JPH02218517A - Electric discharge machining method and its device - Google Patents

Electric discharge machining method and its device

Info

Publication number
JPH02218517A
JPH02218517A JP3821389A JP3821389A JPH02218517A JP H02218517 A JPH02218517 A JP H02218517A JP 3821389 A JP3821389 A JP 3821389A JP 3821389 A JP3821389 A JP 3821389A JP H02218517 A JPH02218517 A JP H02218517A
Authority
JP
Japan
Prior art keywords
machining
stage
surface roughness
processing
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3821389A
Other languages
Japanese (ja)
Other versions
JP2892028B2 (en
Inventor
Masakazu Kishi
岸 雅一
Shizuo Araya
荒屋 静夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP1038213A priority Critical patent/JP2892028B2/en
Publication of JPH02218517A publication Critical patent/JPH02218517A/en
Application granted granted Critical
Publication of JP2892028B2 publication Critical patent/JP2892028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To shorten processing time regardless of operator's skill by setting up an optimum processing condition only by the step of manually inputting data on electrodes, the material of a work piece, the maximum processing area at the time of roughing, and the surface roughness of final finish which are designated by manufacturing drawings. CONSTITUTION:When information on electrodes to be used by an operator, the material of a work piece, the maximum processing area of roughing and the surface roughness of final finish are inputted by an input section 12, the number of stages in multi- rocking processing, and the surface roughness of processing at each stage are operated by an operating section 11 based on the aforesaid information. Based on the result of the operation, an electrical condition and the amount of rocking which are required to obtain the roughness of processing at each stage, are operated at the operating section 11 respectively so as to be stored in a memory section 14. Then, the electrical condition and the amount of rocking for each processing stage (surface roughness of processing) are read out in order from the memory section 14 at the time of processing so as to be outputted to a process power section 16 and a machine actuating section 17 via a machine drive section 15 so that processing at each stage is performed by a machine main body 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、型彫プ放電加工における多段揺動加工の加工
条件を自動設定して放電加工する方法及びその装置に関
するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and an apparatus for performing electrical discharge machining by automatically setting machining conditions for multi-stage oscillation machining in die-carving electrical discharge machining.

〔従来の技術〕[Conventional technology]

型彫シ放電加工にお−て、電極と被加工物を相対的に移
動しながら加工を行う揺動加工法は、高−加工精度が得
られると共に、加工能率を向上する効果があることから
、はとんど全ての数値制御1(NC)型彫シ放電加工機
に採用されている。このような揺動加工法の中でも、荒
加工から仕上加工までを、多段階に加工条件を変えて加
工して行く多段揺動加工法は、特に重要な加工法である
In die-sinking electrical discharge machining, the oscillating machining method, which performs machining while moving the electrode and workpiece relative to each other, provides high machining accuracy and is effective in improving machining efficiency. , is adopted in almost all numerical control 1 (NC) die engraving electric discharge machines. Among these oscillating machining methods, a multi-stage oscillating machining method in which machining is performed by changing machining conditions in multiple stages from rough machining to finishing machining is a particularly important machining method.

この多段揺動加工を行う場合に決定しなければならない
代表的な加工条件は、加工面粗さR1電気条件(1,T
)(Iはピーク電流、Tはパルス幅)及び揺動量8であ
夛、次表1は荒加工から仕上加工までの一連の加工条件
を示して−る。
Typical machining conditions that must be determined when performing this multi-stage oscillation machining are machined surface roughness R1 electrical conditions (1, T
) (I is the peak current, T is the pulse width) and the amount of oscillation is 8. Table 1 below shows a series of machining conditions from rough machining to finishing machining.

表   1 この表1において、Ros  (Io +To )及び
ε0は、荒加工の加工面粗さ、電気条件及び揺動量であ
プ、またR ns  (I n + Tn )及びεn
は最終仕上加工の加工面粗さ、電気条件及び揺動量であ
る。
Table 1 In Table 1, Ros (Io + To ) and ε0 are the machined surface roughness, electrical conditions, and swing amount during rough machining, and R ns (I n + Tn ) and εn
are the machined surface roughness, electrical conditions, and amount of oscillation in the final finishing process.

