JPH02213745A - Device for inspecting sample - Google Patents

Device for inspecting sample

Info

Publication number
JPH02213745A
JPH02213745A JP1035346A JP3534689A JPH02213745A JP H02213745 A JPH02213745 A JP H02213745A JP 1035346 A JP1035346 A JP 1035346A JP 3534689 A JP3534689 A JP 3534689A JP H02213745 A JPH02213745 A JP H02213745A
Authority
JP
Japan
Prior art keywords
sample
liquid
liq
pump
sheathing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1035346A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Azumaya
良行 東家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1035346A priority Critical patent/JPH02213745A/en
Priority to US07/476,771 priority patent/US5134445A/en
Publication of JPH02213745A publication Critical patent/JPH02213745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To increase a fluid velocity in the delivery except the measuring time and in cleaning and to reduce the time except the measuring time by providing a control means for changing the pressing force when the sample is inspected from that when the sample is not inspected. CONSTITUTION:When measurement is started, a sheathing liq. is supplied to a flow cell 19 by a sheathing liq. pump 1 to form a laminar flow of the sheathing liq. in the flow cell 19. A syringe is simultaneously moved at a high speed by a sample pump 3 to exert high pressure, and the sheathing liq. in a sample loop 16 is rapidly delivered. The air layer reaches a sensor 24, and the output signal is sent to a grain analysis circuit 35 and a liq. supply means control circuit 36. The circuit 35 begins to fetch data from the signals of the sensor 24 when the flow of the sample is stabilized in a flow cell part after a fixed time. When fetching is finished and recording is started, a signal is sent to the circuit 36 from the circuit 35, the syringe is moved at a high speed by the pump 3 to highly pressurize the inside of the loop 16, the sheathing liq. having a cleaning function is rapidly delivered, and a tube 18 and the flow cell 19 are quickly cleaned.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はサンプルを被検部へ供給して該被検部にてサン
プルを検査する、フローサイトメータ等のサンプル検査
装置に関する [従来の技術] 従来のサンプル検査装置においては、操作者がサンプル
液が入った容器にサンプルチューブを差し込み、サンプ
ルチューブに吸引力を加え、−旦サンプル液を規定量吸
引して装置内に蓄積し、水路を切換えた後に、蓄積した
サンプル液を押出し用のシース液により押出して被検部
へサンプル液を供給していた。そして被検部にて光学的
、電気的、あるいは電磁的な測定手段を用いてサンプル
を測定していた。ここでサンプル液を押出す押出し液と
して、洗浄機能を持つシース液を使用することにより、
サンプル液を押出すと同時にサンプルチューブ内の洗浄
も同時に行なうことができる。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a sample testing device such as a flow cytometer that supplies a sample to a testing section and tests the sample at the testing section. ] In conventional sample testing devices, the operator inserts a sample tube into a container containing sample liquid, applies suction force to the sample tube, and then aspirates a specified amount of sample liquid, accumulates it in the device, and drains the water channel. After switching, the accumulated sample liquid was extruded by the extrusion sheath liquid to supply the sample liquid to the test area. The sample was then measured at the test site using optical, electrical, or electromagnetic measuring means. By using a sheath liquid with a cleaning function as the extrusion liquid to extrude the sample liquid,
The inside of the sample tube can be washed at the same time as pushing out the sample liquid.

[発明が解決しようとする課題] しかしながら、上記従来のサンプル検査装置では、洗浄
の際に多量の洗浄液が必要であり、さらに洗浄時間も長
く必要であった。これにより測定動作時間の中で洗浄時
間の占める割合が大きく、複数のサンプルを連続的に測
定する場合、総測定時間が長くなってしまった。
[Problems to be Solved by the Invention] However, the conventional sample testing device described above requires a large amount of cleaning liquid during cleaning, and also requires a long cleaning time. As a result, the cleaning time occupies a large proportion of the measurement operation time, and when a plurality of samples are measured continuously, the total measurement time becomes long.

[発明の目的] 本発明は、測定時以外の送り及び洗浄時に流体速度を高
め、測定時以外の時間を短縮することを目的とし、これ
により処理能力を向上させようとするものである。
[Object of the Invention] The present invention aims to increase the fluid velocity during feeding and cleaning other than when measuring, thereby shortening the time other than when measuring, thereby improving throughput.

