JPH0221844A - Hemandynamometer probe and blood pressure measuring device - Google Patents

Hemandynamometer probe and blood pressure measuring device

Info

Publication number
JPH0221844A
JPH0221844A JP63170950A JP17095088A JPH0221844A JP H0221844 A JPH0221844 A JP H0221844A JP 63170950 A JP63170950 A JP 63170950A JP 17095088 A JP17095088 A JP 17095088A JP H0221844 A JPH0221844 A JP H0221844A
Authority
JP
Japan
Prior art keywords
blood pressure
probe
arm
light
photo detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170950A
Other languages
Japanese (ja)
Other versions
JP2681151B2 (en
Inventor
Yasuo Yamazaki
靖夫 山崎
Kenichi Yamakoshi
憲一 山越
Hideaki Shimazu
秀昭 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP63170950A priority Critical patent/JP2681151B2/en
Publication of JPH0221844A publication Critical patent/JPH0221844A/en
Application granted granted Critical
Publication of JP2681151B2 publication Critical patent/JP2681151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable blood pressure measurement with high accuracy by connecting a projecting portion and a photo detecting portion by an elastic body at the time of optically detecting a volume pulse wave to be fitted to an arm of a measured person so that the distance between the projecting portion of the photo detecting portion is kept constant and the optical paths intersect each other. CONSTITUTION:As a projecting portion 1 and a photo detecting portion 2 of a probe 100 are fixed to a plate spring 3, the distance therebetween is kept constant regardless of the pressurization or decompression of an arm band and the optical axes thereof are kept in such a manner as to always intersect each other. Accordingly, in the photo detecting portion 2, the photo detecting intensity for the volume pulse wave is measured under the same conditions without considering the change of position and direction of the projecting portion 1 and the photo detecting portion 2, so that a signal concerning the accurate measurement of blood pressure can be outputted. In this arrangement, when a transparent sheet 40 is stuck at its outer frame 41 to the inside of an arm band 20 and the probe 100 is put therein, the probe 100 can be fitted to the arm only by winding the arm bend 20 round the arm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は血圧計プローブ及び血圧測定装置、特に容積脈
波を検出する血圧計プローブと該プローブをケーブルで
接続した血圧測定装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a blood pressure monitor probe and a blood pressure measuring device, and more particularly to a blood pressure monitor probe for detecting volume pulse waves and a blood pressure measuring device in which the probe is connected with a cable. .

[従来の技術] 現在、血圧測定装置には様々なものがあるが、通常、単
に血圧計というと、聴診法を採用した装置を指すことが
多い。
[Prior Art] Currently, there are various types of blood pressure measuring devices, but the term "sphygmomanometer" usually refers to a device that uses an auscultation method.

聴診法とは、腕帯内圧力を予想される最大血圧値よりも
30 mmHg程度高くなるまで加圧し、以下、その腕
帯中或いは腕帯の下縁に近い腕に聴診器を当て、徐々に
減圧しながらコロトコフ音を聴診するという手順を踏む
ものであり、近年では、これら一連の処理を自動的に行
う機器が登場している。
The auscultation method involves increasing the pressure inside the cuff until it is approximately 30 mmHg higher than the expected systolic blood pressure, then applying the stethoscope to the arm near the lower edge of the cuff or the inside of the cuff, and gradually increasing the pressure. The procedure involves auscultating Korotkoff sounds while reducing pressure, and in recent years, devices have appeared that automatically perform this series of processes.

ところで、測定対象者が小児の場合には上述した聴診法
では測定不能に陥る場合があった。そればかりか、小児
の血圧測定に係る技術が未だ確立していないのが現状で
ある。
By the way, when the subject to be measured is a child, the above-mentioned auscultation method may not be able to measure the subject. Furthermore, the current situation is that the technology for measuring blood pressure in children has not yet been established.

この理由としては、小児の場合にはコロトコフ音が非常
に小さいことに起因している。すなわち、コロトコフ音
の検出がなされないために起るものである。
The reason for this is that Korotkoff sounds are very small in children. In other words, this occurs because Korotkoff sounds are not detected.