放電加工の特性として、加工面粗さを1/2にする加工
条件では、加工速度は約175(−加工時間は約5倍)
になる、一方、加工面粗さを1/2よシ少ない値にする
加工条件では、加工速度は115よシ大きくなる。した
がって、刀ロエ時間を短縮するためには、荒い加工面粗
さから仕上面を得るまで多段階に加工条件を変えて順次
加工を行う方法が採られている。
As a characteristic of electric discharge machining, under machining conditions that reduce the machined surface roughness to 1/2, the machining speed is approximately 175 (-machining time is approximately 5 times).
On the other hand, under machining conditions that reduce the machined surface roughness to a value less than 1/2, the machining speed becomes greater than 115. Therefore, in order to shorten the machining time, a method is adopted in which machining conditions are changed in multiple stages and machining is performed sequentially, from a rough machined surface to a finished surface.

第3図(&)、(b)は凰彫υ放電加工における代表的
なm工状態の一例を示す図で、荒加工が終了して仕上加
工に入るときの電極1と被加工物2の相対位置状態を示
している。この第3図のうち(a)は貫通穴を加工した
後、側面を順次仕上ける場合の例であシ、(b)は庇付
加工で側面を順次仕上げる場合の例である。第3図(a
)、(b)において、被加工物2のハツチング部分3は
Figures 3 (&) and (b) are diagrams showing an example of a typical machining state in 凇 carving υ electric discharge machining, where the electrode 1 and workpiece 2 are Indicates relative position status. In FIG. 3, (a) is an example in which the side surfaces are sequentially finished after the through hole is machined, and (b) is an example in which the side surfaces are sequentially finished by machining with eaves. Figure 3 (a
), (b), the hatched portion 3 of the workpiece 2 is.

多段加工で加工する加工代である。This is the machining allowance for multi-stage machining.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような多段加工においては、前掲表1に示した加工
条件の中で、段数nと各段lの加工面粗さRの値により
加工時間が大きく影響を受ける。
In such multi-stage machining, the machining time is greatly influenced by the number of stages n and the value of the machined surface roughness R of each stage l among the machining conditions shown in Table 1 above.

従来、これら段数nと各段1の加工面粗さRの値は熟練
者が勘で決定した)、多くのテスト加工を行って決定し
ていたか、多段加工の段数nと加工面粗さRの値の組み
合わせは無限にあることから、最適な条件を見出すこと
は極めて難しく、結局、加工時間が長くなるという問題
点があった。
Conventionally, the values of the number of stages n and the machined surface roughness R of each stage 1 were determined by an expert's intuition), or were determined by performing many test machining, or the number of stages n and the machined surface roughness R of multi-stage machining. Since there are an infinite number of combinations of values, it is extremely difficult to find the optimal conditions, resulting in a problem that the processing time becomes longer.

本発明の目的は、多段揺動放電加工において、操作者の
熟練度に関係なく加工時間の短縮化が図れる放電加工方
法及びその装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric discharge machining method and apparatus that can shorten machining time regardless of the operator's skill level in multi-stage oscillating electric discharge machining.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、多段揺動加工法を用いた放電加工において
、使用する電極と被加工物の材質、荒加工時の最大加工
面積及び最終仕上加工面粗さを入力情報とし、これらの
入力情報に基づいて多段揺動加工における段数と各段で
の而粗さを演算し、この演算結果により前記各段の面粗
さを得るための電気条件及び揺動量を各々演算し、この
演算により得られた電気条件及び揺動量に従って前記各
段の加工を行うことによυ達成される。
The above purpose is to use the electrode and workpiece material used, the maximum machining area during rough machining, and the final finished surface roughness as input information in electrical discharge machining using the multi-stage oscillating machining method. Based on this calculation, the number of stages in multi-stage oscillating machining and the roughness at each stage are calculated, and the electrical conditions and the amount of oscillation to obtain the surface roughness of each stage are calculated from the results of this calculation, and the number of stages obtained by this calculation is calculated. υ is achieved by performing the processing at each stage according to the electrical conditions and amount of oscillation.