[目的を達成するための手段] 上述した目的を達成するための本発明は、サンプル液を
押出し液により押圧して順次被検部へ供給し、該被検部
でサンプルを検査するサンプル検査装置において、サン
プル検査時と非検査時で前記押圧力を変化させる制御手
段を備えることを特徴とするサンプル検査装置である。
[Means for Achieving the Object] To achieve the above-mentioned object, the present invention provides a sample testing device that presses a sample liquid with an extrusion liquid, sequentially supplies the sample liquid to a test area, and tests the sample in the test area. The sample testing device is characterized by comprising a control means for changing the pressing force between when testing the sample and when not testing the sample.

[実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明をフローサイトメータに適用した実施
例の構成図である。図中、1はシースポンプ、2は洗浄
ポンプ、3はサンプルポンプであり、各々モータにより
駆動されるシリンジで構成される。これらのポンプ!、
2.3、及び後に述べる三方向バルブ6.7.8、及び
六方向バルブ15は、送液手段]ントロール回路36に
より制御される。シースポンプ1にはチューブ9が接続
され、その他端はフローセル19のシース液流入口に接
続されている。チューブ9の途中には三方向バルブ6が
設けられてチューブ12が接続され、チューブ12の他
端はシース液容器4内に蓄積されるシース液26内に浸
漬されている。このシース液26には洗浄液が含まれ、
水路内を洗浄する効果を持っている。洗浄ポンプ2及び
サンプルポンプ3にはそれぞれチューブ10及び11が
接続され、それぞれのチューブの他端は六方向バルブ1
5に接続されている。チューブ10.11の途中には、
三方向バルブ13.14が設けられ、ぞれぞれチューブ
13.14が接続されており、チューブ13.14の他
端は、洗浄機能を有するシース液容器4内のシース液2
6内に浸漬されている。六方向バルブ15には、他にサ
ンプル吸引チューブ17と、吸引したサンプル液27a
を溜めるサンプルループ16の両端、吸引したサンブル
シン夜27aをフローセル19のサンプル流入口へ送る
ためのチューブ18が接続されている。サンプルループ
16とチューブ18は透明の材質でできており、サンプ
ルループ16のサンプル吸引チューブ17と接続される
側の六方向バルブ15付近と、チューブ18のフローセ
ル17付近には、管内の気体検出器であるセンサ 23
及び24が設けられている。これらのセンサの出力信号
は粒子解析回路35及び送液手段]ントロール回路36
に接続されている。
FIG. 1 is a block diagram of an embodiment in which the present invention is applied to a flow cytometer. In the figure, 1 is a sheath pump, 2 is a washing pump, and 3 is a sample pump, each of which is composed of a syringe driven by a motor. These pumps! ,
2.3, the three-way valve 6.7.8, and the six-way valve 15, which will be described later, are controlled by a control circuit 36. A tube 9 is connected to the sheath pump 1, and the other end is connected to a sheath liquid inlet of a flow cell 19. A three-way valve 6 is provided in the middle of the tube 9 to which the tube 12 is connected, and the other end of the tube 12 is immersed in the sheath liquid 26 accumulated in the sheath liquid container 4. This sheath liquid 26 includes a cleaning liquid,
It has the effect of cleaning the inside of waterways. Tubes 10 and 11 are connected to the washing pump 2 and sample pump 3, respectively, and the other end of each tube is connected to a six-way valve 1.
5. In the middle of tubes 10 and 11,
A three-way valve 13.14 is provided, each connected with a tube 13.14, the other end of which is connected to the sheath liquid 2 in the sheath liquid container 4 having a cleaning function.
It is immersed in 6. The six-way valve 15 also includes a sample suction tube 17 and a sample liquid 27a that has been sucked.
A tube 18 is connected to both ends of the sample loop 16 for storing sample sample 27a to send the sample sample inlet 27a to the sample inlet of the flow cell 19. The sample loop 16 and tube 18 are made of transparent material, and a gas detector inside the tube is located near the six-way valve 15 on the side of the sample loop 16 connected to the sample suction tube 17 and near the flow cell 17 of the tube 18. Sensor 23
and 24 are provided. The output signals of these sensors are transmitted to a particle analysis circuit 35 and a control circuit 36.
It is connected to the.

