反応ガスとして、反応温度1450〜
2300℃、圧力1〜5丁Orrといった条件で反応さ
せることによって製造し得る。
[Prior art] SIC, S! Ceramics such as 3N4, BN, etc.
It is an industrial material with excellent properties such as high melting point, inertness, high thermal stability, and high thermal conductivity, and is widely used in various fields. Such ceramics are produced using C, which uses reactive gas as a raw material.
It is widely known that it can be manufactured by the VD method. That is, for example, BN is prepared using boron halide gas and ammonia gas as reaction gases at a reaction temperature of 1450 to
It can be produced by reacting at 2300° C. and a pressure of 1 to 5 Orr.

しかして、通常、このようなセラミックスを、CVD法
によって製造する場合、チャンバー内に加熱体によって
加熱される真空反応室を設置した装置を使用し、反応室
内に型材を置き、型材を所定温度に加熱した状態でノズ
ル等を用いて反応ガスを導入して所定の圧力下で型材上
にセラミックスを析出させ、所望の被覆体とするか、又
は、型材上に析出したセラミックスを型材から剥離して
成形体としてセラミックス材を得るのであるが、この際
、型材を加熱する手段として、高周波加熱方式あるいは
抵抗加熱方式が採られている。すなわち、従来、抵抗加
熱方式の反応炉としては、第2図に示すように、真空チ
ャンバー1内に設置されている加熱体14、反応室5、
反応室5内に固着されている型材9からなる反応系に反
応ガス導入管6を用いて反応ガスを導入し、加熱した型
材9上にセラミックスを析出させるものである。
However, when such ceramics are usually manufactured by the CVD method, an apparatus is used in which a vacuum reaction chamber heated by a heating element is installed in the chamber, a mold is placed in the reaction chamber, and the mold is heated to a predetermined temperature. Either by introducing a reactive gas using a nozzle or the like in a heated state and depositing ceramics on the mold material under a predetermined pressure to form the desired coating, or by peeling the ceramics deposited on the mold material from the mold material. A ceramic material is obtained as a molded body, and at this time, a high frequency heating method or a resistance heating method is adopted as a means for heating the mold material. That is, conventionally, as shown in FIG. 2, a resistance heating type reaction furnace includes a heating body 14 installed in a vacuum chamber 1, a reaction chamber 5,
A reaction gas is introduced into a reaction system consisting of a mold material 9 fixed in a reaction chamber 5 using a reaction gas introduction pipe 6, and ceramics are deposited on the heated mold material 9.

[発明が解決しようとする課題] 一般に、型材上に析出するセラミックスの膜厚分布は、
型材上のガス濃度分布及びガスの流れによって大きく影
響を受けるものである。しかして、一般に、不均一なガ
スの流れをなくすには、おのおのの反応炉で流れが層流
となる圧力、流量条件を決定すればよいが、一方、型材
上の反応ガスの濃度均一性は、反応ガスに対する型材の
設置の方法等の炉内の構造に依存するところが大きいも
のである。このために、型材上に均一膜厚のセラミック
スを析出させるには、これらの条件を最適化する必要が
ある。しかしながら、従来、CVD法によって、セラミ
ックスからなる結晶育成用ルツボ、ロケットノズル等大
型形状のセラミックス材を製造する場合、大型形状の形
材上全面にわたりガス濃度及びガスの流れを均一にする
ことは、前記のような反応炉では困難である。すなわち
、従来の反応炉では、反応ガス型材の下端eから上端f
へ流れる間、反応が進行し、型材上へのセラミックスの
析出とともに反応ガスの濃度が減少して行くために、本
質的に型材の上端f上のガス濃度は、下端e上のガス濃
度より小さくなり、型材上に析出するセラミックスの膜
厚は、e〜fの間で不均一となるという問題があった。
[Problem to be solved by the invention] Generally, the thickness distribution of ceramics deposited on a mold material is as follows:
It is greatly influenced by the gas concentration distribution on the mold material and the gas flow. Generally speaking, in order to eliminate non-uniform gas flow, it is sufficient to determine the pressure and flow conditions that will result in a laminar flow in each reactor, but on the other hand, the uniformity of the concentration of reactant gas on the mold material , it largely depends on the structure inside the furnace, such as the method of installing the mold material in relation to the reaction gas. For this reason, it is necessary to optimize these conditions in order to deposit ceramics with a uniform thickness on the mold material. However, when manufacturing large-sized ceramic materials such as ceramic crystal growth crucibles and rocket nozzles using the CVD method, it has been difficult to make the gas concentration and gas flow uniform over the entire surface of the large-sized shape. This is difficult with a reactor like the one mentioned above. That is, in the conventional reactor, from the lower end e to the upper end f of the reaction gas profile.
As the reaction progresses and the concentration of the reaction gas decreases as ceramics are deposited on the mold material, the gas concentration at the upper end f of the mold material is essentially lower than the gas concentration at the lower end e. Therefore, there was a problem in that the thickness of the ceramic film deposited on the mold material was non-uniform between e and f.