〔作  用〕[For production]

操作者が、使用する電極と被加工物の材質、荒加工物の
最大加工面積及び最終仕上加工面粗さについての情報を
入力すると、この入力情報に基づいて多段揺動加工にお
ける段数と各段での加工面粗さが演算される。この演算
結果により、前記各・段の加工面粗さを得るための電気
条件及び揺動量が各々演算され、この演算により得られ
た電気条件及び揺動量に従って前記各段の加工が行われ
る。
When the operator inputs information about the electrode to be used, the material of the workpiece, the maximum machining area of the rough workpiece, and the final finished surface roughness, the number of stages and each stage in multistage oscillating machining is determined based on this input information. The machined surface roughness at is calculated. Based on the calculation results, the electrical conditions and swing amount for obtaining the machined surface roughness of each step are calculated, and the processing of each step is performed according to the electrical conditions and swing amount obtained by this calculation.

すなわち操作者か、上記のように使用する電極と被加工
物の材質、荒加工時の最大加工面積及び最終仕上加工面
粗さについての情報を入力するだけで、多段揺動加工に
おいて最適な電気条件及び揺動量に従って前記各段の加
工が行われることになシ、操作者の熟練度に関係なく加
工時間の短縮化が図れる。
In other words, by simply inputting information about the electrode and workpiece material to be used, the maximum machining area during rough machining, and the final finished surface roughness as described above, the operator can select the optimal electrical Since the machining at each stage is performed according to the conditions and the amount of oscillation, the machining time can be shortened regardless of the skill level of the operator.

〔夾 施 例〕[Example]

以下、図面を参照して、本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明による放電加工方法の−実施例を示す
ブロック図である。この第1図において、11はCPU
等からなる演算部、12はテープリーダ、牟−ボード等
からなる入力部、13はCRTデイスプレィ等からなる
表示部、14はメモリ部、15はX、Y、Z軸駆動モー
タ等からなる機械駆動部で、これらはCNC装置を構成
している。
FIG. 1 is a block diagram showing an embodiment of the electrical discharge machining method according to the present invention. In this Figure 1, 11 is the CPU
12 is an input section consisting of a tape reader, square board, etc., 13 is a display section consisting of a CRT display, etc., 14 is a memory section, and 15 is a mechanical drive consisting of X, Y, Z axis drive motors, etc. In some parts, these constitute a CNC device.

この場合、前記演算部11は、使用する電極と被加工物
の材質、荒加工時の最大加工面積及び最終仕上加工面粗
さを入力情報とし、これらの入力情報に基づいて多段揺
動加工における段数と各段での面粗さを演算し、この演
算結果により前記各段の面粗さを得るための電気条件及
び揺動量を各々演算し、この演算により得られた電気条
件及び揺動量に従って前記各段の加工を実行させる演算
手段としても機能する。
In this case, the calculation unit 11 uses as input information the electrode to be used and the material of the workpiece, the maximum machining area during rough machining, and the final finish machining surface roughness, and based on these input information, performs processing in multi-stage oscillating machining. Calculate the number of stages and the surface roughness at each stage, calculate the electrical conditions and swing amount to obtain the surface roughness of each stage based on the calculation results, and according to the electrical conditions and swing amount obtained by this calculation. It also functions as a calculation means for executing the processing at each stage.

16は加工電源回路等からなる加工パワ一部、17はリ
レー、すiットスイッチ等からなる機械操作部亀 18
はテーブル、タイル等からなる機械本体、19は加工液
供給装置である。
16 is a machining power part consisting of a machining power supply circuit, etc.; 17 is a machine operation part turtle consisting of a relay, a switch, etc.; 18
1 is a machine body consisting of a table, tiles, etc., and 19 is a processing fluid supply device.