第2図はセンサ23.24の詳細を示す図であり、透明
なチューブ16又は18を挟んで、LED2B、スリッ
ト29と、光電素子30により構成されている。この構
成において、チューブ内部の物質の屈折率の違いによっ
て光の透過する度合いが変化するため、センサ部でのチ
ューブ内が空気であるかサンプル液であるかを判断する
ことができる。
FIG. 2 is a diagram showing details of the sensor 23, 24, which is composed of an LED 2B, a slit 29, and a photoelectric element 30 with a transparent tube 16 or 18 in between. In this configuration, since the degree of light transmission changes depending on the difference in the refractive index of the substance inside the tube, the sensor section can determine whether the inside of the tube is air or sample liquid.

フローセル19内の被検部に向けてレーザ光源38が配
置され、血液試料等のサンプル液が、シース液に鞘状に
包まれて細い流れに収斂され、−粒子ずつ被検部を通過
するサンプル液中の血球細胞等の微粒子に対して、レー
ザ光源38から発射されたレーザ光が照射され、微粒子
によって光散乱が起きる。フローセルI9を挟んでレー
ザ光源38と対向する位置に設けられたストッパ39に
よって直接光が除去され、ストッパ39の後方に位置す
るレンズ40で集光された前方散乱光は光検出器41に
て測光される。光検出器41の出力は粒子解析回路35
に接続される。また、図面には示されていないが、側方
散乱光及び蛍光を測光する光学系が、紙面垂直方向に設
けられている。これらの測光出力も粒子解析回路35に
接続されている。
A laser light source 38 is placed toward the test area in the flow cell 19, and a sample liquid such as a blood sample is wrapped in a sheath liquid and converged into a thin flow, causing the sample to pass through the test area one by one. Laser light emitted from the laser light source 38 is irradiated onto microparticles such as blood cells in the liquid, and light scattering occurs due to the microparticles. Direct light is removed by a stopper 39 placed opposite the laser light source 38 across the flow cell I9, and forward scattered light collected by a lens 40 located behind the stopper 39 is photometered by a photodetector 41. be done. The output of the photodetector 41 is sent to the particle analysis circuit 35
connected to. Although not shown in the drawings, an optical system for measuring side scattered light and fluorescence is provided in a direction perpendicular to the plane of the paper. These photometric outputs are also connected to the particle analysis circuit 35.

フローセル19を通過した測定済みの廃液は、フローセ
ル19から廃液容器5に接続される廃液チューブ20を
通って廃液容器5に捨てられる。
The measured waste liquid that has passed through the flow cell 19 is discarded into the waste liquid container 5 through a waste liquid tube 20 connected from the flow cell 19 to the waste liquid container 5.

また、25はサンプル液27aが入った試験管で、試験
管25の有無が容器検知手段37で監視されている。2
1は洗浄廃液受けで、サンプル吸引チューブ17を逆流
洗浄した洗浄廃液は廃液チューブ22によって廃液容器
5に導かれる。
Further, 25 is a test tube containing a sample liquid 27a, and the presence or absence of the test tube 25 is monitored by a container detection means 37. 2
Reference numeral 1 denotes a washing waste liquid receiver, in which the washing waste liquid that has been backwashed through the sample suction tube 17 is guided to the waste liquid container 5 through a waste liquid tube 22 .

次に以上の構成における、サンプル供給の動作行程を説
明する。
Next, the operation process of sample supply in the above configuration will be explained.

初期状態では、各ポンプ】、2.3と三方向バルブ6.
7.8、チューブ9.10,11.12.13.14.
17.18、六方向バルブ15、サンプルループ16の
内部は全てシース液で満たされている。
In the initial state, each pump], 2.3 and three-way valve 6.
7.8, tubes 9.10, 11.12.13.14.
17, 18, the six-way valve 15, and the sample loop 16 are all filled with sheath fluid.