実際にセラミックス材をCVD法によって製造する場合
には、供給律則反応のおこる条件で反応させる場合が多
いため、この型材上の反応ガス濃度の不均一が、直接、
型材上に析出するセラミックスの膜厚が不均一になる大
きな原因となるものであった。
When ceramic materials are actually produced by the CVD method, the reaction is often carried out under conditions where a supply law reaction occurs, so the non-uniformity of the reaction gas concentration on the mold material is directly caused by
This was a major cause of uneven thickness of the ceramic film deposited on the mold material.

このために、従来、セラミックス材とくに成形体を製造
する場合には、型材から剥離後、切削加工等によって膜
厚を均一にしなければならず、製品の製造コストの上昇
を招くという問題があった。
For this reason, in the past, when manufacturing ceramic materials, especially molded bodies, it was necessary to make the film thickness uniform by cutting, etc. after peeling from the mold material, which caused the problem of increasing the manufacturing cost of the product. .

本発明は、前記問題を解決し、CV[)法によって、結
晶育成用ルツボのような大型形状のセラミックス材を製
造する際に、型材上の反応ガス濃度を均一にし得、均一
膜厚分布を有する製品を製造し得る手段を得ることを目
的とするものである。
The present invention solves the above problems and makes it possible to make the reaction gas concentration on the mold material uniform when manufacturing large-sized ceramic materials such as crystal growth crucibles by the CV[) method, and to achieve a uniform film thickness distribution. The purpose is to obtain a means to manufacture products that have the following characteristics.

[課題を解決するための手段] 本発明者らは、前記問題を解決し、前記目的を達成する
ために、反応ガスの導入方法及び反応室の製造について
鋭意研究を行なった結果、反応室に型材回転機構に取付
けた型材を設置し、反応ガスを型材の中心軸に対して直
交する方向に導入し、導入側と反対側に排気させるよう
にすることによって目的を達し得ることを見出して本発
明を完成するに至った。すなわち、本発明の第1の実施
態様は、反応ガスを導入し高温において型材上にセラミ
ックス材を生成せしめる化学気相反応法において、反応
炉内において型材を回転せしめながら反応ガスを型材の
中心軸に直交する方向に導入し導入側と反対側から排出
して反応せしめるセラミックス材の製造方法であり、第
2の実施態様は、反応ガスを導入し高温において型材上
にセラミックス材を生成せしめる化学気相反応処理炉に
おいて、二重壁内に冷水を通し冷却能を持たせたチャン
バーと、該チャンバー内に固設された反応室と、該反応
室内に取付ける型材を回転する型材回転機構と、反応室
とチャンバー間に設けられ内部に発熱体を配設した加熱
室と、チャンバー外部より反応室へ反応ガスを型材の中
心軸に直交する方向に導入し得る反応ガス導入管と、該
反応ガス導入管と反対側に設けた排気管接続部とからな
るセラミックス材製造用反応炉である。
[Means for Solving the Problems] In order to solve the above-mentioned problems and achieve the above-mentioned objects, the present inventors have conducted intensive research on methods of introducing reaction gases and manufacturing of reaction chambers. He discovered that the objective could be achieved by installing a mold material attached to a mold material rotation mechanism, introducing the reactive gas in a direction perpendicular to the central axis of the mold material, and exhausting it on the side opposite to the introduction side. The invention was completed. That is, the first embodiment of the present invention is a chemical vapor phase reaction method in which a reactive gas is introduced and a ceramic material is produced on a mold material at high temperature. The second embodiment is a method for manufacturing a ceramic material in which a reaction gas is introduced in a direction perpendicular to the direction and discharged from the side opposite to the introduction side to cause a reaction. In a phase reaction processing furnace, there is a chamber in which cold water is passed through a double wall to provide cooling ability, a reaction chamber fixedly installed in the chamber, a mold rotation mechanism that rotates a mold installed in the reaction chamber, and a reaction chamber. A heating chamber provided between the chambers and having a heating element therein, a reaction gas introduction pipe capable of introducing a reaction gas into the reaction chamber from the outside of the chamber in a direction perpendicular to the central axis of the mold material, and the reaction gas introduction tube. This is a reactor for producing ceramic materials, consisting of a pipe and an exhaust pipe connection provided on the opposite side.