次に、第2図のフローチャートを併用して本発明方法、
装置機能の一例を説明する。
Next, using the flowchart of FIG. 2, the method of the present invention,
An example of the device function will be explained.

まず操作者は、使用する電極と被加工物の材質、荒加工
での最大加工面積81最終仕上加工の加工面粗さRfを
、入力部12から各々入力(ステラ・プ21)する、こ
れらの入力情報は一般に製作図面に記載されている値で
あり、操作者は製作図面を見ながらこれらの情報を簡単
に入力できる。
First, the operator inputs the electrode to be used, the material of the workpiece, the maximum machining area 81 for rough machining, and the machined surface roughness Rf for final finishing machining from the input unit 12 (Stera input 21). The input information is generally values written on the manufacturing drawings, and the operator can easily input this information while looking at the manufacturing drawings.

次に、電極と被加工物の材質と、荒加工での最大加工面
積Sから、下式(1)で荒加工の加工面粗さRrt−演
算する(ステップ22)。
Next, from the materials of the electrode and the workpiece, and the maximum machining area S for rough machining, the rough machining surface roughness Rrt- is calculated using the following formula (1) (step 22).

Rr−に−8/J  ・・ ・・・・ ・・・・・・・
・・・・ (1)ここで、Jは使用する電極と被加工物
の材質で決まる定数でsb、単位面積尚たヤに流せる許
容加工電流である。また、KはS/Jから得られる加工
電流を加工面粗さに変換するための定数である。
Rr-ni-8/J ・・・・・ ・・・・・・・
(1) Here, J is a constant determined by the electrode used and the material of the workpiece, and sb is the allowable machining current that can be passed through the unit area. Further, K is a constant for converting the machining current obtained from S/J into machined surface roughness.

次に、入力された最終仕上加工の加工面粗さRf及び上
式(1)で求袷られた荒加工の加工面粗さR,を用い、
演算部11によって荒加工から最終仕上加工までの段数
nが、以下のように演算される(ステップ23)、すな
わち発明者等により、多段加工で加工時間か最短となる
最適加工条件を・数理t1画法を用いて解析し九結果、
近似的に等比数列的に加工面粗さRを減少すればよいこ
とが明・らかになった、そしてその減少率φは、第3図
(IL)、(b)に示すような一般の加工では1111
.6−0、8が適正であることが分かった。
Next, using the input final finish machining surface roughness Rf and the rough machining surface roughness R obtained by the above formula (1),
The number of stages n from rough machining to final finishing machining is calculated by the calculation unit 11 as follows (step 23). In other words, the inventors have determined the optimal machining conditions that will minimize the machining time in multi-stage machining. Nine results analyzed using the drawing method,
It has become clear that the machined surface roughness R can be reduced approximately in a geometric progression, and the reduction rate φ can be determined by the general equation shown in Figure 3 (IL) and (b). In the processing of 1111
.. It turned out that 6-0, 8 was appropriate.

これに基づき、荒加工から仕上加工までの段数・nは下
式(2)で求めることができる。
Based on this, the number of steps from rough machining to finish machining, n, can be determined by the following formula (2).

Log(Rf/Rr) n=                    ・・・
・・・・・・・・・・・・・・・・・・(2)Logφ ただし、Rfは仕上加工の加工面粗さ、Rrは。
Log(Rf/Rr) n=...
・・・・・・・・・・・・・・・・・・(2) Logφ However, Rf is the machined surface roughness of finishing process, and Rr is.

荒加工の加工面粗さ、Φは加工面粗さ減少率で6゜る。The machined surface roughness of rough machining, Φ, is the machined surface roughness reduction rate of 6°.

上式(2)により求められた段数nが整数でな・い場合
は四捨五入で整数化しくステップ24)、その段数をN
とする。
If the number of stages n calculated by the above formula (2) is not an integer, round it to an integer (Step 24), and convert the number of stages to N.
shall be.

次に、種数化し九段数Nを満足する修正加工面粗さ減少
率l を下式(3)で求める(ステップ25 )。
Next, the corrected machined surface roughness reduction rate l that satisfies the genus number N is determined using the following equation (3) (step 25).