そこで、別の生立てで血圧を測定する必要があるが、そ
の一つに容積脈波法を応用することが知られている。尚
、容積脈波とは、心拍動によって生じた波動が動脈系を
伝わることによって血管の容積が変動する変化を表わし
たものである。
Therefore, it is necessary to measure blood pressure using another method, and it is known to apply the plethysmography method to one of these methods. Incidentally, the plethysmographic wave represents a change in the volume of a blood vessel caused by waves generated by heartbeats being transmitted through the arterial system.

通常、この容積脈波を検出するには、患者の指先を用い
ており、予め固定された投光部と受光部とを指先に挟み
込み、指先を通した受光強度を検出することで測定して
いた。
Normally, the patient's fingertip is used to detect this volume pulse wave, and it is measured by sandwiching a pre-fixed light emitting part and light receiving part between the fingertips and detecting the intensity of the light received through the fingertip. Ta.

[発明が解決しようとする課題] ところが、この投光部と受光部を単に患者の腕に取りつ
け、その上に腕帯を捲いた格好で容積脈波を検出しよう
とすると、第5図に示す如く、投光部50の光路(或い
は投光軸)と受光部51の受光光路とが交叉しなくなる
場合が発生する。また、仮にこれら投光部50と受光部
51の各々の光軸を交叉する様にした状態で腕帯52を
捲くようにしても、腕自体には弾力性があり、しかも腕
帯内圧力は測定中に変化するので、これら投光部50と
受光部51との距離が定まらず、且つこれら光軸が交叉
する状態から徐々に第5図に示す様な状態になってしま
うこともわかった。
[Problems to be Solved by the Invention] However, when attempting to detect a volume pulse wave by simply attaching the light emitting section and the light receiving section to the patient's arm and wearing an arm cuff over them, the problem shown in Fig. 5 occurs. As shown in FIG. 3, there may occur cases where the optical path (or the light emitting axis) of the light projecting section 50 and the light receiving optical path of the light receiving section 51 do not intersect. Furthermore, even if the arm cuff 52 is rolled up with the optical axes of the light projecting section 50 and the light receiving section 51 intersecting, the arm itself has elasticity, and the pressure inside the cuff is It was also found that the distance between the light emitting part 50 and the light receiving part 51 is not fixed because it changes during measurement, and the state in which these optical axes intersect gradually changes to the state shown in Fig. 5. .

それで、予めこれら投光部と受光部とを第6図に示す如
く成程度湾曲させた部材53で一体にし、これらの光軸
が変化しないようにすることも考えられるが、この場合
、腕帯52を加圧されているときには、図示の矢印方向
にのみ強く圧迫する状態となってしまい、腕全体を均一
に加圧できなくなってしまう。
Therefore, it is conceivable to integrate the light emitting part and the light receiving part in advance with a member 53 that is slightly curved as shown in FIG. 6 so that their optical axes do not change. When the arm 52 is being pressurized, it is strongly pressed only in the direction of the arrow shown in the figure, making it impossible to pressurize the entire arm uniformly.

本発明はかかる課題に鑑みなされたものであり、容積脈
波を検出するプローブが腕に均一にフィツトし、しかも
投光部と受光部との距離を一定すると共に、それら光軸
が常に交叉することを可能ならしめた血圧計プローブ及
び血圧測定装置を提供しようとするものである。
The present invention has been made in view of these problems, and provides a probe for detecting volume pulse waves that fits uniformly on the arm, and that the distance between the light emitting part and the light receiving part is constant, and that their optical axes always intersect. It is an object of the present invention to provide a blood pressure monitor probe and a blood pressure measuring device that make this possible.

[課題を解決するための手段] この課題を解決するために本発明の血圧計プローブ及び
血圧測定装置は以下に示す構成を備える。
[Means for Solving the Problem] In order to solve this problem, a blood pressure monitor probe and a blood pressure measuring device of the present invention are provided with the configurations shown below.

すなわち、 血圧測定のため、容積脈波な光学的に検出する血圧計プ
ローブであって、測定対象者の血管に光を照射する投光
部と、該投光部で照射された光を受光し、対応する信号
を出ノJする受光部と、前記投光部と受光部とを連結す
る弾性体とを備える。
That is, this is a blood pressure monitor probe that optically detects a volume pulse wave for measuring blood pressure, and includes a light projecting section that irradiates light onto the blood vessels of a subject to be measured, and a light projecting section that receives the light emitted by the light projecting section. , a light receiving section that outputs a corresponding signal, and an elastic body that connects the light projecting section and the light receiving section.