サンプル吸引行程では、まず、六方向バルブ16が第3
図に示す位置となり、サンプルポンプ3が吸引動作を行
ない、吸引チューブ17の先端から少量の空気を吸引し
た状態で待機する。次に第4図に示すように、血液試料
やラテックス凝集懸濁液等のサンプル液27aの入った
サンプル液容器25を、操作者が吸引チューブ17の位
置へ持7て行き装置本体に設けられた吸引開始ボタンを
押すと、サンプルポンプが吸引動作を行ない、サンプル
液が吸引チューブ17に一定量吸引された後に動作が停
止する。ここで先に吸引した少量の空気は空気層31a
となって、シース液とサンプル液を分離する役割を果た
す。
In the sample suction process, first, the six-way valve 16
At the position shown in the figure, the sample pump 3 performs a suction operation and stands by while sucking a small amount of air from the tip of the suction tube 17. Next, as shown in FIG. 4, the operator carries the sample liquid container 25 containing the sample liquid 27a, such as a blood sample or latex agglutination suspension, to the position of the suction tube 17, which is installed in the main body of the apparatus. When the user presses the suction start button, the sample pump performs a suction operation, and after a certain amount of sample liquid has been suctioned into the suction tube 17, the operation stops. Here, the small amount of air sucked earlier is the air layer 31a
This serves to separate the sheath liquid and sample liquid.

万一、吸引中にサンプル液27aが途中でなくなったり
、誤って吸引チューブ17の先端がサンプル液面より上
に出て空気を吸い込んだ場合には、センサ23が空気を
検知して信号が送液手段]ントロール回路36へ送られ
、吸引動作が停止する。なお、センサ23を通過する最
初の空気層31aでは吸引動作は停止しないようになっ
ている。
In the unlikely event that the sample liquid 27a runs out during suction, or if the tip of the suction tube 17 accidentally protrudes above the sample liquid level and sucks in air, the sensor 23 detects air and sends a signal. Liquid means] is sent to the control circuit 36, and the suction operation is stopped. Note that the suction operation is not stopped in the first air layer 31a passing through the sensor 23.

サンプル液容器25から一定量サンプル液の吸引が終了
し、操作者がサンプル液容器25を取り除くと、容器検
知手段37が送液手段]ントロール回路36へ信号を送
り、サンプルポンプ3が吸引チューブ17に残っている
サンプル液をサンプルループ内へ送るために再び吸引を
始める。この時、吸引チューブ17の先端からは空気が
吸引され、第5図に示すように空気がセンサ23の位置
まで達したら、センサ23の信号によりサンプルポンプ
3の吸引動作を停止する。
When suction of a certain amount of sample liquid from the sample liquid container 25 is completed and the operator removes the sample liquid container 25, the container detection means 37 sends a signal to the liquid feeding means] control circuit 36, and the sample pump 3 sends a signal to the suction tube 17. Start suction again to send the remaining sample liquid into the sample loop. At this time, air is suctioned from the tip of the suction tube 17, and when the air reaches the position of the sensor 23 as shown in FIG. 5, the suction operation of the sample pump 3 is stopped in response to a signal from the sensor 23.

次に、六方向バルブ15が矢印のイ方向に回転して第6
図のように水路の接続が変わる。ここでサンプルポンプ
3が一定量送液動作を行ない、先に吸引したサンプル液
を空気層32aを挟んでシース液で押し進める。なお、
シース液とサンプル液の間に存在する空気層32aによ
ってシース液とサンプル液は混ざらずに分離される。
Next, the six-way valve 15 rotates in the direction of arrow A to
The waterway connections will change as shown in the diagram. Here, the sample pump 3 performs a certain amount of liquid feeding operation, and the previously aspirated sample liquid is pushed forward with the sheath liquid across the air layer 32a. In addition,
The air layer 32a existing between the sheath liquid and the sample liquid separates the sheath liquid and the sample liquid without mixing them.

この時、同時に洗浄ポンプ2が送液動作によってシース
液を押し出し、六方向バルブ15内の一部と、サンプル
吸引チューブ17をシース液を逆流させて洗浄を行なう
。洗浄の廃液は廃液受け21に排出され、廃液チューブ
22を通って廃液容器5内に捨てられる。
At this time, at the same time, the cleaning pump 2 pushes out the sheath liquid by a liquid feeding operation, and causes the sheath liquid to flow backward through a part of the six-way valve 15 and the sample suction tube 17, thereby cleaning. The cleaning waste liquid is discharged into a waste liquid receiver 21, passes through a waste liquid tube 22, and is discarded into a waste liquid container 5.