φ’  =(B 1 / Hr) 1 /N・・・・・
・・・・・・・・・・・・・・・・・・・(3)次に、
各段の加工面粗さRt(t=x〜N)を下式(4)で永
める(ステップ26)。
φ' = (B 1 / Hr) 1 /N...
・・・・・・・・・・・・・・・・・・・・・(3) Next,
The machined surface roughness Rt (t=x~N) of each stage is increased using the following equation (4) (step 26).

Ri ”” /  ’ Rr   ・曲”=曲曲曲(4
)Ro麿Rr+ RN ”” Rfとすれば、一連の〃
ロ工面。
Ri ``” / ' Rr ・Song”=Song (4
)RomaroRr+RN ”” Rf, a series of 〃
Lo-work side.

粗さ(RI IRl +Rs・・・RN)が上式(3)
により求められる。
The roughness (RI IRl +Rs...RN) is expressed by the above formula (3)
It is determined by

次に、各段lo電気条件(It、Ti)と揺動・量#1
を求める(ステップ27)。ここで、■は、)パルス電
流のピーク電流、Tはパルス福である。
Next, each stage lo electrical conditions (It, Ti) and swing/amount #1
(Step 27). Here, ■ is the peak current of the pulse current, and T is the pulse current.

各段lの加工面粗さRIK対する電気条件(工1、Ti
)と揺動量ttFi、従来と同様の演算子。
Electrical conditions for machined surface roughness RIK of each stage l (process 1, Ti
) and the amount of oscillation ttFi, the same operators as before.

法により最適値を求める。求めた電気条件(11、Ti
)、揺動量#1と、先に演算された加工面粗さR1との
関係を下表2に示す。
Find the optimal value using the method. The electrical conditions (11, Ti
), the relationship between the swing amount #1 and the previously calculated machined surface roughness R1 is shown in Table 2 below.

表 2 この表2に示すように、荒加工から最終仕上加工まで各
段lにおける加工面粗さR1に対する電・気条件(I 
i 、Ti )と揺動量#lt−順次求め、ルックアッ
プテーブルとしてメモリ部14に記憶する。そして加工
時、その加工段1(加工面粗さR1に対する電気条件(
Ii、Tiと揺動量11をメモリ部14から順次読み出
し、機械駆動・部15を介して加工パワ一部16と機械
操作部17へ与えて機械本体11で加工を実行する(ス
テップ28)。
Table 2 As shown in Table 2, the electrical and electrical conditions (I
i, Ti) and the amount of oscillation #lt are sequentially determined and stored in the memory unit 14 as a look-up table. Then, during machining, the electrical conditions for machining stage 1 (machined surface roughness R1)
Ii, Ti, and the amount of swing 11 are sequentially read from the memory section 14 and applied to the machining power section 16 and the machine operation section 17 via the mechanical drive section 15 to execute machining in the machine body 11 (step 28).

なお上述実施例では、荒加工から仕上加工までの各段1
における加工面粗さR1に対する電気条件(It、Ti
)と揺動量61を、ルックアップテーブルとしてメモリ
部14に記憶し、これを加工時、その加工段lに応じて
順次読み出して加工を実行するようにしたが、これにの
み限定されることはない。例えば、前掲表2に示す加工
面粗さR1と電気条件(Is、Tt)、揺動量61との
関係を数式化し、その式を用いた演算で求めるようにし
てもよい。
In the above embodiment, each stage 1 from rough machining to finishing machining is
Electrical conditions (It, Ti
) and the amount of oscillation 61 are stored in the memory section 14 as a look-up table, and during machining, this is read out sequentially according to the machining stage l to execute the machining, but the present invention is not limited to this. do not have. For example, the relationship between the machined surface roughness R1, the electrical conditions (Is, Tt), and the swing amount 61 shown in Table 2 above may be expressed as a mathematical expression, and the calculation may be performed using the expression.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多段揺動放電加工において、通常、製
作図面に記載されている、電極と被加工物の材質、荒加
工時の最大加工面積及び最終仕上加工面粗さについての
データを手動人力するだけで最適な加工条件が設定され
るので、操作者の熟練度に関係なく加工時間の短縮化が
図れるという効果がある。
According to the present invention, in multi-stage oscillating electric discharge machining, data about electrode and workpiece materials, maximum machining area during rough machining, and final machined surface roughness, which are usually described in manufacturing drawings, can be manually input. Since the optimal machining conditions can be set simply by manual effort, the machining time can be shortened regardless of the skill level of the operator.