次に、添付の図面に基づいて本発明の詳細な説明する。Next, the present invention will be described in detail based on the accompanying drawings.

第1図は、本発明反応炉の一実施例を示す側断面図であ
る。
FIG. 1 is a side sectional view showing one embodiment of the reactor of the present invention.

1は、チャンバーであって、たとえば、SUS製の円筒
型をし、外壁を二重壁に形成し、内部に冷水を通し冷却
能を持たせ得るように冷却人口2及び冷水出口3が設け
られており、CVD法における反応が1450℃以上の
高温で処理されるためチャンバ−1外部への放熱を緩和
し得るようになっており、チャンバー1の一端側は、0
−リング4を介して気密状態に着脱自在にされている。
Reference numeral 1 denotes a chamber, which has a cylindrical shape made of, for example, SUS, has a double-walled outer wall, and is provided with a cooling port 2 and a cold water outlet 3 so that cold water can be passed through the chamber to provide cooling performance. Since the reaction in the CVD method is processed at a high temperature of 1450°C or higher, heat radiation to the outside of the chamber 1 can be alleviated.
- It is made airtight and removable via the ring 4.

5は、反応室であって、たとえば、グラファイトで箱型
に形成され、図において、左側板5−1には反応ガス導
入管6が接続する反応ガス導入孔7が設けられ、右側板
5−2には排気孔8か設けられている。
Reference numeral 5 denotes a reaction chamber, which is made of, for example, graphite and formed into a box shape. 2 is provided with an exhaust hole 8.

9は、型材であって、チャンバー1に取付けられた適宜
機構の型材回転機構10の回転軸11端に、型材9の中
心軸が反応ガス導入管6と直交するようにして着脱自在
に取付けられ、その周囲を反応ガス導入管6から導入さ
れた反応ガス、反応生成ガスが充満し得るようになって
いる。12は、加熱室であって、反応室5とチャンバー
1との間に設けられ、断熱材の隔壁13によって仕切ら
れ、内部に、たとえば、グラファイト製の発熱体14が
設置されている。15は、排気管接続部であって、反応
ガス導入管6と反対側に設けられ、排風機(図示せず)
に連結する排気管が接続される。
Reference numeral 9 denotes a shape material, which is detachably attached to the end of the rotating shaft 11 of a shape material rotation mechanism 10 of an appropriate mechanism attached to the chamber 1 so that the central axis of the shape material 9 is perpendicular to the reaction gas introduction pipe 6. , and its surroundings can be filled with the reaction gas and reaction product gas introduced from the reaction gas introduction pipe 6. A heating chamber 12 is provided between the reaction chamber 5 and the chamber 1, partitioned by a partition wall 13 made of a heat insulating material, and a heating element 14 made of, for example, graphite is installed inside. Reference numeral 15 denotes an exhaust pipe connection section, which is provided on the opposite side from the reaction gas introduction pipe 6, and is connected to an exhaust fan (not shown).
An exhaust pipe is connected to the exhaust pipe.

本発明におけるセラミックス材の製造は、このように構
成された反応炉を使用して行なうものであって、型材9
の設置、加熱その他の製造条件は従来の条件通り行なえ
ばよいのであるが、本発明においては、型材回転機構1
0の回転軸11端に取付けられた型材9の中心軸に直交
する方向から反応ガスを反応室5内へ導入し、型材9を
型材回転機構10によって、数回転/分程度の回転速度
(1回転/分でも3回転/分でも大差はない。)で回転
させながら反応させるものであって、反応ガスは、型材
9の中心軸に直交するよう設けられた反応ガス導入管6
から反応室5内へ型材9の中心軸に直交するように導入
され、型材9面に均一に分布し、型材9上で反応した後
、排気は、排気孔8を通って排気管接続部15から排出
される。この結果、型材9の下端eから上端f上におい
て、型材9面上に到達する反応ガスの濃度は等しくなり
、型材9の下端eから上端fにかけてセラミックス材の
膜厚は、型材9の回転効果と相まって均一に析出させる
ことができる。したがって、本発明によれば、従来のよ
うな型材上の反応ガスの濃度不均一を回避できるために
、膜厚均一性がきわめて良好なセラミックス材を製造す
ることができるものである。
The production of the ceramic material in the present invention is carried out using the reaction furnace configured as described above, and the mold material 9
Installation, heating, and other manufacturing conditions may be carried out according to conventional conditions, but in the present invention, the mold material rotation mechanism 1
A reaction gas is introduced into the reaction chamber 5 from a direction perpendicular to the central axis of the mold material 9 attached to the end of the rotary shaft 11 of the mold material 9, and the mold material 9 is rotated at a rotational speed of several revolutions per minute (1 There is no big difference whether it is 3 revolutions per minute or 3 revolutions per minute.
The exhaust gas is introduced into the reaction chamber 5 perpendicularly to the central axis of the mold material 9, distributed uniformly on the surface of the mold material 9, and reacted on the mold material 9. After that, the exhaust gas passes through the exhaust hole 8 and exits to the exhaust pipe connection part 15. is discharged from. As a result, the concentration of the reaction gas reaching the surface of the mold material 9 from the lower end e to the upper end f of the mold material 9 becomes equal, and the film thickness of the ceramic material from the lower end e to the upper end f of the mold material 9 changes due to the rotation effect of the mold material 9. Coupled with this, uniform precipitation can be achieved. Therefore, according to the present invention, it is possible to avoid the non-uniform concentration of the reactive gas on the mold material as in the prior art, and thus it is possible to produce a ceramic material with extremely good film thickness uniformity.

[実施例] 次に、本発明の実施例を述べる。[Example] Next, examples of the present invention will be described.

実施例 二重外壁層内に冷水を通し得る内径850 mm、長さ
1300mmのSUS製のチャンバーに、幅300 n
m、長さ400ITlIT+、高さ300 mmのグラ
ファイト製の反応室を固設し、グラファイト製の発熱体
を固設したグラファイト製の加熱室を設け、SUSとグ
ラファイトとを接続して製作した反応ガス導入管を設け
た反応炉を使用し、反応室内の中央部に、直径100m
、高さ100 mmのグラファイト製の方形型材を型材
回転機構の回転軸端に取付け、反応室内に反応ガスとし
てBCρ31005CCH、NH35753CC)1を
反応ガス導入管を通して型材の中心軸に直交するように
導入し、温度1800℃、圧力1 ’rorr、型材の
回転速度1r、l)、m、で5時間反応させることによ
って型材上に8Nを生成させた。
Example A chamber made of SUS with an inner diameter of 850 mm and a length of 1300 mm that allows cold water to pass through the double outer wall layer, and a width of 300 nm.
A graphite reaction chamber with a length of 400 ITlIT+ and a height of 300 mm was installed, a graphite heating chamber with a graphite heating element was installed, and a reaction gas produced by connecting SUS and graphite. A reactor equipped with an inlet pipe is used, and a diameter of 100 m is placed in the center of the reaction chamber.
A rectangular shape made of graphite with a height of 100 mm was attached to the end of the rotating shaft of the shape rotation mechanism, and BCρ31005CCH, NH35753CC)1 was introduced as a reaction gas into the reaction chamber through the reaction gas introduction pipe so as to be perpendicular to the central axis of the shape. , 8N was generated on the mold material by reacting for 5 hours at a temperature of 1800° C., a pressure of 1'rorr, and a rotation speed of the mold material of 1 r, l), m.

生成した[3N製品について、下端eから上端fにかけ
て膜厚を測定して膜厚分布を求めた。結果を第3図に示
す。
For the produced [3N product, the film thickness was measured from the lower end e to the upper end f to determine the film thickness distribution. The results are shown in Figure 3.

この結果、本発明においては、膜厚均一性に優れたセラ
ミックス材を製造し得ることが認められた。
As a result, it was confirmed that the present invention can produce a ceramic material with excellent film thickness uniformity.

比較例 実施例における型材回転機構を除いたほぼ等大の従来の
反応炉を使用して、型材を回転しなかった以外は実施例
と同様な条件によってBNを生成させ、実施例と同様に
して膜厚分布を測定した。結果を第4図に示す。
Comparative Example Using a conventional reactor of approximately the same size except for the mold material rotation mechanism in the example, BN was produced under the same conditions as in the example except that the mold material was not rotated, and in the same manner as in the example. The film thickness distribution was measured. The results are shown in Figure 4.

[発明の効果] 本発明は、反応室に取付ける型材を回転し得るようにし
、かつ、反応ガスを型材の中心軸に対して直交する方向
に導入し、導入側と反対側に排出するようにした製造方
法であり、反応炉であるから、従来の反応炉を使用する
従来の製造方法に較べて膜厚均一性に優れたセラミック
ス材を製造し得、膜厚均一化のための切削加工等が不用
になるばかりでなく、大型、かつ、厚膜のセラミックス
材を製造する場合に、反応ガス供給量により総析出量が
規定されている中で不必要な部分への析出量が削減する
ものであるから製品完成までの時間を短縮し得、製造コ
ストの低下が期待できるなど、きわめて優れた効果が認
められる。
[Effects of the Invention] The present invention enables the mold material attached to the reaction chamber to be rotated, introduces the reaction gas in a direction perpendicular to the central axis of the mold material, and discharges it to the side opposite to the introduction side. Since this is a manufacturing method using a reactor, it is possible to manufacture ceramic materials with superior film thickness uniformity compared to conventional manufacturing methods using a conventional reactor, and cutting processes etc. are required to make the film thickness uniform. Not only does this eliminate the need for large-sized, thick-film ceramic materials, but when the total amount of precipitation is determined by the amount of reactant gas supplied, it reduces the amount of precipitation in unnecessary areas. Therefore, it has been recognized that it has extremely excellent effects, such as shortening the time it takes to complete a product and lowering manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明反応炉の一実施例を示す側断面図、第
2図は、従来の反応炉例を示す縦断面図、第3図は、本
発明方法によって製造した8Nの膜厚分布例を横軸に型
材の上端fからの距M clTIITl>、竪軸に膜厚
(mm)をとって示す図、第4図は、従来の反応炉を使
用して従来の方法によって製造したBNの膜厚分布を第
3図と同様に示した図である。
Fig. 1 is a side sectional view showing an embodiment of the reactor of the present invention, Fig. 2 is a longitudinal sectional view showing an example of a conventional reactor, and Fig. 3 is a film thickness of 8N produced by the method of the present invention. A diagram showing an example of the distribution with the distance from the upper end f of the mold material on the horizontal axis and the film thickness (mm) on the vertical axis. 4 is a diagram showing the film thickness distribution of BN similarly to FIG. 3. FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)反応ガスを導入し高温において型材上にセラミッ
クス材を生成せしめる化学気相反応法において、反応炉
内において型材を回転せしめながら反応ガスを型材の中
心軸に直交する方向に導入し導入側と反対側から排出し
て反応せしめることを特徴とするセラミックス材の製造
方法。
(1) In the chemical vapor phase reaction method in which a reactive gas is introduced and a ceramic material is generated on a mold material at high temperature, the reactive gas is introduced in a direction perpendicular to the central axis of the mold material while rotating the mold material in a reaction furnace. A method for producing a ceramic material, characterized in that the reaction is carried out by discharging the material from the opposite side.
(2)反応ガスを導入し高温において型材上にセラミッ
クス材を生成せしめる化学気相反応処理炉において、二
重壁内に冷水を通し冷却能を持たせたチャンバーと、該
チャンバー内に固設された反応室と、該反応室内に取付
ける型材を回転する型材回転機構と、反応室とチャンバ
ー間に設けられ内部に発熱体を配設した加熱室と、チャ
ンバー外部より反応室へ反応ガスを型材の中心軸に直交
する方向に導入し得る反応ガス導入管と、該反応ガス導
入管と反対側に設けた排気管接続部とからなることを特
徴とするセラミックス材製造用反応炉。
(2) In a chemical vapor phase reaction processing furnace that introduces a reactive gas and generates a ceramic material on a mold material at high temperature, there is a chamber in which cold water is passed through a double wall to provide cooling ability, and a chamber that is fixedly installed within the chamber. a reaction chamber, a mold rotation mechanism that rotates the mold material installed in the reaction chamber, a heating chamber provided between the reaction chambers and a heating element inside, and a reaction gas supplied to the reaction chamber from the outside of the chamber to rotate the mold material. 1. A reactor for producing ceramic materials, comprising a reaction gas introduction pipe that can be introduced in a direction perpendicular to a central axis, and an exhaust pipe connection section provided on the opposite side of the reaction gas introduction pipe.
JP17019388A 1988-07-08 1988-07-08 Production of ceramic material and reaction furnace for said production Pending JPH0222474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17019388A JPH0222474A (en) 1988-07-08 1988-07-08 Production of ceramic material and reaction furnace for said production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17019388A JPH0222474A (en) 1988-07-08 1988-07-08 Production of ceramic material and reaction furnace for said production