また、本発明によれば、弾性体は板バネであることが望
ましい。
Further, according to the present invention, it is desirable that the elastic body is a plate spring.

また、本発明によれば、腕帯の内側に透明な袋状シート
が固定してあって、この袋状シート内に本発明の血圧計
プローブを納めることが望ましい。
Further, according to the present invention, it is desirable that a transparent bag-like sheet is fixed to the inside of the cuff, and the blood pressure monitor probe of the present invention is housed within this bag-like sheet.

[作用] かかる本発明の構成において、投光部と受光部とを弾性
体で連結することにより、測定対象者の腕に良くフィツ
トし、投光部と受光部との距離及びそれらの光路を交叉
する様に保持できる。
[Function] In the configuration of the present invention, by connecting the light emitting part and the light receiving part with an elastic body, it fits well on the arm of the person to be measured, and the distance between the light emitting part and the light receiving part and their optical path can be adjusted. Can be held in an intersecting manner.

[実施例] 以下、添付図面に従って本発明に係る実施例を詳細に説
明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

く血圧計プローブの説明(第1図、第7図)〉第1図(
a)は実施例における脈波検出プローブ100の上面図
であり、同図(b)はそのA−A′の断面図である。
Explanation of blood pressure monitor probe (Fig. 1, Fig. 7)> Fig. 1 (
Figure a) is a top view of the pulse wave detection probe 100 in the example, and figure (b) is a cross-sectional view taken along line A-A'.

図中、1は投光部であって、実施例では近赤外線発生素
子を用いた。2はその近赤外線を受光し、その受光強度
に対応した電流レベルの信号を発生する受光部である。
In the figure, reference numeral 1 denotes a light projecting section, in which a near-infrared generating element was used in the example. Reference numeral 2 denotes a light receiving section that receives the near infrared rays and generates a signal with a current level corresponding to the intensity of the received light.

そして、これら投光部1及び受光部2は板バネ3の両端
に各々透明なモールドプラスチック部材4,5で固定し
た。6は投光部1を駆動する信号線が格納されたケーブ
ルであり、7は受光部2が出力する電流レベル信号の送
信する信号線を格納したケーブルであり、ケーブル8で
一体となって血圧測定装置本体に接続されている。
The light projecting section 1 and the light receiving section 2 were fixed to both ends of the leaf spring 3 with transparent molded plastic members 4 and 5, respectively. Reference numeral 6 denotes a cable in which a signal line for driving the light emitter 1 is stored, and 7 is a cable in which a signal line for transmitting the current level signal outputted by the light receiver 2 is stored. Connected to the measuring device body.

説明が前後するが、実施例では、板バネ3にバネ用ステ
ンレス鋼帯で、厚さ0.08mmのものを使用し、投光
部1及び受光部2の光の投受光を可能にするため、各々
の中心位置に当る板バネ3に穴を開けた。
Although the explanation may be confusing, in this embodiment, a stainless steel strip with a thickness of 0.08 mm is used for the plate spring 3 to enable the light emitting part 1 and the light receiving part 2 to emit and receive light. , a hole was made in the leaf spring 3 corresponding to the center position of each.

尚、実施例では投光部1及び受光部2全体が板バネ3上
に乗る格好になっているが、板バネ3の一部に固定する
様にすれば必ずしも穴を開ける必要はない。
In the embodiment, the light emitting section 1 and the light receiving section 2 are entirely mounted on the leaf spring 3, but if they are fixed to a part of the leaf spring 3, it is not necessarily necessary to make a hole.

また、投光部1及び受光部2とも十分薄くした場合には
、それらを板バネ3の下側に固定することも可能である
。この場合、やはり、板バネ3には穴を開ける必要はな
くなる。
Moreover, when both the light projecting part 1 and the light receiving part 2 are made sufficiently thin, it is also possible to fix them to the lower side of the leaf spring 3. In this case, it is no longer necessary to make holes in the leaf spring 3.

この様な構造の実施例の脈波検出プローブ100を備え
た血圧測定装置の概観の一例を第7図に示す。
FIG. 7 shows an example of an overview of a blood pressure measuring device equipped with a pulse wave detection probe 100 having such a structure.

図中、20は腕帯、70は血圧測定装置本体であって、
71はその電源投入スイッチ、72は測定開始を支持す
るスイッチ、そして73は測定結果を表示する表示部で
ある。尚、血圧測定装置本体70の内部には、公知とな
っている腕帯内に空気を送り込んで加圧させるポンプ、
制御処理を行うCPU等から構成されている。
In the figure, 20 is a wristband, 70 is a blood pressure measuring device main body,
71 is a power-on switch, 72 is a switch that supports starting measurement, and 73 is a display section that displays measurement results. Additionally, inside the blood pressure measuring device main body 70, there is a known pump that pumps air into the cuff to pressurize it.
It is composed of a CPU, etc. that performs control processing.

く血圧測定状態の説明(第2図、第3図)〉上述した実
施例のプローブ100を用いて実際に血圧測定している
状態を第2図(a)に示す。
Explanation of blood pressure measurement state (FIGS. 2 and 3)> FIG. 2(a) shows a state in which blood pressure is actually measured using the probe 100 of the above-described embodiment.

実施例においては、図示の如く、測定対象者の手首のど
う骨動脈22(或いは尺骨動脈)上にプローブ100を
配置し、これを腕帯20で覆って測定するものである。
In the embodiment, as shown in the figure, a probe 100 is placed on the menoid artery 22 (or ulnar artery) of the wrist of the person to be measured, and this is covered with a cuff 20 for measurement.

尚、図中、21は不図示の血圧測定装置内にあるポンプ
からの空気搬送路であるチューブである。
In the figure, 21 is a tube that is an air conveyance path from a pump in a blood pressure measuring device (not shown).

また、この状態もしくは腕帯2oが加圧されている状態
におけるプローブ100近傍の断面図を第2図(b)に
示す。
Further, a cross-sectional view of the vicinity of the probe 100 in this state or in a state where the cuff 2o is pressurized is shown in FIG. 2(b).

図示の如く、実施例ではプローブ10oの投光部1及び
受光部2は板バネに固定されているので、その間の距離
は腕帯の加圧中及び減圧中にかかわらず一定になり、し
かも、それら光軸も常に交叉する様に維持されることに
なる。従って、受光部2では、投光部1及び受光部2の
位置及び向きが変化することを考慮することなく、同一
条件で容積脈波に対応する受光強度を測定することにな
り、正確な血圧測定に係る信号を出力することになる。
As shown in the figure, in the embodiment, the light emitting part 1 and the light receiving part 2 of the probe 10o are fixed to the leaf spring, so the distance between them is constant regardless of whether the cuff is pressurized or decompressed. The optical axes are also maintained to intersect at all times. Therefore, the light receiving section 2 measures the received light intensity corresponding to the volume pulse wave under the same conditions without considering changes in the position and orientation of the light projecting section 1 and the light receiving section 2, thereby obtaining accurate blood pressure. A signal related to measurement will be output.

尚、実際に患者の腕にプローブ100を固定させながら
、その上に腕帯20を覆うことが必要である。そこで、
この手間を省くため、例えば第3図に示す様に、腕帯2
0の内側に透明なシート40をその外枠41で腕帯20
に接着し、その中に実施例のプローブを入れておく構造
にすると、単に腕帯20を腕に捲き付ける動作で、プロ
ーブ100を腕にフィツトさせることが可能となる。
Note that while the probe 100 is actually fixed to the patient's arm, it is necessary to cover it with the cuff 20. Therefore,
In order to save this effort, for example, as shown in Figure 3,
A transparent sheet 40 is placed inside the arm cuff 20 with its outer frame 41.
If the structure is such that the probe of the embodiment is placed inside the probe, the probe 100 can be fitted to the arm simply by wrapping the arm cuff 20 around the arm.

く血圧測定の原理(第4図)〉 次に上述した構成における血圧測定の原理を説明する。Principle of blood pressure measurement (Figure 4) Next, the principle of blood pressure measurement in the above configuration will be explained.

尚、容積脈波法を応用した血圧測定法は公知である。Incidentally, a blood pressure measurement method applying the plethysmography method is well known.

第4図(a)に−心拍(時間T)に対応した観血圧波形
ΔPを示し、実施例のプローブ100で測定した容積脈
波ΔVの波形を第4図(b)に示した。図示の如く、こ
れら波形は非常に近似しており、しかも、この外圧(腕
帯内圧力)を加えると、その圧力の暫時の変化に伴って
、血管内の容積脈波Δ■の振幅も変化することがわかっ
た。そして、この振幅最大点に対応した腕帯内圧力と平
均血圧値は極めて良く一致し、また脈波の消失する点に
対応した腕帯内圧力は最高血圧に一致することもわかっ
た。尚、図示の場合、各波形の最大値を”1”としてい
る。
FIG. 4(a) shows the visual pressure waveform ΔP corresponding to the heartbeat (time T), and FIG. 4(b) shows the waveform of the volume pulse wave ΔV measured with the probe 100 of the embodiment. As shown in the figure, these waveforms are very similar, and moreover, when this external pressure (pressure inside the cuff) is applied, the amplitude of the intravascular volume pulse wave Δ■ changes as the pressure changes over time. I found out that it does. It was also found that the pressure within the cuff corresponding to this maximum amplitude point and the average blood pressure value matched extremely well, and the pressure within the cuff corresponding to the point where the pulse wave disappeared coincided with the systolic blood pressure. In the illustrated case, the maximum value of each waveform is set to "1".

また、最低血圧値は検出した容積脈波の波形と血圧脈波
波形との掃除を利用して算出する様にした。
Further, the diastolic blood pressure value is calculated by using the detected volume pulse wave waveform and the blood pressure pulse wave waveform.

具体的な算出例を以下に説明する。A specific calculation example will be explained below.

第4図(a)、(b)において、各々波形の平均値の波
形定数αp、αVを以下の様に定義する。
In FIGS. 4(a) and 4(b), waveform constants αp and αV of the average values of the waveforms are defined as follows.

a p =  (Pan −Pad) / (Pas 
−Pad)a v =  (Vm −Vd ) / (
Vs −Vd )ここで、ΔVとΔPの波形が相似とみ
なされるから、 αp=α■ となり、求める最低血圧値Padは、αpの代りに容積
脈波より求められるαVを用いて、P ad= P a
m −av/ (1−av)  ・ (Pas−Pam)と
して得られる。
a p = (Pan - Pad) / (Pas
-Pad)av = (Vm -Vd) / (
Vs - Vd) Here, since the waveforms of ΔV and ΔP are considered similar, αp=α■, and the diastolic blood pressure value Pad to be obtained is calculated by using αV obtained from the volume pulse wave instead of αp, Pad= Pa
It is obtained as m -av/ (1-av) · (Pas-Pam).

以上、説明した様に本実施例のプローブを用いれば、投
光部と受光部間の距離が一定に保たれ、しかもそれらの
光軸が常に交叉するように保持されるので、高精度に血
圧測定を行うことが可能となる。
As explained above, if the probe of this embodiment is used, the distance between the light emitting part and the light receiving part is kept constant, and their optical axes are always held to intersect, so blood pressure can be measured with high precision. It becomes possible to perform measurements.

尚、実施例では投光部1と受光部2とを板ノ\ネで連結
したが、同様の弾性力を有するものであれば、棒状であ
っても構わない。しかしながら、測定対象者に違和感を
与えかねないので、板バネが最適であると思われる。
In the embodiment, the light emitting part 1 and the light receiving part 2 are connected by a plate, but it may be rod-shaped as long as it has the same elastic force. However, since this may give a sense of discomfort to the person being measured, a plate spring is considered to be optimal.

[発明の効果] 以上、説明した様に本発明によれば、簡単な構造でもっ
て受光部と投光部との距離が一定に保たれ、しかもそれ
らの投受光軸が常に交叉する様に保持される様になるの
で、高精度の血圧測定を可能にすることが可能となる。
[Effects of the Invention] As explained above, according to the present invention, the distance between the light receiving part and the light emitting part is kept constant with a simple structure, and the light emitting and receiving parts are maintained so that their axes of light always intersect. This makes it possible to measure blood pressure with high precision.