【図面の簡単な説明】[Brief explanation of the drawing]

w41図は本発明装置の一実施例を示すブロック図、第
2図は本発明方法、装置を説明する丸めのフローチャー
ト、第3図は型彫シ放電加工における代表的な加工状態
の一例を示す図である。 1・・・電極、 2・・・被加工物、 3・・・加工代
、12・・・入力部% 13・・・表示部、  11・
・・演算部、 14・・・メモリ部、 15・・・機械
駆動部、16・・・加工パワ一部、  17・・・機械
操作部、18・・・機械本体、  19・・・加工液供
給装置。 第を 図 i、3図
Fig. w41 is a block diagram showing an embodiment of the device of the present invention, Fig. 2 is a rounded flowchart explaining the method and device of the present invention, and Fig. 3 shows an example of a typical machining state in die-sinking electric discharge machining. It is a diagram. 1... Electrode, 2... Workpiece, 3... Machining allowance, 12... Input section % 13... Display section, 11.
...Arithmetic section, 14...Memory section, 15...Machine drive section, 16...Machining power part, 17...Machine operation section, 18...Machine main body, 19...Machining fluid Feeding device. Figure i, Figure 3

Claims (1)

【特許請求の範囲】 1、多段揺動加工を用いた放電加工法において、使用す
る電極と被加工物の材質、荒加工時の最大加工面積及び
最終仕上加工面粗名を入力情報とし、これらの入力情報
に基づいて多段揺動加工における段数と各段での面粗さ
を演算し、この演算結果により前記各段の面粗さを得る
ための電気条件及び揺動量を各々演算し、この演算によ
り得られた電気条件及び揺動量に従つて前記各段の加工
を行うことを特徴とする放電加工方法。 2、多段揺動加工法を用いて放電加工を行う放電加工装
置において、使用する電極と被加工物の材質、荒加工時
の最大加工面積及び最終仕上加工面粗さを入力情報とし
、これらの入力情報に基づいて多段揺動加工における段
数と各段での面粗さを演算し、この演算結果により前記
各段の面粗さを得るための電気条件及び揺動量を各々演
算し、この演算により得られた電気条件及び揺動量に従
つて前記各段の加工を実行させる演算手段を具備するこ
とを特徴とする放電加工装置。
[Claims] 1. In the electric discharge machining method using multi-stage oscillation machining, the electrode used and the material of the workpiece, the maximum machining area during rough machining, and the name of the final machined surface roughness are input information. The number of stages in multi-stage oscillating machining and the surface roughness at each stage are calculated based on the input information of An electrical discharge machining method characterized in that machining of each stage is performed according to electrical conditions and an amount of oscillation obtained by calculation. 2. In an electrical discharge machining device that performs electrical discharge machining using the multi-stage oscillating machining method, the input information is the electrode used, the material of the workpiece, the maximum machining area during rough machining, and the final finished surface roughness. Based on the input information, calculate the number of stages in multi-stage oscillating machining and the surface roughness at each stage, and use the results of this calculation to calculate the electrical conditions and amount of oscillation to obtain the surface roughness at each stage. An electric discharge machining apparatus characterized by comprising a calculation means for executing the machining of each stage according to the electrical conditions and the amount of oscillation obtained by the above.
JP1038213A 1989-02-20 1989-02-20 Electric discharge machine Expired - Fee Related JP2892028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038213A JP2892028B2 (en) 1989-02-20 1989-02-20 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038213A JP2892028B2 (en) 1989-02-20 1989-02-20 Electric discharge machine