Publications (1)

Publication Number Publication Date
JPH0222474A true JPH0222474A (en) 1990-01-25

Family

ID=15900400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17019388A Pending JPH0222474A (en) 1988-07-08 1988-07-08 Production of ceramic material and reaction furnace for said production

Country Status (1)

Country Link
JP (1) JPH0222474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839361A (en) * 2011-10-24 2012-12-26 南通天华和睿科技创业有限公司 Chemical vapor deposition furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839361A (en) * 2011-10-24 2012-12-26 南通天华和睿科技创业有限公司 Chemical vapor deposition furnace

Similar Documents

Publication Publication Date Title
US4232063A (en) Chemical vapor deposition reactor and process
US5834059A (en) Process of depositing a layer of material on a wafer with susceptor back coating
KR101161407B1 (en) Chemical Vapor Deposition Apparatus
KR20020089341A (en) Device and method for depositing one or more layers onto a substrate
EP0473067B1 (en) Wafer processing reactor
EP0031671B1 (en) A method of growing silicate glass layers employing a chemical vapour deposition process
JPH0382765A (en) Article having fine particle and/or equi-axed particle fabric coating
JPH0222474A (en) Production of ceramic material and reaction furnace for said production
KR100626474B1 (en) Cvd reactor and use thereof
JPS6168393A (en) Hot wall type epitaxial growth device
JPH05251359A (en) Vapor silicon epitaxial growth device
JPS63147894A (en) Vapor growth method and vertical vapor growth device
JPS626682Y2 (en)
JPH0222473A (en) Production of ceramic material and high temperature reaction furnace for said production
JPS63300512A (en) Chemical vapor deposition apparatus
JPH03232794A (en) Vapor-phase growth apparatus
JPH0512280Y2 (en)
JPS6358226B2 (en)
JP3072664B2 (en) Vertical vacuum deposition equipment
JPS6338581A (en) Functional deposited film forming device
JPS62244123A (en) Vapor growth device
JPH0713946B2 (en) CVD equipment
JPS5839017A (en) Chemical vapor-phase growing device for semiconductor device
JP3842501B2 (en) CVD equipment
JPH01169920A (en) Continuous film forming device