また、板バネでもって投光部と受光部とを連結すること
により、測定対象者に違和感を与えない様にすることが
可能となる。
Furthermore, by connecting the light projecting section and the light receiving section with a leaf spring, it is possible to avoid giving a sense of discomfort to the person to be measured.

腕帯の内側に透明な袋状シートが固定させ、この中に本
発明のプローブを入れることにより、測定対象者の測定
部分に簡単に取り付けることが可能となる。
By fixing a transparent bag-like sheet to the inside of the cuff and inserting the probe of the present invention into this sheet, it becomes possible to easily attach the probe to the part to be measured of the person to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は実施例におけるプローブの上面図、 第1図(b)は実施例のプローブの断面図、第2図(a
)は実施例のプローブを腕に装着させた状態を示す図、 第2図(b)はプローブの腕に対する装着状態の断面を
示す図。 第3図は実施例にプローブを腕帯に固定する一例を示す
図、 第4図(a)は観血圧波形を示す図、 第4図(b)は実施例でのプローブでもって検出した容
積脈波波形を示す図、 第5図は投光部と受光部との間に弾性連結体を設けない
で腕に装着した状態を示す断面図、第6図は投光部と受
光部との間に剛性を有する連結部材で連結した状態を示
す断面図、第7図は実施例における脈波検出プローブを
備えた血圧測定装置の外観斜視図である。 図中、1・・・投光部、2・・・受光部、3・・・板バ
ネ、4及び5・・・モールドプラスチック部材、6〜8
・・・ケーブル、20・・・腕帯、21・・・チューブ
、40・・・透明シート、70・・・血圧測定装置、7
1・・・電源投入スイッチ、72・・・測定開始を支持
するスイッチ、73・・・表示部、100・・・プロー
ブである。 第1図(0) 第1図 (b) 第2図 第2図 (b) 第5図 第6図
FIG. 1(a) is a top view of the probe in the example, FIG. 1(b) is a sectional view of the probe in the example, and FIG. 2(a) is the top view of the probe in the example.
) is a diagram showing a state in which the probe of the embodiment is attached to an arm, and FIG. 2(b) is a diagram showing a cross section of the probe in a state in which the probe is attached to an arm. Figure 3 is a diagram showing an example of fixing the probe to the arm cuff in the example, Figure 4 (a) is a diagram showing the invasive blood pressure waveform, and Figure 4 (b) is the volume detected with the probe in the example. A diagram showing a pulse wave waveform. Figure 5 is a sectional view showing a state in which the light emitter and the light receiver are worn on the arm without an elastic connector between them. Figure 6 is a diagram showing the connection between the light emitter and the light receiver. FIG. 7 is a cross-sectional view showing a state in which the devices are connected by a rigid connection member, and FIG. 7 is an external perspective view of a blood pressure measuring device equipped with a pulse wave detection probe according to an embodiment. In the figure, 1... Light emitting part, 2... Light receiving part, 3... Leaf spring, 4 and 5... Molded plastic member, 6 to 8
... Cable, 20 ... Bracelet, 21 ... Tube, 40 ... Transparent sheet, 70 ... Blood pressure measuring device, 7
DESCRIPTION OF SYMBOLS 1...Power supply switch, 72...Switch for supporting the start of measurement, 73...Display unit, 100...Probe. Figure 1 (0) Figure 1 (b) Figure 2 Figure 2 (b) Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)血圧測定のため、容積脈波を光学的に検出する血
圧計プローブであつて、 測定対象者の血管に光を照射する投光部と、該投光部で
照射された光を受光し、対応する信号を出力する受光部
と、 前記投光部と受光部とを連結する弾性体とを備えること
を特徴とする血圧計プローブ。
(1) A sphygmomanometer probe that optically detects a volume pulse wave for blood pressure measurement, which includes a light projecting section that irradiates light onto the blood vessels of a person to be measured, and a light receiving section that receives the light irradiated by the light projecting section. A blood pressure monitor probe comprising: a light receiving section that outputs a corresponding signal; and an elastic body that connects the light projecting section and the light receiving section.
(2)弾性体は板バネであることを特徴とする請求項第
1項に記載の血圧計プローブ。
(2) The blood pressure monitor probe according to claim 1, wherein the elastic body is a plate spring.
(3)腕帯の内側に透明な袋状シートが固定してあつて
、この袋状シート内に固定することを特徴とする請求項
第1項に記載の血圧計プローブ。
(3) The sphygmomanometer probe according to claim 1, wherein a transparent bag-like sheet is fixed to the inside of the cuff, and the blood pressure monitor probe is fixed within the bag-like sheet.
(4)請求項第1項乃至第3項のいずれかに記載の血圧
計プローブを接続した血圧測定装置。
(4) A blood pressure measuring device to which the blood pressure monitor probe according to any one of claims 1 to 3 is connected.
JP63170950A 1988-07-11 1988-07-11 Sphygmomanometer probe and blood pressure measuring device Expired - Lifetime JP2681151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170950A JP2681151B2 (en) 1988-07-11 1988-07-11 Sphygmomanometer probe and blood pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170950A JP2681151B2 (en) 1988-07-11 1988-07-11 Sphygmomanometer probe and blood pressure measuring device