Publications (2)

Publication Number Publication Date
JPH02218517A true JPH02218517A (en) 1990-08-31
JP2892028B2 JP2892028B2 (en) 1999-05-17

Family

ID=12519036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038213A Expired - Fee Related JP2892028B2 (en) 1989-02-20 1989-02-20 Electric discharge machine

Country Status (1)

Country Link
JP (1) JP2892028B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571426A (en) * 1993-12-22 1996-11-05 Sodick Co., Ltd. Method of determining electric discharge machining conditions and electric discharge machining controller
US6791055B1 (en) 2000-04-20 2004-09-14 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrodischarge machining
CN110216341A (en) * 2019-06-21 2019-09-10 上海汉霸数控机电有限公司 A kind of shake processing method of spark machine
CN116438028A (en) * 2021-04-12 2023-07-14 三菱电机株式会社 Machining condition setting device, machining condition setting method, and electric discharge machining device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515693A (en) * 1974-07-06 1976-01-17 Inoue Japax Res HODENKAKOHOHO
JPS6399135A (en) * 1987-05-15 1988-04-30 Sodeitsuku:Kk Control method of electric discharge machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515693A (en) * 1974-07-06 1976-01-17 Inoue Japax Res HODENKAKOHOHO
JPS6399135A (en) * 1987-05-15 1988-04-30 Sodeitsuku:Kk Control method of electric discharge machining

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571426A (en) * 1993-12-22 1996-11-05 Sodick Co., Ltd. Method of determining electric discharge machining conditions and electric discharge machining controller
US6791055B1 (en) 2000-04-20 2004-09-14 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrodischarge machining
DE10085460B4 (en) * 2000-04-20 2006-08-31 Mitsubishi Denki K.K. Electric discharge machining method and apparatus
CN110216341A (en) * 2019-06-21 2019-09-10 上海汉霸数控机电有限公司 A kind of shake processing method of spark machine
CN110216341B (en) * 2019-06-21 2020-07-14 上海汉霸数控机电有限公司 Shaking processing method of spark machine
CN116438028A (en) * 2021-04-12 2023-07-14 三菱电机株式会社 Machining condition setting device, machining condition setting method, and electric discharge machining device
CN116438028B (en) * 2021-04-12 2024-02-20 三菱电机株式会社 Machining condition setting device, machining condition setting method, and electric discharge machining device

Also Published As

Publication number Publication date
JP2892028B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP2637488B2 (en) Numerically controlled grinding machine
US5894418A (en) Method for creating a machining condition series
JP3820988B2 (en) Electric discharge machining method and apparatus
JPH0236047A (en) Numerical value control device for working non-cylindrical work
CN106493469A (en) The numerical control device of processing conditionss can be controlled according to posture
JPH02218517A (en) Electric discharge machining method and its device
JP2948797B2 (en) Machining sequence editing method and apparatus for wire cut electric discharge machining
JPH02218518A (en) Electric discharge machining method
JP4282632B2 (en) Numerical control device that operates with tabular data
JPS59169717A (en) Electric discharge machining device
KR930011213B1 (en) Wire-type edm method and apparatus
JPH0521690B2 (en)
JP7448738B1 (en) Control device and control method for industrial machinery
JP2001179519A (en) Cutting work method and nc data originating device for carrying out the method
JPS61274847A (en) Method of monitoring overload in nc device
JPS6374550A (en) Machine tool
KR0175555B1 (en) Cutting control method of work
JPH04176516A (en) Second cut machining method and second cut machining controller in wire electric discharge machining
JPS62130412A (en) Numerical control method
JP2640467B2 (en) Numerical control unit
JPH07299666A (en) Swing type electric discharge machining method and device therefor
JPH03136725A (en) Method of setting process condition of electric discharge machining device
JPS61182770A (en) Work method of surface grinding machine
JPH01210221A (en) Wire cut electric discharge machining method and apparatus therefor
JPH07251349A (en) Cutting condition setting method and device therefor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees