JPH02216295A - Production of highly strong polyester fiber paper - Google Patents

Production of highly strong polyester fiber paper

Info

Publication number
JPH02216295A
JPH02216295A JP3274089A JP3274089A JPH02216295A JP H02216295 A JPH02216295 A JP H02216295A JP 3274089 A JP3274089 A JP 3274089A JP 3274089 A JP3274089 A JP 3274089A JP H02216295 A JPH02216295 A JP H02216295A
Authority
JP
Japan
Prior art keywords
polyester
paper
fibers
fiber
shrinkage stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3274089A
Other languages
Japanese (ja)
Inventor
Tamio Yamamoto
山本 民雄
Takanori Shinoki
孝典 篠木
Nobuyuki Yamamoto
信幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP3274089A priority Critical patent/JPH02216295A/en
Publication of JPH02216295A publication Critical patent/JPH02216295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To provide the subject fiber paper having a high strength, readily subjected to a calendering process and useful as a tape material for pressing and winding electric wires or cables, etc., by subjecting polyester drawn fibers having a high thermally shrinkage stress to a wet paper-making process. CONSTITUTION:Polyester drawn fibers having a thermal shrinkage stress of 0.08-0.60g/denier at 200 deg.C and polyester undrawn fibers are subjected to a wet paper-making process and subsequently to a thermal pressing calendering process to provide the objective fibers paper. The undrawn fibers are preferably, e.g. those having a birefringence of 0.002-0.03 and a density of 1.335-1.360.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電線押さえ巻き用テープ材等に好適な高強力
ポリエステル繊維紙の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a high-strength polyester fiber paper suitable for tape material for holding and winding electric wires.

〈従来の技術〉 最近、技術革新の高劇化や社会的な軽薄短小化を背景に
、紙に対する要求性能がますます厳しくなつできている
。従来の抄紙用原料としては、天然セルロース、レーヨ
ン、ビニロンが主に使用されてきたが、要求性能の高度
化に伴い、最近は抄紙用原料の一部がポリエステル繊維
に置き換えられつつある。これはポリエステル繊維の機
械的特性、電気的特性、 FNN熱性1法法安定性疎水
性が優れているためでおり、産業構造の高度化に伴う要
求性能の高度化と相まって、今後、ポリエステル繊維へ
の置換が急速に進むものと考えられる。
<Conventional technology> In recent years, against the backdrop of increasingly dramatic technological innovations and social trends toward lighter, thinner, and smaller paper, the performance requirements for paper have become increasingly strict. Traditionally, natural cellulose, rayon, and vinylon have been mainly used as raw materials for papermaking, but as the required performance becomes more sophisticated, polyester fibers are recently replacing some of the raw materials for papermaking. This is because polyester fiber has excellent mechanical properties, electrical properties, FNN thermal 1 method stability, and hydrophobicity.Coupled with the increasing sophistication of required performance due to the sophistication of industrial structures, polyester fiber will become more popular in the future. It is thought that the replacement of

しかしながら、従来の抄紙用ポリエステル繊維は、その
殆んどが紡績用ポリエステル′7T4taを若干、改良
しているに過ぎないものが多かった。例えば、特開昭5
5−110545号公報はポリエステル、繊維をT型、
Y型2甲型等に異形断面化()て紙の嵩性、触感を改良
しようとするものであり、本出願人による特開昭58−
208500号公報、特開昭60−224899号公報
や特公昭62−49394号公報はポリエステル繊維の
水中分散性を向トさせる表面処理剤に関する提案であり
、特開昭63−203875号公報は多葉断面ポリエス
テル繊維をブロックコボリエーテルエステルで処理し、
ポリエステル繊維紙の親水性を改良しようとする提案で
おる。
However, most of the conventional polyester fibers for paper making are merely slightly improved versions of polyester '7T4ta for spinning. For example, JP-A-5
No. 5-110545 discloses polyester, T-type fiber,
This is an attempt to improve the bulk and texture of paper by making it into a Y-shaped, double-sided shape, etc.
208500, JP 60-224899, and JP 62-49394 propose surface treatment agents that improve the dispersibility of polyester fibers in water, and JP 63-203875 proposes polyester fibers. The cross-sectional polyester fiber is treated with block cobolyether ester,
This is a proposal to improve the hydrophilicity of polyester fiber paper.

ところが最近、ポリエステルの有する特性に着目して、
ポリエステルIIIからなるシートが産業資材分野へ多
用される傾向に市る。特に電気資材分野の電線押さえ巻
き用テープとしては、高強力性を生かしてポリエステル
スパンボンドが多く使用されてきている。しかしながら
、該スパンボンド法によるシートは目付斑が大きく、更
には50 g/TIt以下の低目付が難しいという問題
がおるため、湿式抄紙法によるシートが注目されつつお
る。ところが、従来の抄紙用ポリエステル繊維は水中分
散性からくる制約のため、1lli維長は20mm以下
が殆んどであり、更には前述の如く物性的に何ら特別の
改良がなされていないため、湿式抄紙後熱圧着カレンダ
ー加工しても十分な強力を有するボ1ノエステル繊維紙
が得られなかった。
However, recently, attention has been focused on the properties of polyester,
Sheets made of polyester III are increasingly being used in the industrial material field. Particularly, polyester spunbond has been widely used as tape for holding and winding electric wires in the field of electrical materials because of its high strength. However, sheets produced by the spunbond method have a problem in that they have large basis weight irregularities and furthermore, it is difficult to achieve a low basis weight of 50 g/TIt or less, so sheets produced by the wet papermaking method are attracting attention. However, due to the limitations of conventional polyester fibers for papermaking due to water dispersibility, most of the fiber lengths are 20 mm or less, and furthermore, as mentioned above, no special improvements have been made in terms of physical properties, so wet-processing is difficult. Even if the paper was subjected to thermocompression calendering after papermaking, bonoester fiber paper with sufficient strength could not be obtained.

〈発明が解決しようとする問題点〉 本発明は、従来技術では成し得なかった、均一性に優れ
かつ高強力のポリエステル繊維紙を湿式抄紙法によって
提供せんと覆るものでおる。
<Problems to be Solved by the Invention> The present invention overcomes the problem of providing polyester fiber paper with excellent uniformity and high strength using a wet papermaking method, which has not been possible with the prior art.

く問題点を解決するための手段〉 本発明は、ポリエステル系延伸繊維とポリエステル系未
延伸繊維とから湿式抄紙し、次いで熱圧着カレンダー加
工を施してポリエステル繊維紙を製造する方法において
、200℃における熱収縮応力が0.08〜0.60g
/デニールのポリエステル系延伸繊維を使用することを
特徴とする高強力ポリエステル繊維紙の製造方法である
Means for Solving the Problems> The present invention provides a method for producing polyester fiber paper by wet paper-making from drawn polyester fibers and undrawn polyester fibers, and then subjecting the paper to thermocompression calendaring. Heat shrinkage stress is 0.08~0.60g
This is a method for producing high-strength polyester fiber paper, which is characterized by using polyester drawn fibers of /denier.

本発明のポリエステル系繊維としては、ボリエヂレンテ
レフタレート及びこれを主体とするポリエステルからの
繊維が好ましく用いられるか、これらを改質したもの、
例えば塩基性染料可染性ポリエステル、Ift燃性ポリ
エステル、訓電性ポリエステル等が含まれる。
As the polyester fibers of the present invention, polyester fibers made of polyethylene terephthalate and polyesters mainly composed of polyethylene terephthalate are preferably used, or modified fibers thereof,
Examples include basic dye-dyeable polyester, Ift-flammable polyester, electrostatic polyester, and the like.