Publications (2)

Publication Number Publication Date
JPH0221844A true JPH0221844A (en) 1990-01-24
JP2681151B2 JP2681151B2 (en) 1997-11-26

Family

ID=15914383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170950A Expired - Lifetime JP2681151B2 (en) 1988-07-11 1988-07-11 Sphygmomanometer probe and blood pressure measuring device

Country Status (1)

Country Link
JP (1) JP2681151B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555850B1 (en) * 2003-07-21 2006-03-07 강만희 Portable Measuring Apparatus of Blood Vessel and Pulse
WO2013114690A1 (en) * 2012-02-01 2013-08-08 オムロンヘルスケア株式会社 Detection unit for blood pressure information measuring device, and blood pressure information measuring device
US9592000B2 (en) 2011-08-19 2017-03-14 Murata Manufacturing Co., Ltd. Biosensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100007U (en) * 1986-12-19 1988-06-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100007U (en) * 1986-12-19 1988-06-29

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555850B1 (en) * 2003-07-21 2006-03-07 강만희 Portable Measuring Apparatus of Blood Vessel and Pulse
US9592000B2 (en) 2011-08-19 2017-03-14 Murata Manufacturing Co., Ltd. Biosensor
US10314526B2 (en) 2011-08-19 2019-06-11 Murata Manufacturing Co., Ltd. Biosensor
WO2013114690A1 (en) * 2012-02-01 2013-08-08 オムロンヘルスケア株式会社 Detection unit for blood pressure information measuring device, and blood pressure information measuring device

Also Published As

Publication number Publication date
JP2681151B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
JP3940150B2 (en) Caffres electronic blood pressure monitor
US20170311824A1 (en) Non-invasively monitoring blood parameters
US7601123B2 (en) Non-invasive blood pressure monitoring device and methods
TWI429416B (en) Optical power modulation
EP2182839B1 (en) A cuff for determining a physiological parameter
US20070055163A1 (en) Wearable blood pressure sensor and method of calibration
US20150366469A1 (en) System for measurement of cardiovascular health
US20050283082A1 (en) Optical noninvasive vital sign monitor
US20150073239A1 (en) Continuous cuffless blood pressure measurement using a mobile device
JP2002541894A (en) Non-invasive blood pressure measurement method and device
WO2002085203A1 (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
WO2007064654A1 (en) Apparatus and method for blood pressure measurement by touch
EP2291111A2 (en) Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement
JP2017510411A (en) Method for determining blood pressure in a blood vessel and apparatus for performing the method
WO2021024460A1 (en) Sphygmomanometer
US20070239039A1 (en) Method and apparatus for measuring blood pressures by using blood oxygen concentration and electrocardiography
US20230293026A1 (en) Photoplethysmography-based Blood Pressure Monitoring Device
CN209863803U (en) Blood pressure measuring wrist strap equipment
KR20200129811A (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
JPH0221844A (en) Hemandynamometer probe and blood pressure measuring device
JP4540784B2 (en) Blood pressure measurement method and blood pressure monitor
KR20200107157A (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
Schnall et al. A rapid noninvasive blood pressure measurement method for discrete value and full waveform determination
US20240065675A1 (en) Automatic doppler derived blood pressure
CN114983366A (en) System and method for non-invasive cuff-less blood pressure measurement of a user