サンプルポンプ3によりサンプル液をシースン夜で一定
量押し進めると送液動作は停止し、また洗浄ポンプ2の
送液動作による洗浄も停止する。
When the sample pump 3 pushes the sample liquid by a certain amount during the season, the liquid feeding operation is stopped, and the cleaning by the liquid feeding operation of the cleaning pump 2 is also stopped.

次いで六方向バルブ15が図中口の方向へ回転して、水
路の接続が第7図に示すように切り替わる。そしてサン
プルポンプ3が吸引チューブ17の先端から少量の空気
を吸引して待機し、次のサンプル液の吸引行程に移るこ
とができる。以下、同様の行程の繰り返しにより、複数
種のサンプル液を次々と吸引していくと、サンプルルー
プ16内には第9図のように、シース液26とサンプル
液27a、27b、27cが空気層31a。
Next, the six-way valve 15 is rotated in the direction of the opening in the figure, and the connection of the water channels is switched as shown in FIG. Then, the sample pump 3 sucks a small amount of air from the tip of the suction tube 17, waits, and can move on to the next sample liquid suction process. Thereafter, by repeating the same process, multiple types of sample liquids are suctioned one after another, and as shown in FIG. 31a.

32a、31b、32b、31c、32cで隔てられな
がら順に蓄積される。
They are stored in order while being separated by 32a, 31b, 32b, 31c, and 32c.

なお、吸引して一度に蓄積することができるサンプル液
の種類数は、吸引するサンプル液の量及びシース液の量
と、サンプルループ16の容積、すなわちサンプルルー
プ16の内径及び長さで決定される。サンプルの吸引回
数は送液手段]ントロール回路36でカウントされ、予
め定められた所定回数に達したら吸引動作を行なわない
ように制御される。
Note that the number of types of sample liquid that can be aspirated and accumulated at one time is determined by the amount of sample liquid to be aspirated, the amount of sheath liquid, and the volume of the sample loop 16, that is, the inner diameter and length of the sample loop 16. Ru. The number of times the sample is aspirated is counted by the liquid feeding means control circuit 36, and the aspiration operation is controlled not to be performed when a predetermined number of times is reached.

サンプルループ16の材質は液体をはじきやすいフッ素
樹脂であり、サンプル液の流れの後端は空気層で断ち切
られているため、サンプル液の通過後にサンプルチュー
ブ内壁面にサンプル液が殆ど残らず、サンプル液の次に
流れる洗浄液の量が少なくても洗浄効果が高い。
The material of the sample loop 16 is a fluororesin that easily repels liquid, and the trailing end of the sample liquid flow is cut off by an air layer, so that almost no sample liquid remains on the inner wall of the sample tube after the sample liquid has passed, and the sample The cleaning effect is high even if the amount of cleaning liquid that flows after the liquid is small.

以上のようにして、サンプルループへ複数種のサンプル
液の蓄積が終了すると、第8図のような測定開始待機状
態となり、操作者が装置本体に設けられた測定スタート
ボタンを押すことにより、サンプル液の測定が開始され
る。なお、サンプルループ16に限度数のサンプル液を
蓄積しなくとも、測定スタートボタンを押せば測定を開
始することができる。
When multiple types of sample liquids have been accumulated in the sample loop as described above, the system enters a standby state for starting measurement as shown in Figure 8, and when the operator presses the measurement start button provided on the main body of the device, the sample Liquid measurement begins. Note that even if the limit number of sample liquids is not accumulated in the sample loop 16, the measurement can be started by pressing the measurement start button.

測定スタートボタンが押されると、まずシースポンプ1
はシースン夜をフローセル19へ送?夜してフローセル
19内でシース液の層流を形成する。
When the measurement start button is pressed, first the sheath pump 1
Send Season Night to Flow Cell 19? A laminar flow of the sheath liquid is formed in the flow cell 19 overnight.

同時にサンプルポンプ3はシリンジを高速で勅かして高
い圧力を加え、サンプルループ16内のシース液の早送
りを行なう。早送りを行なうのは測定に関係のないシー
ス液を早く通過させ、総測定時間を少しでも短縮するた
めである。第8図に示すように空気層31aがセンサ2
4部に達し、その出力信号は粒子解析回路35及び送液
手段]ントロール回路36に送られる。センサ24の信
号を受けて送液手段]ントロール回路36により、サン
プルポンプ3はサンブルシン夜がフローセル部で適切な
流径となるよう、シリンジを通常速度で動かしサンプル
ループ内に適正圧力を加える。
At the same time, the sample pump 3 pumps the syringe at high speed to apply high pressure and rapidly transport the sheath liquid within the sample loop 16. The purpose of fast forwarding is to allow the sheath liquid unrelated to the measurement to pass quickly, thereby shortening the total measurement time as much as possible. As shown in FIG. 8, the air layer 31a
4 parts, and its output signal is sent to a particle analysis circuit 35 and a control circuit 36. In response to the signal from the sensor 24, the control circuit 36 causes the sample pump 3 to move the syringe at a normal speed and apply appropriate pressure to the sample loop so that the sample has an appropriate flow diameter in the flow cell section.

また粒子解析回路35は、センサ24の信号から一定時
間たって、フローセル部でサンプルの流れが安定した後
にデータの取り込みを始める。
Further, the particle analysis circuit 35 starts acquiring data after a certain period of time has elapsed since the signal from the sensor 24, and after the flow of the sample becomes stable in the flow cell section.

通常、データの取り込みは設定された粒子個数や時間分
だけ行ない終了するが、データ取り込み中にサンプル液
27aと、それを押し出すシース液との間の空気層32
aがセンサ24部を通過すると、その信号が粒子解析回
路35へ送られデータ取り込みを強制的に終了する。
Normally, data acquisition is completed after a set number of particles or time, but during data acquisition, an air layer 32 between the sample liquid 27a and the sheath liquid that pushes it out
When a passes through the sensor 24 section, the signal is sent to the particle analysis circuit 35 and the data acquisition is forcibly terminated.

データ取り込みが終了すると、取り込んだデータの記録
媒体への記録が開始され、同時に粒子解析回路35から
送液手段]ントロール回路36へ信号が送られ、サンプ
ルポンプ3がシリンジを高速で動かしてサンプルループ
16内を高加圧し、洗浄機能を持つシース液の早送りを
行なってチューブ18及びフローセル19の洗浄を素早
く行なう。サンプルループ内の空気層31bがセンサ2
4部に達すると、サンプルポンプ3が停止し送液動作が
停止する。同時に行なわれている取り込みデータの記録
が終了すβと、粒子解析回路35カ)ら送液手段]ント
ロール回路36へ信号が送られ、サンプルポンプ3が通
常の送り速度で、次のサンプル液の送液を再開する。
When the data capture is completed, recording of the captured data on the recording medium is started, and at the same time, a signal is sent from the particle analysis circuit 35 to the control circuit 36, which causes the sample pump 3 to move the syringe at high speed to loop the sample. The tube 18 and flow cell 19 are quickly cleaned by pressurizing the inside of the tube 16 at a high level and rapidly transporting a sheath liquid having a cleaning function. The air layer 31b in the sample loop is the sensor 2
When the amount reaches 4 parts, the sample pump 3 is stopped and the liquid feeding operation is stopped. When the recording of the captured data that is being carried out at the same time is completed β, a signal is sent from the particle analysis circuit 35) to the control circuit 36, and the sample pump 3 starts the next sample liquid at the normal feeding speed. Resume liquid feeding.

以上の繰り返しにより、自動的に次々と複数種のサンプ
ル液の測定が行なわれる。最後のサンプル液27cのデ
ータ取り込みが終了すると、粒子解析回路35から送液
手段]ントロール回路36へ信号が送られ、サンプルポ
ンプ3でシース液を押し出し、水路を洗浄した後に装置
が停止する。
By repeating the above steps, multiple types of sample liquids are automatically measured one after another. When the data acquisition of the last sample liquid 27c is completed, a signal is sent from the particle analysis circuit 35 to the liquid supply control circuit 36, the sheath liquid is pushed out by the sample pump 3, and the apparatus is stopped after the water channel is cleaned.

こうして得られた測定データを基に、ヒストグラムやサ
イトダラム処理を用いて粒子解析を行なう様々な方法は
良く知られており、粒子解析回路35にてその演算が行
なわれる。
Various methods are well known for performing particle analysis using histograms and cytodulum processing based on the measurement data obtained in this way, and the calculations are performed in the particle analysis circuit 35.

なお、以上は本発明をフローサイトメータに適用した実
施例を説明してきたが、本発明はこれには限られず、粒
子カウンタや、被検部の電気インピーダンスから微粒子
測定を行なうコールタ−測定器、あるいは光音習を用い
た粒子測定器等、被検部へ順次サンプルを供給する装置
に広く適用することができる。
Although the embodiments in which the present invention is applied to a flow cytometer have been described above, the present invention is not limited to this, and can be applied to a particle counter, a Coulter measuring instrument that measures particulates from the electrical impedance of a test part, Alternatively, the present invention can be widely applied to devices that sequentially supply samples to a test area, such as a particle measuring device using optical sound learning.

[発明の効果] 以上本発明によれば、サンプル測定中以外の時間は押出
し液の送り速度を高めることにより、洗浄時間及び送り
時間の短縮が可能となる。これにより、複数のサンプル
を連続的に繰り返し測定する際に、測定サイクルが短縮
されるため、時間当たりの処理能力を高めることができ
る。
[Effects of the Invention] According to the present invention, the cleaning time and the feeding time can be shortened by increasing the feeding speed of the extrusion liquid during times other than during sample measurement. This shortens the measurement cycle when continuously and repeatedly measuring a plurality of samples, thereby increasing the throughput per unit of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び、第3図乃至第8図は、本発明の実施例の構
成図、 第2図は、気体検出用のセンサの詳細図、第9図は、サ
ンプルループの詳細図、 であり、図中の主な符号は、 1・・・・シースポンプ、 2・・・・洗浄ポンプ、 3・・・・サンプルポンプ、 4・・・・シース液容器 5・・・・廃液容器、 6.7.8・・・・三方向バルブ、 15・・・・六方向バルブ、 16・・・・サンプルループ、 23.24・・・・センサ、 25・・・・サンプル容器、 38・・・・レーザ光源、 41・・・・光検出器、
1 and 3 to 8 are configuration diagrams of an embodiment of the present invention, FIG. 2 is a detailed diagram of a sensor for gas detection, and FIG. 9 is a detailed diagram of a sample loop. The main symbols in the diagram are: 1... Sheath pump, 2... Washing pump, 3... Sample pump, 4... Sheath liquid container 5... Waste liquid container, 6 .7.8...Three-way valve, 15...Six-way valve, 16...Sample loop, 23.24...Sensor, 25...Sample container, 38...・Laser light source, 41... photodetector,

Claims (1)

【特許請求の範囲】 1、サンプル液を押出し液により押圧して順次被検部へ
供給し、該被検部でサンプルを検査するサンプル検査装
置において、 サンプル検査時と非検査時で前記押圧力を変化させる制
御手段を備えることを特徴とするサンプル検査装置。 2、サンプル検査時と非検査時との判別を、所定位置に
おいてサンプル液と押出し液との境界を検知することに
より行なう請求項1記載のサンプル検査装置。 3、サンプル液と押出し液との境界に気体を介在させる
請求項2記載のサンプル検査装置。 4、前記検知手段は供給経路内の気体と液体を識別する
光学センサである請求項3記載のサンプル検査装置。 5、前記押出し液により供給経路の洗浄を行なう請求項
1記載のサンプル検査装置。 6、被検部において、流れるサンプルに光を照射し、そ
の光学的反作用を検出してサンプルを検査する請求項1
記載のサンプル検査装置。
[Scope of Claims] 1. In a sample testing device that presses a sample liquid with an extrusion liquid and sequentially supplies it to a test area, and tests the sample in the test area, the pressing force is increased during sample testing and during non-testing. A sample inspection device characterized by comprising a control means for changing. 2. The sample testing device according to claim 1, wherein the discrimination between sample testing and non-testing is performed by detecting a boundary between the sample liquid and the extrusion liquid at a predetermined position. 3. The sample testing device according to claim 2, wherein a gas is interposed at the boundary between the sample liquid and the extrusion liquid. 4. The sample inspection device according to claim 3, wherein the detection means is an optical sensor that distinguishes between gas and liquid in the supply path. 5. The sample inspection device according to claim 1, wherein the supply route is cleaned by the extrusion liquid. 6. Claim 1, wherein the sample is inspected by irradiating the flowing sample with light and detecting the optical reaction in the test section.
Sample testing equipment as described.
JP1035346A 1989-02-14 1989-02-14 Device for inspecting sample Pending JPH02213745A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1035346A JPH02213745A (en) 1989-02-14 1989-02-14 Device for inspecting sample
US07/476,771 US5134445A (en) 1989-02-14 1990-02-08 Sample inspecting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1035346A JPH02213745A (en) 1989-02-14 1989-02-14 Device for inspecting sample

Publications (1)

Publication Number Publication Date
JPH02213745A true JPH02213745A (en) 1990-08-24

Family

ID=12439303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1035346A Pending JPH02213745A (en) 1989-02-14 1989-02-14 Device for inspecting sample

Country Status (1)

Country Link
JP (1) JPH02213745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576526A (en) * 1991-09-17 1993-03-30 Hitachi Ltd Imaging method for x-ray ct and x-ray ct device
WO1996004542A1 (en) * 1994-08-01 1996-02-15 Abbott Laboratories Fluid nozzle and method of introducing a fluid
WO2008142922A1 (en) * 2007-05-18 2008-11-27 Horiba, Ltd. Flow channel sensor and tube fixture used therefor
WO2022001370A1 (en) * 2020-06-30 2022-01-06 深圳市科曼医疗设备有限公司 Liquid path system for sheath flow, and control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576526A (en) * 1991-09-17 1993-03-30 Hitachi Ltd Imaging method for x-ray ct and x-ray ct device
WO1996004542A1 (en) * 1994-08-01 1996-02-15 Abbott Laboratories Fluid nozzle and method of introducing a fluid
WO2008142922A1 (en) * 2007-05-18 2008-11-27 Horiba, Ltd. Flow channel sensor and tube fixture used therefor
JP5199083B2 (en) * 2007-05-18 2013-05-15 株式会社堀場製作所 Flow path sensor and tube fixture used therefor
WO2022001370A1 (en) * 2020-06-30 2022-01-06 深圳市科曼医疗设备有限公司 Liquid path system for sheath flow, and control method

Similar Documents

Publication Publication Date Title
US5134445A (en) Sample inspecting method and apparatus
JP4800318B2 (en) Apparatus and method for treating biological fluids
US5005434A (en) Autosampler with a means for detecting air bubble in specimen
US6632679B1 (en) Method to determine the speed of sedimentation of blood and other parameters correlated thereto, and relative apparatus
US6157692A (en) Method and an apparatus for determining the number of particles or cells in a liquid sample
JP6524305B2 (en) Apparatus and method for determining blood settling velocity and other parameters associated therewith
JP2019144255A (en) System and method for imaging fluid sample
NZ299724A (en) Analysis of liquid using diminished intensity of a reflected beam, use in analysing trace samples and apparatus therefor
CN109959549A (en) Sample testing method and sample analyser
JPH06194299A (en) Flow cell apparatus
JP7382341B2 (en) Apparatus and method for determining erythrocyte sedimentation rate and other related parameters
EP0335789B1 (en) Simplified automatic blood analysis system
JPH02213745A (en) Device for inspecting sample
JPH0815273A (en) Automatic chemical analyzer
JPH0436636A (en) Flow cell device
US3511573A (en) Flow cell structure for particle counting having improved wash
EP0351256B1 (en) Simplified drawing and discharging device for an automatic blood analysis system
JPH02213744A (en) Method and device for inspecting sample
CN111886489B (en) Sample analyzer and sample analysis method
JPH02213746A (en) Device for inspecting sample
KR20220018000A (en) Line Volume Calibration System and Method
EP0357466B1 (en) Symplified lysis circuit for an automatic blood analysis system
JP7170804B2 (en) Method and apparatus for measuring analyte concentration in whole blood
CN110672869B (en) Device and method for detecting blocking of sample needle
JPS5973724A (en) Liquid droplet detecting device