また、ポリエステル系延伸繊維(バインダー繊維)は、
繊維間の充分な熱接着性を得るため、複屈折率は0.0
02〜0.03、比重は1.335〜1.360のもの
が好適である。単糸繊度は0.2〜5デニール。
In addition, polyester drawn fibers (binder fibers) are
In order to obtain sufficient thermal adhesion between fibers, the birefringence index is 0.0.
02 to 0.03 and a specific gravity of 1.335 to 1.360. Single yarn fineness is 0.2 to 5 denier.

繊維長は3〜20mm、繊維断面は円形または円形に近
い断面が好適である。また、バインダー、繊維の混合比
率は、熱圧着カレンダー加工紙の強力、熱収縮1通気性
の点から30〜70重榎%が好適でおる。
Preferably, the fiber length is 3 to 20 mm, and the fiber cross section is circular or nearly circular. Further, the mixing ratio of the binder and the fibers is preferably 30 to 70% from the viewpoint of the strength of the thermocompression calendered paper, the heat shrinkage properties, and the air permeability.

本発明の骨格部分を構成するポリエステル系延伸繊維と
熱接着効果を有するポリエステル系未延伸繊維とは、パ
ルパーあるいはヒーターで混合分散させた後、円網、y
Ω網おるいは長網抄紙機で抄造後、ドライV−温度11
0〜150℃で乾燥したのち捲き取り、抄上シートとす
る。次いで、該抄上シートはポリエステルの結晶化温度
以上融点以下の温度、例えば180〜240’C,特に
好ましくは200〜240°Cで圧着カレンダー加工さ
れる。カレンダー加工は一段でも多段でもかまわないが
、その際のカレンダー線圧は10〜200 Kg/cm
が望ましい。10Kq/cm未満では充分な圧力がかか
らないため紙強力不足となり、200 Kg/cmを超
えると構成繊維の断面変形が激しくなり、通気性が低下
するので好ましくない。本発明者らは、カレンダー加工
紙の強力とポリエステル系繊維の物性との関係について
種々検討した結果、主体となるポリエステル繊維の熱収
縮応力がカレンダー加工紙の強力に大きな影響を及ぼす
ことを見出した。
The polyester drawn fibers constituting the skeleton of the present invention and the polyester undrawn fibers having a thermal bonding effect are mixed and dispersed using a pulper or a heater, and then mixed and dispersed in a circular mesh, y
After paper making with Ω mesh or Fourdrinier paper machine, dry V-temperature 11
After drying at 0 to 150°C, it is rolled up to form a paper sheet. Next, the paper sheet is pressure-calendered at a temperature above the crystallization temperature and below the melting point of the polyester, for example from 180 to 240°C, particularly preferably from 200 to 240°C. Calender processing can be done in one stage or in multiple stages, but the calender linear pressure at that time is 10 to 200 Kg/cm.
is desirable. If it is less than 10 Kg/cm, sufficient pressure will not be applied and the paper will not be strong enough, and if it exceeds 200 Kg/cm, the cross-sectional deformation of the constituent fibers will become severe and air permeability will decrease, which is not preferable. As a result of various studies on the relationship between the strength of calendered paper and the physical properties of polyester fibers, the present inventors found that the heat shrinkage stress of the main polyester fiber has a large effect on the strength of calendered paper. .

即ち、本発明のポリエステル系延伸繊維は、200℃に
おける熱収縮応力が0.08〜0.60 Mデニルの範
囲のものである。熱収縮応力がo、oag、z’デニー
ル未満の場合は充分な紙強力は(qられす、逆にo、6
og /デニールを越えると、その収縮応力によってカ
レンダー加工時に紙が破断し易くなり、また紙強力も低
くなる。尚、より好ましい熱収縮応力の範囲は0.10
〜0.50c+ /デニ一ルで必る。尚通常の綿混用ま
たはウール混用のポリエステル短繊維の熱収縮応力は0
.08q /デニールより低い。
That is, the drawn polyester fiber of the present invention has a heat shrinkage stress of 0.08 to 0.60 M denier at 200°C. If the heat shrinkage stress is less than o, oag, z' denier, sufficient paper strength will be (q, conversely, o, 6
If it exceeds og/denier, the shrinkage stress causes the paper to break easily during calendering, and the paper strength also decreases. In addition, the more preferable range of heat shrinkage stress is 0.10
Must be ~0.50c+/denier. The heat shrinkage stress of regular polyester short fibers blended with cotton or wool is 0.
.. Lower than 08q/denier.

カレンダー加工紙の強力が熱収縮応力によって大きな影
響を受ける理由は明確ではないが、収縮応力によってバ
インダー繊維i維との圧着状態が変化し、紙強力が変る
ものと考えられる。また、ポリエステル系延伸繊維の熱
収縮率は、特に限定されないが、本発明に好適な熱収縮
率(200℃雰囲気中での弛緩収縮率〉は8〜20%で
必る。8%より小さいと紙強力が低下する傾向におり、
20%より高いとカレンダー加工時に紙が破断し易くな
り、また強力も低下する。更に、ポリエステル系繊維の
繊維形態は未延伸バインダー繊維と同じように、単糸繊
度は0.2〜5デニール、繊維長は3〜20mm。
Although it is not clear why the strength of calendered paper is greatly affected by heat shrinkage stress, it is thought that shrinkage stress changes the state of pressure bonding with the binder fiber i-fibers, thereby changing the paper strength. The heat shrinkage rate of the polyester drawn fiber is not particularly limited, but the heat shrinkage rate suitable for the present invention (relaxation shrinkage rate in an atmosphere of 200°C) is necessarily 8 to 20%. Paper strength tends to decrease,
If it is higher than 20%, the paper will tend to break during calendering and its strength will also decrease. Furthermore, the fiber form of the polyester fiber is the same as that of the undrawn binder fiber, with a single fiber fineness of 0.2 to 5 deniers and a fiber length of 3 to 20 mm.

繊維断面は円形または円形に近い断面が好適である。単
糸繊度がO12デニールより小さいと紙の通気性が悪く
なり、5デニールを越えると紙強力の低下をきたす。ま
た繊維長が3mmより短いと強力不足となり、20mm
を越えると繊維の水中分散が難しくなり抄紙斑になり易
い。
The fiber cross section is preferably circular or nearly circular. If the single yarn fineness is smaller than O12 denier, the air permeability of the paper will deteriorate, and if it exceeds 5 denier, the paper strength will decrease. Also, if the fiber length is shorter than 3mm, it will not be strong enough, and 20mm
If it exceeds this value, it becomes difficult to disperse the fibers in water, and the paper tends to become uneven.

ここに、本発明におけるポリエステル系延伸繊維は、例
えば次の方法によって得られる。即ら、固有粘度が0.
5〜0.8dl/C1の通常のポリエステルチップを溶
融紡糸した後、温水浴中で延伸し、弓き続いて緊張熱処
理および/または弛緩熱処理を行い、所定の長さに切断
する。熱収縮応力は切断する前の繊維をサンプリングし
て測定されるが、熱収縮応力は非晶部分の分子鎖の配向
度によって殆んど決まると考えられる。従って、固有粘
度や吐出ポリマー温度、紡糸速度等の溶融紡糸条件、更
には延伸温度、延伸倍率等の延伸条件、緊張熱処理温度
、弛緩熱処理温度等によって決まると考えられるが、通
常は延伸倍率、緊張熱処理温度。
Here, the polyester drawn fiber in the present invention can be obtained, for example, by the following method. That is, the intrinsic viscosity is 0.
After melt-spinning ordinary polyester chips of 5 to 0.8 dl/C1, they are stretched in a hot water bath, bowed, subjected to tension heat treatment and/or relaxation heat treatment, and cut into predetermined lengths. Heat shrinkage stress is measured by sampling fibers before cutting, and it is thought that heat shrinkage stress is mostly determined by the degree of orientation of molecular chains in the amorphous portion. Therefore, it is thought that it is determined by melt spinning conditions such as intrinsic viscosity, discharge polymer temperature, and spinning speed, as well as stretching conditions such as drawing temperature and draw ratio, tension heat treatment temperature, relaxation heat treatment temperature, etc., but usually the draw ratio, tension Heat treatment temperature.

弛緩熱処理温度等の各条件を種々組合せることによって
熱収縮応力をかなり広範囲に変えることができる。即ち
、延伸倍率の増大および弛緩熱処理温度の低下は熱収縮
応力増大の方向である。また、緊張熱処理温度について
はある温度で熱収縮応力が最大となる。
By combining various conditions such as the relaxation heat treatment temperature, the heat shrinkage stress can be varied over a fairly wide range. That is, an increase in the stretching ratio and a decrease in the relaxation heat treatment temperature are in the direction of an increase in heat shrinkage stress. Further, regarding the tension heat treatment temperature, the heat shrinkage stress becomes maximum at a certain temperature.

〈実施例〉 以下に実施例により本発明を具体的に説明する。<Example> The present invention will be specifically explained below using Examples.

実施例における各評価は以下の方法に従って実施した。Each evaluation in the examples was performed according to the following method.

(1)熱収縮応力 切断する前のポリエステルトウから125デニールとな
るように単繊維をサンプリングする。
(1) Single fibers of 125 denier are sampled from polyester tow before heat shrinkage stress cutting.

この125デニールの繊維束をカネボウエンジニアリン
グ製のKE−II型熟熱収縮応力測定器上下フック(間
隔は約5cm)に掛けた後で繊維束を結び、250デニ
ールの繊維束とする。次いで250デニールの繊維束に
15gの初荷重を掛け、120sec/ 300 ’C
の昇温速度で繊維が溶断するまで昇温し、温度と熱収縮
応力との関係を求める。
This 125 denier fiber bundle was hung on the upper and lower hooks of a KE-II heat shrinkage stress measuring instrument manufactured by Kanebo Engineering Co., Ltd. (the interval was about 5 cm), and then the fiber bundle was tied to form a 250 denier fiber bundle. Next, an initial load of 15g was applied to the 250 denier fiber bundle, and it was heated for 120sec/300'C.
The temperature is raised until the fiber melts at a heating rate of , and the relationship between temperature and thermal shrinkage stress is determined.

(2)紙強力 JIS P8113−1976の引張強ざ試験方法に準
じて測定した。ただし武具は50mm、幅は15mm、
引張速度は50m1Il/分の引張条件下で紙強力(K
!]/15mm)を求めた。タテ方向、ヨコ方向各々に
ついて5回の繰り返し測定を行い、各々の平均値をタテ
およびヨコ強力とした。
(2) Paper strength Measured according to the tensile strength test method of JIS P8113-1976. However, the weapon is 50mm, the width is 15mm,
The tensile speed was 50 ml/min, and the paper strength (K
! ]/15mm) was determined. Measurements were repeated five times in each of the vertical and horizontal directions, and the average value of each was taken as the vertical and horizontal strength.

実施例]〜4.比較例1〜・2 二酸化チタンを0.07重量%含有し固有粘度が0.6
4dl/(Iのポリエチレンテレフタレートチツプを3
00 ’Cで溶融し、600個の丸孔を有する紡糸口金
を通して285℃で吐出し、565m/分の速度で引取
り、単糸繊度が9.1デニールの未延伸糸を得た。
Examples] ~4. Comparative Examples 1 to 2 Contains 0.07% by weight of titanium dioxide and has an intrinsic viscosity of 0.6
4 dl/(I polyethylene terephthalate chips 3
It was melted at 00'C, discharged at 285C through a spinneret having 600 round holes, and taken off at a speed of 565 m/min to obtain an undrawn yarn with a single filament fineness of 9.1 denier.

この未延伸糸を引1前えて65万デニールのトウとなし
、温水浴中で2段延伸し、緊張熱処理、13よび/また
は弛緩熱処理を行いiommの長さに切断し、捲縮のな
いポリエチレンテレフタレート系繊維を得た。この際延
伸倍率および熱処理条件を種々組合せて、熱収縮応力の
異なるポリエステル系w4G#を得た。尚、ポリエステ
ル系繊維の単糸繊度は1.7〜2.1デニールの範囲内
にあった。該ポリエステル系繊維60重量%と単糸繊度
が1.1デニール、繊維長が5mm、複屈折率が0.0
12 、比重が1.340 。
This undrawn yarn was drawn 1 time to form a tow of 650,000 denier, stretched in two stages in a hot water bath, subjected to tension heat treatment, 13 and/or relaxation heat treatment, and cut to a length of iomm. Terephthalate fibers were obtained. At this time, various combinations of stretching ratios and heat treatment conditions were used to obtain polyester w4G# having different heat shrinkage stresses. Incidentally, the single yarn fineness of the polyester fiber was within the range of 1.7 to 2.1 denier. The polyester fiber is 60% by weight, the single fiber fineness is 1.1 denier, the fiber length is 5 mm, and the birefringence index is 0.0.
12, specific gravity is 1.340.

繊維断面が円形の捲縮のないポリエチレンテレフタレー
ト未延伸繊維40重量%とをヒーターに投入し、充分な
混合および分散を行ったのち円網抄紙機に送り、ヤンキ
ードライヤー表面温度120’Cで乾燥し、捲き取った
。この砂上シートをカレンダーローラー表面温度230
°C,カレンダー線圧120Kg/ cm、加工速度2
 m/分の条件下で加工し、32す/尻のポリエチレン
テレフタレート繊維紙を得た。この際のカレンダー加工
調子および得られた紙の強力を、ポリエステル系繊維]
の延伸倍率、緊張熱処理温度、弛緩熱処理温度および得
られたポリエステル系m維の200°Cにおける熱収縮
応力と対応させて第1表に示した。
40% by weight of non-crimped polyethylene terephthalate undrawn fibers with a circular fiber cross section were placed in a heater, sufficiently mixed and dispersed, then sent to a cylinder paper machine and dried at a Yankee dryer surface temperature of 120'C. , rolled up. Calendar roller surface temperature 230
°C, calender linear pressure 120Kg/cm, processing speed 2
Polyethylene terephthalate fiber paper of 32 m/min was obtained. The calendering condition at this time and the strength of the resulting paper were determined using polyester fiber]
Table 1 shows the corresponding drawing ratio, tension heat treatment temperature, relaxation heat treatment temperature, and heat shrinkage stress at 200°C of the obtained polyester m-fiber.

く発明の効果〉 本発明の方法によれば、ポリエステル系m維の熱収縮応
力を通常のポリエステルm維より高くすることによって
、カレンダー加工調子が良く、かつ高強力のポリエステ
ルIIi維紙を得ることができる。
Effects of the Invention According to the method of the present invention, polyester IIi fiber paper with good calendering performance and high strength can be obtained by increasing the heat shrinkage stress of polyester m-fibers compared to ordinary polyester m-fibers. Can be done.

Claims (1)

【特許請求の範囲】[Claims] 1、ポリエステル系延伸繊維とポリエステル系未延伸繊
維とから湿式抄紙し、次いで熱圧着カレンダー加工を施
してポリエステル繊維紙を製造する方法において、20
0℃における熱収縮応力が0.08〜0.60g/デニ
ールのポリエステル系延伸繊維を使用することを特徴と
する高強力ポリエステル繊維紙の製造方法。
1. A method for producing polyester fiber paper by wet paper making from drawn polyester fibers and undrawn polyester fibers, and then subjecting to thermocompression calendering.
A method for producing high-strength polyester fiber paper, comprising using drawn polyester fibers having a heat shrinkage stress of 0.08 to 0.60 g/denier at 0°C.
JP3274089A 1989-02-14 1989-02-14 Production of highly strong polyester fiber paper Pending JPH02216295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274089A JPH02216295A (en) 1989-02-14 1989-02-14 Production of highly strong polyester fiber paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274089A JPH02216295A (en) 1989-02-14 1989-02-14 Production of highly strong polyester fiber paper

Publications (1)

Publication Number Publication Date
JPH02216295A true JPH02216295A (en) 1990-08-29

Family

ID=12367236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274089A Pending JPH02216295A (en) 1989-02-14 1989-02-14 Production of highly strong polyester fiber paper

Country Status (1)

Country Link
JP (1) JPH02216295A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502578A (en) * 1992-01-21 1995-03-16 インターナショナル ペーパー カンパニー Recyclable polymeric synthetic paper and its manufacturing method
US6171443B1 (en) 1990-03-05 2001-01-09 Polyweave International, Llc Recyclable polymeric synthetic paper and method for its manufacture
JP2010180513A (en) * 2009-02-09 2010-08-19 Daio Paper Corp Substrate for adhesive tape
JP2011195992A (en) * 2010-03-19 2011-10-06 Teijin Fibers Ltd Polyester fiber for making paper and method for producing the same
JP2013213295A (en) * 2012-04-02 2013-10-17 Daio Paper Corp Base material for tape, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171443B1 (en) 1990-03-05 2001-01-09 Polyweave International, Llc Recyclable polymeric synthetic paper and method for its manufacture
JPH07502578A (en) * 1992-01-21 1995-03-16 インターナショナル ペーパー カンパニー Recyclable polymeric synthetic paper and its manufacturing method
JP2010180513A (en) * 2009-02-09 2010-08-19 Daio Paper Corp Substrate for adhesive tape
JP2011195992A (en) * 2010-03-19 2011-10-06 Teijin Fibers Ltd Polyester fiber for making paper and method for producing the same
JP2013213295A (en) * 2012-04-02 2013-10-17 Daio Paper Corp Base material for tape, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0352749B1 (en) A filament comprising a tetrafluoroethylene polymer and a process for producing the same
JP3079571B2 (en) Polytetrafluoroethylene fiber, cotton-like material containing the same, and method for producing the same
JP3743007B2 (en) Bulky polytetrafluoroethylene long fibers and split yarns, process for producing them, process for producing cotton-like materials using them, and filter cloth for collecting dust
EP3323923A1 (en) Flame-insulating non-woven fabric
JPH0219223B2 (en)
RU2315827C2 (en) Articles comprising fibers and/or fibrids, fibers and fibrids, and method for producing the same
TWI686520B (en) Polyester binder fiber
JPH02216295A (en) Production of highly strong polyester fiber paper
CN107075739B (en) Lyocell crimped fiber
JP7176850B2 (en) Sea-island composite fiber bundle
JP6211882B2 (en) Wet non-woven fabric and separator
JP2890470B2 (en) Paper-like material comprising polyphenylene sulfide fiber and method for producing the same
JP5254720B2 (en) Method for producing fibrillated molten liquid crystal polymer fiber
JPS6012479B2 (en) Method for manufacturing sheet-like structure
WO2019230688A1 (en) Shaped cross-section fiber and method for manufacturing same and nonwoven fabric and noise absorbing and insulating material comprising shaped cross-section fiber
JP2004308038A (en) Low-density wet type nonwoven fabric
JP3296895B2 (en) Melt anisotropic polyarylate pulp, method for producing the same, and polyarylate paper
JPS61282500A (en) Polyester fiber paper
KR100557271B1 (en) Divisible hollow copolyester fibers, and divided copolyester fibers, woven or knitted fabric, artificial leather and nonwoven fabric comprising same
JPS60259664A (en) Fiber sheet like article
JPS63196751A (en) Polyester binder fiber for nonwoven fabric
JP2022117559A (en) polyphenylene sulfide fiber
JP2019081979A (en) Wet type nonwoven fabric
JP2019081978A (en) Wet-laid nonwoven fabric
JPH03137260A (en) Production of heat resistant nonwoven fabric